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FEATURE SELECTION BASED ON STATISTICAL ESTIMATION

OF MUTUAL INFORMATION

A.A. KOZHEVIN

Abstract. An algorithm to identify signi�cant factors is proposed in
the mixed model framework. It employs statistical estimation of mutual
information. Consistency of this procedure is established. Numerical
experiments demonstrating its accuracy supplement theoretical results.

Keywords: feature selection, mixed model, mutual information, condi-
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1. Introduction

Feature selection plays important role in various domains, see, e.g., the books [1],
[7], [11] and references therein. The paper is devoted to a certain feature selection
procedure based on information theory approach (see, e.g., [12]). In the framework
of a mixed model ( [3], [4], [5]) we employ the estimators of conditional entropy and
mutual information studied in [2] and [3] to identify the relevant features.

Mixed model is described in papers [2], [5], [9]. We recall its de�nition. All the
random elements (vectors, variables) are de�ned on a probability space (Ω,F ,P).
Consider a random vector X taking values in Rd endowed with the Borel σ-algebra
B(Rd). Let Y : Ω → M , M being a �nite set, have P(Y = y) > 0 for each y ∈ M .
Components of a vector X are called explanatory variables (features), Y is called a
response variable. Introduce σ-algebra A := 2M . We write PZ for the distribution
of a random element Z. Assume that the distribution of vector (X,Y ) is absolutely
continuous with respect to measure µ ⊗ λ, i.e. P(X,Y ) � µ ⊗ λ, where µ is the

Lebesgue measure on (Rd,B(Rd)) and λ is a counting measure on (M,A). Hence
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there exists the Radon - Nikodym derivative

dP(X,Y )

d(µ⊗ λ)
:= fX,Y ,

and one can write dPX

dµ = fX , where fX(x) =
∑
y∈M fX,Y (x, y), x ∈ Rd, y ∈M .

Further the following notation will be employed. For a vector Z = (Z1, . . . , Zd)
with values in Rd variables Z1, . . . , Zd are its components. For a set L = {l1, . . . , lm},
where integers l1, . . . , lm are such that 1 ≤ l1 < . . . < lm ≤ d and m ∈ {1, . . . , d},
set ZL := (Zl1 , . . . , Zlm). In other words, we consider the sub-vector of a vector
Z with components Zl1 , . . . , Zlm . The density fXL,Y of a vector (XL, Y ) and the
density fXL

of a vector XL are easily evaluated by means of densities fX,Y and fX .
The mixed model arises in a number of important problems, including the anal-

ysis of medical and biological data. For instance X can describe genetic and non-
genetic factors having potential impact on provoking certain disease whereas Y
characterizes the health state of a patient (Y = 1 means the disease occurrence and
Y = 0 corresponds to its absence).

In many situations a response variable does not depend on the whole collection
of the explanatory variables but it depends on certain components of X. One can
formalize this as follows.

De�nition 1. A set of indices S = {s1, . . . sm} and a set of features XS :=
(Xs1 , . . . , Xsm), where 1 ≤ s1 < . . . , < sm ≤ d, are called relevant if for each
y ∈M and µ-almost all x ∈ Rd the following relation between conditional densities
holds

(1) fY |X(y|x) = fY |XS
(y|xS).

The conditional density fY |X of Y given X is

fY |X(y|x) =
fX,Y (x, y)

fX(x)
, x ∈ Rd, y ∈M.

Note that various approaches to de�ne relevance, redundancy and complemen-
tarity are discussed, e.g., in [12] (see also the references therein).

Diverse dependence measures between X and Y play an important role in the
problem of identi�cation of relevant factors. The method considered in the paper
bases on the concept of mutual information between X and Y de�ned by way of

I(X;Y ) := DKL(P(X,Y )||PX ⊗ PY ),

here DKL is the Kullback-Leibler divergence between probability measures PX,Y
and PX ⊗ PY (see [8]).

Evidently, for a mixed model

dP(X,Y )

d(PX ⊗ PY )
(x, y) =

fX,Y (x, y)

fX(x)P(Y = y)
, x ∈ Rd, y ∈M,

(with usual agreement 0/0 := 0), thus one can write mutual information as

I(X;Y ) =
∑
y∈M

∫
Rd

(
log

fX,Y (x, y)

fX(x)P(Y = y)

)
fX,Y (x, y)µ(dx),

where log stands for loge and 0 log 0 := 0. Henceforth we write dx instead of µ(dx)
for simplicity. Note that
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(2) I(X;Y ) = H(Y )−H(Y |X)

where
H(Y ) = −

∑
y∈M

(logP(Y = y))P(Y = y)

is the Shannon entropy of Y and

H(Y |X) = −
∑
y∈M

∫
Rd

(log fY |X(y|x))fX,Y (x, y)dx

is the conditional entropy of a random variable Y given a random vector X.
In the case of mixed model mutual information I(X;Y ) is always �nite (see the

reasoning after formula (13) in [3]).

2. Identification of relevant factors

Let independent vectors (Xi, Y i), i ∈ N, have the same distribution as the vector
(X,Y ). Consider a sample ζn = {(Xi, Y i)}ni=1. For description of the relevant
factors identi�cation we recall some de�nitions.

Let | · | stand for the cardinality of a �nite set and ‖ · ‖ be the Euclidean norm
in Rd. For i ∈ {1, . . . , n} and k ∈ {1, . . . , n − 1} the random vector Xi

(k) is the

k-th nearest neighbor for Xi among points {X1, . . . , Xn} \ {Xi} with respect to
Euclidean distance (for each ω ∈ Ω we �nd for a point Xi(ω) in Rd its k-th nearest
neighbor among points {X1(ω), . . . , Xn(ω)}\{Xi(ω)}). Then the random variable
ξn,k,i is introduced for i ∈ {1, . . . , n} by formula

ξn,k,i = ξn,k,i(ζn) := |{j ∈ {1, . . . , n} \ {i} : Y j = Y i, ‖Xi −Xj‖ ≤ ‖Xi −Xi
(k)‖}|.

In other words, ξn,k,i indicates a number of observations having the response Y i

among j such that the distance between Xj and Xi is not greater than Xi
(k).

Following [2] and [3], for n ∈ N, n > 1, and k = k(n) ∈ {1, . . . , n− 1} introduce
the estimates

Ĥn,k(Y |X) :=
1

n

n∑
i=1

Ĥn,k,i,

Ĥn(Y ) := − 1

n

∑
y∈M

P̂n(y) log(P̂n(y)).

Here
Ĥn,k,i := − log(ξn,k,i + 1) + log k,

P̂n(y) =
1

n

n∑
i=1

I{Y i = y}, y ∈M, n ∈ N.

By analogy with (2) we come to the following estimate proposed in [3]:

(3) În,k(X,Y ) := Ĥn(Y )− Ĥn,k(Y |X).

In [3] instead of În,k(X,Y ) the authors used notation Î
(1)
n,k(X,Y ) (see formula (38)

in [3]). We simpli�ed notation since we do not compare various estimates of mutual
information.

Introduce

Qm = {L := (l1, . . . , lm) : 1 ≤ l1 < . . . < lm ≤ d},
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i.e. Qm is a collection of subsets of a set {1, . . . , d}, containing exactly m elements.
For any L ∈ Qm set ζn,L = {(Xi

L, Y
i)}ni=1 and estimate the mutual information

I(XL, Y ) for each sample ζn,L. For this purpose we employ an estimate of (3)

type, using ζn,L instead of ζn. We write În,k,L := În,k(XL;Y ), where k = k(n) is a
speci�ed function, k(n) ∈ {1, . . . , n− 1}.

Introduce a collection of random sets

Ŝn,k(ω) = arg max
L∈Qm

În,k,L(ω).

Thus Ŝn,k is a collection of sets Ŝn,k such that

max
L∈Qm

În,k,L = În,k,Ŝn,k

for each Ŝn,k ∈ Ŝn,k. Note that we can facilitate computations by using estimates

of the conditional entropy to �nd Ŝn,k(ω). Indeed,

Ŝn,k(ω)=argmax
L∈Qm

(
Ĥn(Y )− 1

n

n∑
i=1

Ĥn,k,i(Y |Xi
L)

)
=arg min

L∈Qm

Ĥn,k(Y |XL),

since Ĥn(Y ) does not depend on L ∈ Qm.

3. Main results

We need the following de�nitions. A function g : Rd → R is called C0-constricted
(see [2]) if there existsR0 > 0 such that, for µ-almost all x ∈ Rd and anyR ∈ (0, R0),

(4)

∣∣∣∣∣g(x)− 1

µ(B(x,R))

∫
B(x,R)

g(u)du

∣∣∣∣∣ ≤ C0R,

where B(x,R) is a ball in Rd with center x and radius R.
According to Remark 2.2 [2], if a real-valued function g satis�es the Lipschitz

condition in Rd, i.e. |g(x) − g(u)| ≤ C0‖x − u‖ for x, u ∈ Rd, then (4) is true for
any R > 0. In particular, the density pa,Σ of nondegenerate Gaussian distribution
N(a,Σ) in Rd satis�es the Lipschitz condition in Rd with the constant

C0 = max
u∈Rd

‖∇pa,Σ(u)‖ <∞.

For sequences of nonnegative numbers {an}∞n=1 and {bn}∞n=1 one writes an ∝ bn,
whenever

c1bn ≤ an ≤ c2bn, n ∈ N,
where c1 and c2 are some positive constants (c1 < c2).

Theorem 1. Assume that, for some m ∈ {1, . . . , n − 1}, there exists a nonempty
set Sm consisting of all collections S of relevant factors with cardinality |S| = m.
Let a (version of) density fX,Y be strictly positive. Moreover, for any L ∈ Qm and
y ∈M , let a density fXL,Y (·, y) be C0-constricted and E| log fXL

(XL)|2+ε <∞, for
some ε > 0. Then, for each α ∈ (0, 1) and k = k(n) ∝ nα,

P(Ŝn,k ⊂ Sm)→ 1 as n→∞.

In particular, if Sm consists of a single set Sm, then P(Ŝn,k = Sm)→ 1, n→∞.
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Condition E| log fXL
(XL)|2+ε<∞ means that one considers | log fXL

(u)|2+ε, sub-
stitutes XL instead of u, and then takes an expectation. Thus in the present con-
dition the lower index XL is not connected with averaging.

Proof. First of all we show that if S ∈ Sm then

(5) I(XS ;Y ) = max
L∈Qm

I(XL;Y ).

It is enough to verify that

H(Y |XS) = min
L∈Qm

H(Y |XL).

For x ∈ Rd and U = {j1, . . . , jq}, where 1 ≤ j1 < . . . < jq ≤ d, we write
xU = (xj1 , . . . , xjq ). Consequently, for L ∈ Qm and S ∈ Sm one has

H(Y |XL)−H(Y |XS) =
∑
y∈M

∫
Rd

fX,Y (x, y) log
fY |XS

(y|xS)

fY |XL
(y|xL)

dx.

The latter integral exists since a function

fX,Y (x, y) log
fY |XS

(y|xS)

fY |XL
(y|xL)

is de�ned for each x ∈ Rd and y ∈ M . Indeed, fY |XL
(y|xL) > 0 for all x ∈ Rd,

y ∈M and L ∈ Qm because

fXL,Y (xL, y) =

∫
Rm

fX,Y (x, y) dxL = fY |XL
(y|xL)fXL

(xL),

where L = {1, . . . , d} \ L. For all y ∈ M a function fX,Y (·, y) is strictly positive.
Hence, fXL,Y (xL, y) > 0 for each xL. Consequently,

fY |XL
(y|xL)fXL

(xL) > 0

and

fXL
(xL) =

∑
y∈M

fXL,Y (xL, y) > 0.

Thus fY |XL
(y|xL) > 0 for any x ∈ Rd, y ∈M and L ∈ Qm.

According to (1)

H(Y |XL)−H(Y |XS) =

∫
Rd

fX(x)
∑
y∈M

fY |X(y|x) log
fY |XS

(y|xS)

fY |XL
(y|xL)

dx

=

∫
Rd

fX(x)
∑
y∈M

fY |X(y|x) log
fY |X(y|x)

fY |XL
(y|xL)

dx

=

∫
Rd

fX(x)DKL(PY |X=x||PY |XL=xL
) dx,

where the Kullback - Leibler divergence DKL(PY |X=x||PY |XL=xL
) is determined for

probability measures on (M, 2M ) having densities (with respect to counting mea-
sure) fY |X(·|x) and fY |XL

(·|xL), respectively. The Kullback - Leibler divergence is
nonnegative. Hence for any S ∈ Sm and L ∈ Qm one has

H(Y |XS)−H(Y |XL) ≥ 0.

Thus (5) is established.
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Consider a function h : G→ R, where G is a �nite set. Introduce

T := arg max
t∈G

h(t).

Let hn : G→ R, n ∈ N, be a sequence of random functions such that hn(t)
P→ h(t)

for each t ∈ G, as n→∞. Take a random set

Tn := arg max
t∈G

hn, n ∈ N.

In other words, for each n ∈ N and any ω ∈ Ω, the following equality holds

max
t∈G

hn(t, ω) = hn(u, ω)

for all u ∈ Tn. Then P(Tn ⊂ T )→ 1, n→∞. Indeed, for any ε > 0 and all n large
enough,

P

(⋂
t∈G
|h(t)− hn(t)| < ε

)
> 1− ε.

Clearly, one can take ε < 1
2 maxt∈G\T |h(t) − h(u)| where u ∈ T . Then, for all

n large enough (with probability close to one) maxt∈G\T hn(t) < maxt∈T hn(t).
Hence Tn ⊂ T . In other words, with probability close to one any element of Tn
can be viewed as a point of maximum of a function h when n is large enough. In
particular, if |T | = 1 (i.e. T is a singleton) then P(Tn = T )→ 1 as n→∞.

Now we can apply this reasoning to our functions h(L) := I(XL;Y ), L ∈ G :=

Qm, and hn(L) := În,k(n),L. The estimate În,k,L is L2-consistent by virtue of
Theorem 4 [3] and, hence, a consistent estimate of I(XL;Y ) for each L ∈ Qm. The
proof is complete. �

Consider the logistic regression model (see, e.g., [6], [10]). Recall that in the
framework of this model Y and X take values in M = {0, 1} and Rd, respectively.
Moreover, the following relations hold:

P(Y = 1|X = x) =
1

1 + exp{−(w, x)− b}
, x ∈ Rd, w ∈ Rd, b ∈ R,(6)

P(Y = 0|X = x) = 1− P(Y = 1|X = x),(7)

where (·, ·) := (·, ·)d is the scalar product in Rd. Further we write (u, u) instead of
(u, u)k whenever it is clear that u ∈ Rk. The statement given below turns useful.

Theorem 2. Let the conditional distribution of Y given X = (X1, . . . , Xd) be
described by formulas (6) and (7). Assume that X1, . . . , Xd are independent random
variables. Then the set

S := {i : wi 6= 0, 1 ≤ i ≤ d}
is the minimal set of relevant factors, i.e. S is relevant and if L is another relevant
set its cardinality |L| ≥ |S|.

Proof. A set L ⊂ {1, . . . , d} is relevant if and only if, for each xL ∈ Rk,

(8) fY |XL
(1|xL) = fY |X(1|x).

The left side of this equality can be rewritten in the following way

fY |XL
(1|xL) =

fXL,Y (xL, 1)

fXL
(xL)
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=

∫
Rd−|L|(1 + exp{−(wS , xS)− b})−1fXL

(xL)fXL
(xL) dxL

fXL
(xL)

(9) =

∫
Rd−|L|

fXL
(xL)

1 + exp{−(wS , xS)− b}
dxL.

Note that (wS , xS) = (wS∩L, xS∩L) + (wS∩L, xS∩L), so the latter expression in (9)
depends only on xS∩L. Moreover, it is easily seen that if S∩L 6= ∅ then this function
in xS∩L is not constant on R|S∩L|. In fact we can compare the values of function
under the sign of integral at xS∩L and zS∩L (x, z ∈ Rd). Next observe that if a
function g is integrable on a measurable set A ⊂ Rm w.r.t. the Lebesgue measure
µ and if also g(u) > 0 for µ-almost all u ∈ A and µ(A) > 0, then

∫
A
g(u)µ(du) > 0.

Clearly, whenever S \ L 6= ∅ the function

fY |X(1|x) =
1

1 + exp{−(w, x)− b}
=

1

1 + exp{−(wS , xS)− b}
can not take the same constant value for all xS\L. Consequently, S ⊂ L provided
that (8) holds. Evidently, if L = S then by virtue of (9)

fY |XS
(1|xS) =

1

1 + exp{−(wS , xS)− b}

∫
Rd−|S|

fXS
dxS =

1

1 + exp{−(wS , xS)− b}
.

Hence (1) is valid. The proof is complete. �

4. Simulations

In the framework of model (6) � (7) we assume that X ∼ N(0, Id) where Id is a
unit matrix of size d. Then in view of [2] the conditions of Theorem 1 are satis�ed.

For statistical estimation of P(Ŝn,k ⊂ Sm) we perform the following procedure.

(1) Fix integers n, m, d and generate N (N ∈ N) independent random samples

ζ
(N)
j,n,d = {(Xi,j , Y i,j)}ni=1, j = 1, . . . , N, consisting of i.i.d. random pairs of

observations with the same law as (X,Y ). Set b = 0 and

w = (w1, . . . , wd), wi =

{
1, i ≤ m,
0, i > m.

In other words, we consider the case when w has the �rst m nonzero com-
ponents and others are equal to zero. According to Theorem 2 we can
state that Sm = {1, . . . ,m} is the unique relevant set of features having
cardinality m.

(2) For each sample ζ
(N)
j,n,d and each subset of indices L ∈ Qm we compute

Ŝn,k(ζ
(N)
j,n,d), i.e. estimate the set of relevant factors for each generated

sample.
(3) Compute

ACC
(N)
n,d,k = P̂(N)

n (Ŝn,k ⊂ Sm) =
1

N

N∑
j=1

I(Ŝn,k(ζ
(N)
j,n,d) = Sm).

Due to the SLLN one can claim that

P̂(N)
n (Ŝn,k = Sm)→ P(Ŝn,k = Sm) a.s., N →∞.
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For each con�guration of parameters we take N = 100. Figures 1-3 show

ACC
(N)
n,d,k as a function of n for di�erent combinations of d ∈ {10, 50}, m ∈ {1, 2, 3}

and k ∈ {5, 10, 20, 30}. Experiments demonstrate that in all considered cases

ACC
(N)
n,d,k can be equal to 1 for �nite values of n. Thus we have demonstrated

that for rather small values of k, and for n moderately large the proposed proce-
dure permits to identify the relevant features accurately.

Figure 1. m = 1. Left: d = 10. Right: d = 50

Figure 2. m = 2. Left: d = 10. Right: d = 50
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Figure 3. m = 3. Left: d = 10. Right: d = 50
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