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Abstract. In this article abstracts of talks of the Conference �Dynamics
in Siberia� held in Sobolev Institute of Mathematics, March 1 � 6, 2021
are presented.

The conference was held in Sobolev Institute of Mathematics SB RAS
(Novosibirsk) from March 1 to 6, 2021, supported by Mathematical Center in
Akademgorodok under agreement No. 075 − 15 − 2019 − 1675 with the Ministry
of Science and Higher Education of the Russian Federation. Members of the
program committee were as follows: I.A. Dynnikov, A.E. Mironov, I.A. Taimanov,
V.A. Timorin and A.Yu. Vesnin.

More than 70 experts on dynamical systems, mathematical physics, geometry
and topology participated in the conference. The conference program consisted of
40�minutes plenary talks and 25�minutes short talks. The talks were made by well�
known experts from Dubna, Moscow, Nizhny Novgorod, Novosibirsk, Rostov�on�
Don, St. Petersburg, Saransk, Tomsk, Ufa, Vladivostok and others. About 45 young
scientists, graduate and undergraduate students participated in the conference.
Most of them gave short talks.

The conference �Dynamics in Siberia� has been held in Novosibirsk annually since
2016. Information about previous conferences and abstracts of presented talks can
be found in [1]�[5].
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Program (Plenary talks)

March 1
10:00 � 10:40 V. Kozlov (Moscow). Weak ergodicity and non-equilibrium

statistical mechanics.

10:45 � 11:25 A. Shafarevich. (Moscow). Re�ection of Lagrangian manifolds

and of Maslov complex germs in the Cauchy problem for

the Schr�odinger equation with a delta potential localized on

a surface of codimension 1.

11:45 � 12:25 O. Pochinka. (Nizhny Novgorod). On the number of the classes

of topological conjugacy of Pixton di�eomorphisms.

March 2
10:00 � 10:40 D. Treschev (Moscow). Volume preserving di�eomorphisms

as Poincare maps for volume preserving �ows.

10:45 � 11:25 A. Tsiganov. (St. Petersburg). Divisor arithmetic, integrable

and superintegrable systems.

11:45 � 12:25 N. Kuznetsov. (St. Petersburg). Global stability boundary,

hidden oscillations, and non-equilibrium dynamics in the models

with cylindrical phase space: PLL and Sommerfeld e�ect.

March 3
10:00 � 10:40 S. Sokolov. (Moscow). Dynamics of a circular cylinder

and two vortex �laments in an ideal �uid.

10:45 � 11:25 V. Timorin. (Moscow). A model for the cubic connectedness locus.

11:45 � 12:25 D. Orlov. (Moscow). Geometric realizations of algebraic

objects and �nite-dimensional algebras.

March 4
10:00 � 10:40 S. Bolotin. (Moscow). Separatrix map for

slow-fast Hamiltonian systems.

10:45 � 11:25 S. Dobrokhotov. (Moscow). Real semiclassical approximation

for the asymptotics with complex-valued phases and asymptotics

of Hermitian type orthogonal polynomials.

11:45 � 12:25 A. Glutsyuk. (Moscow). Density of thin �lm billiard re�ection

pseudogroup in Hamiltonian symplectomorphism pseudogroup.

March 5
9:00 � 09:40 I. Vyugin. (Moscow). On Some Applications of Di�erential

Equations to Problems in Additive Number Theory.

09:45 � 10:25 A. Buryak. (Moscow). A noncommutative generalization

of Witten's conjecture.
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Plenary talks

A noncommutative generalization of Witten's conjecture
A. Buryak (Moscow)

The classical Witten conjecture says that the generating series of integrals over
the moduli spaces of curves of monomials in the psi-classes is a solution of the
Korteweg - de Vries (KdV) hierarchy. Together with Paolo Rossi, we present the
following generalization of Witten's conjecture. On one side, let us deform Witten's
generating series by inserting in the integrals certain naturally de�ned cohomology
classes, the so-called double rami�cation cycles. It turns out that the resulting
generating series is conjecturally a solution of a noncommutative KdV hierarchy,
where one spatial variable is replaced by two spatial variables and the usual
multiplication of functions is replaced by the noncommutative Moyal multiplication
in the space of functions of two variables.

Real semiclassical approximation for the asymptotics
with complex-valued phases and asymptotics of

Hermitian type orthogonal polynomials.
S. Dobrokhotov (Moscow)

Joint work with A. Aptekarev (Moscow),
D. Tulyakov (Moscow), A. Tsvetkova (Moscow)

The Hermitian type orthogonal polynomials H(n1, n2)(z, a) are determined by
the pair of recurrence relations for Hn1+1,n2

(z, a), Hn1,n2+1(z, a), Hn1,n2−1(z, a),
Hn1,n2−1(z, a), Hn1,n2(z, a). We obtain a uniform asymptotics of diagonal
polynomials Hn,n(z, a)(z, a) in the form of an Airy function for n � 1, which
is a far-reaching generalization of the Plancherel-Rotach asymptotic formulas for
Hermitian polynomials. We discuss one of the possible approach which we call "real
semiclassics for asymptotics with complex-valued phases"(another approach based
on the construction of decompositions of bases of homogeneous di�erence equations
was recently developed by A.I.Aptekarev and D. N. Tulyakov). Introducing an
arti�cial small parameter h = O(1/n) and a continuous function φ(x, z, a) such
that H(z, a)(z, a) = φ(kh, z, a), we reduce the described to a pseudo � di�erential
equation for φ, where x is a variable and (z, a) are parameters. Seeking its solution
in the WKB�form, one obtains the Hamilton-Jacobi equations with complex
Hamiltonians connected with a third-order algebraic curve. This circumstance is
the main di�culty of solving the problem and, as a rule, leads to the transition
from the real variable x to the complex one. In this problem, we propose a di�erent
approach based on a reduction of the original problem to three equations, two of
which have asymptotics with a purely imaginary phase, and the symbol of the third
one is pure real and has the form cos p+ V0(x) + hV1(x) + O(h2). This ultimately
allows us to represent the desired asymptotic uniformly through the Airy function
of the complex but real-valued argument.
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Density of thin �lm billiard re�ection pseudogroup in
Hamiltonian symplectomorphism pseudogroup

A. Glutsyuk (Lyon, France; Moscow)

Re�ections from hypersurfaces in Euclidean space act by symplectomorphisms
on the symplectic manifold of oriented lines. There is an important open question
[3]: which symplectomorphisms are compositions of re�ections? We consider an
arbitrary C∞-smooth hypersurface γ ⊂ Rn+1 that is either strictly convex
and closed, or a germ. We investigate compositional ratios of re�ections from
γ and from its small deformations, introduced and studied by Ron Perline in
[2]. Perline had shown that their derivatives in the parameter are Hamiltonian
vector �elds and calculated their Hamiltonian functions. In the case, when γ is a
global convex hypersurface, we show that the pseudogroup generated by the above
compositional ratios is dense in the pseudogroup of Hamiltonian di�eomorphisms
between subdomains of the phase cylinder: the space of oriented lines intersecting γ
transversally [1]. We prove an analogous local result in the case, when γ is a germ. To
prove the main results, we �nd the Lie algebra generated by the above Hamiltonian
functions and prove its C∞-density in the space of C∞-smooth functions.

Thanks. The author is partially supported by Laboratory of Dynamical Systems
and Applications, HSE University, of the Ministry of science and higher education
of the RF grant ag. No 075-15-2019-1931, and also by RFBR and JSPS (research
project 19-51-50005).
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Global stability boundary, hidden oscillations,
and non-equilibrium dynamics in models with cylindrical phase space:

PLL and Sommerfeld e�ect
N. Kuznetsov (St. Petersburg, Russia; Jyv�askyl�a, Finland)

One of the central pratical problems of the dynamics analysis is the study of
possible limiting behaviors and transient processes to establish the global stability
or to reveal all local attractors and their basins. The rapid development of methods
in the global stability theory, the theory of bifurcations, the theory of oscillations,
and the chaos theory during the 20th century made it possible to signi�cantly
advance in solving this problem for smooth and discontinuous dynamical models
[1,2,3,4,5]. One of the famous result in this direction was obtained by A.A. Andronov
in 1944 [6]: for a nonlinear discontinuous model of machine controled by Watt's
regulator he con�rmed Vyshnegradsky's conjecture on local stability by the �rst
approximation and moreover proved the global stability (the signi�cance of these
results was noted during the election of A.A. Andronov as a full member of the
USSR Academy of Sciences in 1946 [7]). Nevertheless, by the turn of the century
it happened that the available arsenal of the methods was insu�cient both for
solving a number of well-known fundamental problems (e.g., 16th Hilbert problem
on the limit cycles of 2d polynomial systems), and for a reliable analysis of applied
dynamical models to avoid accidents and disasters. These showed the necessity and
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urgency of revision and further development of analytical and numerical methods
for analyzing stability and limit oscillations in dynamical systems.

This lecture is devoted to the study of global stability and hidden oscillations
in dynamical models with the cylindrical phase space. In contrast to the Euclidean
phase space, in the cylindrical phase space the global attractor may or may not
contain equilibrium states [8]. For the models with equilibria an outer estimation
of the global stability boundary in the space of parameters and the birth of self-
exited oscillations in the phase space can be obtained by the linearisation around
equilibria and the analysis of local bifurcations. Inner estimations of the global
stability boundary can be obtained by special modi�cations of the classical su�cient
criteria of global stability for cylindrical phase space [5,9]. In the gap between
outer and inner estimations the exact boundary of global stability can be studied
numerically. While trivial parts of the global stability boundary are de�ned by
local bifurcations and behavior in vicinity of equilibria, the study of hidden parts
requires analizing non-local bifurcations and the birth of hidden oscillations [10,11].
By analogy with Andronov-Vyshnegradsky conclusions, various famous conjectures
on the coincidence of the outer estimation given the �rst approximation with the
exact boundary (i.e. on the global stability by the �rst approximation) have been
put forward for phase-locked loops models (PLL) [10,12]. However, phase-locked
loop models may have there boundary of global stability with trivial and hidden
parts, or may have a global attractor without equilibrium points. If there are no
equilibria in the model then the task is to reveal all local attractors and their
basins (remark, that even two-dimensional systems can have an in�nite number of
hidden local attractors). The practical signi�cance of such task can be demonstrated
[13,14] on famous Sommerfeld e�ect discovered in electromechanical systems in 1902
[15,16].

Thanks. This work was supported by the program Leading Scienti�c Schools of
the Russian Federation (NSh-2624.2020.1).
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On the number of the classes of topological conjugacy
of Pixton di�eomorphisms
O. Pochinka (Nizhny Novgorod)

In the present report we state the existence of an invariant of the �rst order for
Hops knots. This allows to model countable families of pairwise non-equivalent
Hopf knots and, therefore, in�nite set of topologically non-conjugate Pixton
di�eomorphisms. The results were obtained in collaboration with P.M. Akhmet'ev.

Îòðàæåíèå ëàãðàíæåâûõ ìíîãîîáðàçèé è êîìïëåêñíîãî ðîñòêà Ìàñëîâà
â çàäà÷å Êîøè äëÿ óðàâíåíèÿ Øðåäèíãåðà ñ äåëüòà-ïîòåíèöàëîì,

ëîêàëèçîâàííîì íà ïîâåðõíîñòè êîðàçìåðíîñòè 1
A. Øàôàðåâè÷ (Ìîñêâà)

Õîðîøî èçâåñòíî, ÷òî êâàçèêëàññè÷åñêèå ðåøåíèÿ ýâîëþöèîííûõ óðàâíåíèé
ñ ãëàäêèìè êîýôôèöèåíòàìè îïèñûâàþòñÿ â òåðìèíàõ äâèæåíèÿ ëàãðàíæå-
âûõ ïîâåðõíîñòåé (èëè êîìïëåêñíûõ âåêòîðíûõ ðàññëîåíèé íàä èçîòðîïíûìè
ïîâåðõíîñòÿìè) âäîëü òðàåêòîðèé êëàññè÷åñêèõ ãàìèëüòîíîâûõ ñèñòåì. Â äî-
êëàäå îáñóæäàåòñÿ ýâîëþöèîííàÿ çàäà÷à ñ äåëüòà-ïîòåíöèàëîì; ïîêàçàíî, ÷òî
â ýòîì ñëó÷àå óêàçàííûå ïîâåðõíîñòè è âåêòîðíûå ðàññëîåíèÿ îòðàæàþòñÿ îò
íîñèòåëÿ äåëüòà-ôóíêöèè.
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A model for the cubic connectedness locus
V. Timorin(Moscow)

This is a joint work with A. Blokh and L. Oversteegen. We construct a rough
combinatorial model for the connectedness locus in the full parameter space of
cubic polynomials, somewhat similar to the model of the Mandelbrot set obtained
by collapsing the �lled main cardioid and all baby Mandelbrot sets.

Volume preserving di�eomorphisms as Poincare maps
for volume preserving �ows

D. Treschev(Moscow)

Let q be a volume-preserving di�eomorphism of a smooth manifold M to itself.
We study the possibility to present q as the Poincare map, corresponding to a
volume-preserving vector �eld on the direct product of M and a circle. We plan to
discuss applications of our results in hydrodynamics of an ideal �uid.

Divisor arithmetic, integrable and superintegrable systems
A. Tsiganov (St. Petersburg)

In the Jacobi separation of variables method, the motion of physical objects
is replaced on the evolution of points (prime divisors) along algebraic curves
on projective plane. The laws of motion, symmetries, hidden symmetries and
other properties of the real motion in phase space are replaced on the Abel
theorem, Riemann-Roch theorem, Brill-Noether theorem, Cantor alghorithm, etc.
In recent years, these classical algebro-geometric methods have become the base for
the development of modern alghoritms of cryptography, including post-quantum
cryptography, and cryptocurrencies. We want to discuss various applications of
these modern alghoritms in classical mechanics.

On Some Applications of Di�erential Equations to Problems
in Additive Number Theory

I. Vyugin (Moscow)

In the talk, we plan to review some results on additive number theory, which use
some ideas from the analytic theory of di�erential equations. In particular, we will
talk about the upper bound for the cardinality of the set

G ∩ (G+ 1) ∩ ... ∩ (G+ k),

where G is a subgroup of the multiplicative group of the �eld modulo prime. Also
we discuss the upper bound for the number of points x, y ∈ G of an algebraic curve:

P (x, y) = 0

over a simple �nite �eld. We also talk about some progress in the study of the
Markov equation:

x2 + y2 + z2 − 3xyz = 0,

considered over a �eld of characteristic p. (The talk is based on the results of joint
papers with S.V. Konyagin, I.D. Shkredov and I.E. Shparlinski.)
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Short talks

Asymptotic solution of the contact problem on indentation
of poroelastic layer

S. Aizikovich (Rostov-on-Don)

We consider the mixed two-dimensional contact problem on indentation of a
porous layer rigidly adhered to a non-deformable base. The micro-dilatation theory
�rstly developed by Cowin-Nunziato has been applied to describe the porous
materials. We use the Fourier integral transform to reduce the problem to solving
an integral equation for contact stresses. The solution of the integral equation is
carried out by separating the main part of the integral operator, inversion of the
singular integral operator and applying the method of successive approximations.
Such approach allows us to obtain explicit analytical expressions for the distribution
of contact stresses, indentation force, vertical and horizontal displacements, change
in volume fraction, shear and normal stresses in the entire poroelastic layer.
Computational experiments were carried out for a narrow indenter with a �at base.
It is shown that in the limiting case the solution converges to the solution for an
elastic medium. The dependence of the characteristics of contact interaction on
such porosity parameters as voids di�usion parameter, coupling modulus and the
void sti�ness modulus is analyzed and illustrated by the numerical examples for
di�erent porous media.

Thanks. The investigation was carried out at the expense of the Megagrant no.
14.Z50.31.0046.

Sliding homoclinic bifurcations in a Lorenz-type system:
stability with a positive saddle value

N.V. Barabash (Nizhny Novgorod),
V.N. Belykh (Nizhny Novgorod), I.V. Belykh (Atlanta, USA)

We consider piecewise-smooth dynamical Lorenz-type system composed of three
systems of linear ODE [1] As, Al, and Ar :
(1)

As :
ẋ = x,
ẏ = −αy,
ż = −νz,

Al :
ẋ = −λ(x+ 1) + ω(z − b),
ẏ = −δ(y + 1),
ż = −ω(x+ 1)− λ(z − b),

Ar :
ẋ = −λ(x− 1)− ω(z − b),
ẏ = −δ(y − 1),
ż = ω(x− 1)− λ(z − b),

where α, δ, ν, ω, λ and b are positive parameters. This linear systems (subsystems)
are de�ned on the following phase space partition Gs, Gl, è Gr, respectively:

Gs : |x| < 1, y ∈ R1, z < b,

Gl :


x ≤ −1 for z ≤ b,
x ≤ −1 for z > b, y ≥ 0,

x < 1 for z > b, y < 0,

Gr :


x ≥ 1 for z ≤ b,
x ≥ 1 for z > b, y < 0,

x > −1 for z > b, y ≥ 0.

Linear subsystem As determines a dynamics of system (1) in the region Gs and
has saddle Os at the origin. Subsystem Ar,l are de�ned in the regions Gr,l and
have symmetrical 3-D foci er,l = {±1,±1, b}, respectively. We assume that the
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parameters satisfy the condition

1

2
< ν < 1.

which implies that the saddle value σ = 1 − ν > 0 is positive. Introduce new
parameters

γ = be−
3πλ
2ω , γcr = 2

√
1 + λ2/ω2e−

δ
ω arctan λ

ω ,

µ = (γ − 1)γ
1

ν−1 , ε = (γ − γcr)γν−1.

Then the following theorem is true.

Theorem 1. (unstable homoclinic orbits generate a stable cycle)

(1) For µ < ε ≤ 0, system (1) has two stable foci el è er, and saddle Os.
(2) At µ = 0, ε = 0, two unstable homoclinic orbits of saddle Os (homoclinic

butter�y) arise in system (1).
(3) For ε > 0, increasing µ ∈ (ε, ε+ ε1/ν) leads to emergence of stable period-2

limit cycle and two saddle limit cycles that were born simultaneously from
the homoclinic butter�y.

A proof of this theorem is considered in the talk. The presented results are
published in the paper [2].
References
[1] V.N. Belykh, N.V. Barabash, I.V. Belykh, A Lorenz-type attractor in a

piecewise-smooth system: Rigorous results, Chaos, 2019, Vol. 29:10), pp. 103-108.
[2] V.N. Belykh, N.V. Barabash, I.V. Belykh, Sliding homoclinic bifurcations in

a Lorenz-type system: Analytic proofs, Chaos, 2021, Vol. 31:4.

Êëàññèôèêàöèÿ ïåðèîäè÷åñêèõ ïðåîáðàçîâàíèé äâóìåðíîãî òîðà
Ä. Áàðàíîâ (Íèæíèé Íîâãîðîä), Å. ×èëèíà (Íèæíèé Íîâãîðîä)

Ðåçóëüòàòû äàííîãî äîêëàäà áûëè ïîëó÷åíû ñîâìåñòíî ñ Â.Ç. Ãðèíåñîì è
Î.Â. Ïî÷èíêîé è ïîñâÿùåíû êëàññèôèêàöèè ïåðèîäè÷åñêèõ ïðåîáðàçîâàíèé
òîðà.

Ïóñòü Sp � çàìêíóòàÿ îðèåíòèðóåìàÿ ïîâåðõíîñòü ðîäà p è f : Sp → Sp �
ñîõðàíÿþùèé îðèåíòàöèþ ïåðèîäè÷åñêèé ãîìåîìîðôèçì.

Ãîìåîìîðôèçì f íàçûâàåòñÿ ïåðèîäè÷åñêèì, åñëè ñóùåñòâóåò òàêîå n ∈ N,
÷òî fn = id. Íàèìåíüøåå èç òàêèõ n íàçûâàåòñÿ ïåðèîäîì f .

Îáîçíà÷èì ÷åðåç B ìíîæåñòâî òî÷åê ãîìåîìîðôèçìà f , ïåðèîä êîòîðûõ
ìåíüøå ïåðèîäà ãîìåîìîðôèçìà.

Â ñèëó ðåçóëüòàòîâ ß. Íèëüñåíà [1] ìíîæåñòâî B êîíå÷íî è ñîñòîèò èç êî-
íå÷íîãî ÷èñëà îðáèò Oi ( i = 1, . . . , k) ïåðèîäà ni, ÿâëÿþùåãîñÿ äåëèòåëåì n.
Ïîëîæèì λi = n

ni
, òîãäà äëÿ êàæäîãî λi ñóùåñòâóåò åäèíñòâåííîå âçàèìíî

ïðîñòîå ñ íèì ÷èñëî δi ∈ {1, . . . , λi − 1} òàêîå, ÷òî äëÿ ëþáîé òî÷êè x̄ ∈ Oi
ñóùåñòâóåò îêðåñòíîñòü Dx̄, â êîòîðîé ãîìåîìîðôèçì fni |Dx̄ òîïîëîãè÷åñêè

ñîïðÿæåí ñ îòîáðàæåíèåì êîìïëåêñíîé ïëîñêîñòè: z → e
2πδi
λi

i
z.

Òàêæå ñ êàæäûì ïåðèîäè÷åñêèì ïðåîáðàçîâàíèåì ñâÿçàíû ñëåäóþùèå îáú-
åêòû:

• ãðóïïà îòîáðàæåíèé G = {id, f, . . . , fn−1}, èçîìîðôíàÿ Zn = {0, . . . , n−
1}, è äåéñòâóþùàÿ íà Sp òàê, ÷òî ìîäóëüíàÿ ïîâåðõíîñòü Σg = S/G
ðîäà g ÿâëÿåòñÿ çàìêíóòîé ïîâåðõíîñòüþ;
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• åñòåñòâåííàÿ ïðîåêöèÿ π : Sp → Σg, êîòîðàÿ ÿâëÿåòñÿ n-ëèñòíûì íà-

êðûòèåì âñþäó, êðîìå òî÷åê ìíîæåñòâà B = π(B).

Êàæäîìó ïåðèîäè÷åñêîìó ãîìåîìîðôèçìó f îäíîçíà÷íî ñîîòâåòñòâóåò íà-
áîð ïåðèîäè÷åñêèõ äàííûõ (n, p, g, n1, ..., nk, δ1, ..., δk).

Ñëåäóÿ [1] ãîìåîìîðôèçìû f, f ′ : Sp → Sp íàçûâàþòñÿ òîïîëîãè÷åñêè ñî-
ïðÿæåííûìè, åñëè ñóùåñòâóåò ñîõðàíÿþùèé îðèåíòàöèþ ãîìåîìîðôèçì h :
Sp → Sp òàêîé, ÷òî f

′ = h ◦ f ◦ h−1.
Òàêæå â [1] äîêàçàíî, ÷òî äâà ïåðèîäè÷åñêèõ ïðåîáðàçîâàíèÿ f , f ′ ïîâåðõíî-

ñòè S òîïîëîãè÷åñêè ñîïðÿæåíû òîãäà è òîëüêî òîãäà, êîãäà èõ ïåðèîäè÷åñêèå
äàííûå ñîâïàäàþò.
Òåîðåìà 1 Ïóñòü f : T2 → T2 - ñîõðàíÿþùèé îðèåíòàöèþ ïåðèîäè÷åñêèé

ãîìåîìîðôèçì ïåðèîäà n, òîãäà ñëåäóþùèå óñëîâèÿ ýêâèâàëåíòíû:

(1) f � ãîìîòîïåí òîæäåñòâåííîìó îòîáðàæåíèþ;
(2) B = ∅;
(3) g = 1;
(4) f òîïîëîãè÷åñêè ñîïðÿæåí äèôôåîìîðôèçìó Ψn

(
ei2xπ, ei2yπ

)
=(

ei2π(x+ 1
n ), ei2yπ

)
.

Òåîðåìà 2 Ñóùåñòâóåò ñåìü êëàññîâ òîïîëîãè÷åñêîé ñîïðÿæåííîñòè íå ãî-
ìîòîïíûõ òîæäåñòâåííîìó ïåðèîäè÷åñêèõ ãîìåîìîðôèçìîâ òîðà ñî ñëåäóþùè-
ìè ïåðèîäè÷åñêèìè äàííûìè â êàæäîì êëàññå :

(1) f1: n = 6, k = 3, n1 = 3, n2 = 2, n3 = 1, δ1 = δ2 = δ3 = 1;
(2) f2, n = 3, k = 3, n1 = n2 = n3 = 1, δ1 = δ2 = δ3 = 1;
(3) f3, n = 2, k = 4, n1 = n2 = n3 = n4 = 1, δ1 = δ2 = δ3 = δ4 = 1;
(4) f4, n = 3, k = 3, n1 = n2 = n3 = 1, δ1 = δ2 = δ3 = 2;
(5) f5, n = 6, k = 3, n1 = 3, n2 = 2, n3 = 1, δ1 = δ2 = 1, δ3 = 5;
(6) f6: n = 4, k = 3, n1 = 2, n2 = n3 = 1, δ1 = δ2 = δ3 = 1;
(7) f7, n = 4, k = 3, n1 = 2, n2 = n3 = 1, δ1 = 1, δ2 = δ3 = 3.

Ïóñòü A=

(
a b
c d

)
� óíèìîäóëÿðíàÿ öåëî÷èñëåííàÿ ìàòðèöà. Òîãäà îíà èí-

äóöèðóåò îòîáðàæåíèå fA : T2 → T2, çàäàííîå ôîðìóëîé

fA :

{
x = ax+ by (mod 1)

y = cx+ dy (mod 1)
.

Ñëåäóþùèé ðåçóëüòàò áûë ïîëó÷åí ñ ïîìîùüþ ðåçóëüòàòîâ â [2].
Òåîðåìà 3 Â êàæäîì êëàññå òîïîëîãè÷åñêîé ñîïðÿæåííîñòè íå ãîìîòîïíûõ

òîæäåñòâåííîìó ïåðèîäè÷åñêèõ ãîìåîìîðôèçìîâ òîðà ñóùåñòâóåò àëãåáðàè÷å-
ñêèé àâòîìîðôèçì, èíäóöèðîâàííûé ñëåäóþùåé ìàòðèöåé â êàæäîì êëàññå:

A1 =

(
0 −1
1 1

)
; A2 =

(
−1 −1
1 0

)
; A3 =

(
−1 0
0 −1

)
; A4 =

(
0 1
−1 −1

)
;

A5 =

(
1 1
−1 0

)
; A6 =

(
0 −1
1 0

)
; A7 =

(
0 1
−1 0

)
.

Áëàãîäàðíîñòè. Ïóáëèêàöèÿ ïîäãîòîâëåíà â õîäå ïðîâåäåíèÿ èññëåäîâàíèÿ
(� 21-04-004) â ðàìêàõ Ïðîãðàììû ¾Íàó÷íûé ôîíä Íàöèîíàëüíîãî èññëåäîâà-
òåëüñêîãî óíèâåðñèòåòà ¾Âûñøàÿ øêîëà ýêîíîìèêè¿ (ÍÈÓ ÂØÝ)¿ â 2021-2022
ãã.
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Ðåàëèçàöèÿ äèàãðàìì Õàññå ñ ïîìîùüþ À-äèôôåîìîðôèçìîâ
ïîâåðõíîñòåé ñ íåòðèâèàëüíûìè áàçèñíûìè ìíîæåñòâàìè

Ì. Áàðèíîâà (Íèæíèé Íîâãîðîä)

Ðåçóëüòàòû ïîëó÷åíû ñîâìåñòíî ñ Ïî÷èíêîé Î.Â. è Ãîãóëèíîé Å.Þ.
Ïóñòü f � äèôôåîìîðôèçì çàìêíóòîãî n-ìíîãîîáðàçèÿ Mn. Ãîâîðÿò, ÷òî

äèôôåîìîðôèçì f óäîâëåòâîðÿåò àêñèîìå A, åñëè åãî íåáëóæäàþùåå ìíîæå-
ñòâî ÿâëÿåòñÿ ãèïåðáîëè÷åñêèì, è ïåðèîäè÷åñêèå òî÷êè ïëîòíû â íåì. Äëÿ A-
äèôôåîìîðôèçìîâ ñïðàâåäëèâà òåîðåìà î ñïåêòðàëüíîì ðàçëîæåíèè Ñ. Ñìåé-
ëà [1], óñòàíàâëèâàþùàÿ åäèíñòâåííîå ïðåäñòàâëåíèå íåáëóæäàþùåãî ìíîæå-
ñòâà â âèäå êîíå÷íîãî îáúåäèíåíèÿ ïîïàðíî íåïåðåñåêàþùèõñÿ ìíîæåñòâ, íà-
çûâàåìûõ áàçèñíûìè, êàæäîå èç êîòîðûõ ÿâëÿåòñÿ êîìïàêòíûì, èíâàðèàíò-
íûì è òîïîëîãè÷åñêè òðàíçèòèâíûì.

Íà ìíîæåñòâå áàçèñíûõ ìíîæåñòâ ëþáîãî A-äèôôåîìîðôèçìà f ìîæíî ââå-
ñòè îòíîøåíèå Ñ. Ñìåéëà [1]. Èìåííî, ïóñòü Λi,Λj � áàçèñíûå ìíîæåñòâà A-
äèôôåîìîðôèçìà f . Ãîâîðÿò, ÷òî Λi,Λj íàõîäÿòñÿ â îòíîøåíèè ≺ (Λi ≺ Λj),
åñëè W s

Λi
∩Wu

Λj
6= ∅. Ïîñëåäîâàòåëüíîñòü, ñîñòîÿùàÿ èç áàçèñíûõ ìíîæåñòâ

Λi = Λi0 ,Λi1 , ...,Λik = Λj (k ≥ 1), òàêàÿ ÷òî Λi0 ≺ Λi1 ≺ . . . ≺ Λik íàçûâàåòñÿ
öåïüþ äëèíû k ∈ N, ñîåäèíÿþùåé ïåðèîäè÷åñêèå îðáèòû Λi è Λj .

Òàêàÿ öåïü íàçûâàåòñÿ ìàêñèìàëüíîé, åñëè â íåå íåëüçÿ äîáàâèòü íè îäíîãî
íîâîãî áàçèñíîãî ìíîæåñòâà. Öåïü íàçûâàåòñÿ öèêëîì, åñëè Λi = Λj . Äèô-
ôåîìîðôèçì f : Mn → Mn íàçûâàåòñÿ Ω-óñòîé÷èâûì, åñëè C1-áëèçêèå ê f
äèôôåîìîðôèçìû òîïîëîãè÷åñêè ñîïðÿæåíû íà íåáëóæäàþùèõ ìíîæåñòâàõ.
Ñîãëàñíî [2], äèôôåîìîðôèçì f : Mn → Mn ÿâëÿåòñÿ Ω-óñòîé÷èâûì òîãäà è
òîëüêî òîãäà, êîãäà îí óäîâëåòâîðÿåò àêñèîìå A è íå èìååò öèêëîâ.

Äèàãðàììîé Ñìåéëà ∆f Ω-óñòîé÷èâîãî äèôôåîìîðôèçìà f : Mn → Mn

íàçûâàåòñÿ ãðàô, âåðøèíû êîòîðîãî ñîîòâåòñòâóþò áàçèñíûì ìíîæåñòâàì, à
îðèåíòèðîâàííûå ðåáðà ïîñëåäîâàòåëüíî ñîåäèíÿþò âåðøèíû ìàêñèìàëüíûõ
öåïåé. Â äåéñòâèòåëüíîñòè äèàãðàììà Ñìåéëà ÿâëÿåòñÿ ÷àñòíûì ñëó÷àåì äèà-
ãðàìì Õàññå.

Äèàãðàììîé Õàññå ÷àñòè÷íî óïîðÿäî÷åííîãî ìíîæåñòâà (X,≺) íàçûâàåòñÿ
ãðàô, âåðøèíàìè êîòîðîãî ÿâëÿþòñÿ ýëåìåíòû ìíîæåñòâà X, à ïàðà (x, y) îá-
ðàçóåò ðåáðî, åñëè x ≺ y è @z : x ≺ z, z ≺ y.

Â ðàáîòå [1], â êà÷åñòâå ïðîáëåìû (Ïðîáëåìà 6.6à) ñôîðìóëèðîâàí ñëåäó-
þùèé âîïðîñ: êàêèå äèàãðàììû ìîãóò ñîîòâåñòâîâàòü Ω-óñòîé÷èâûì äèôôåî-
ìîðôèçìàì?

Ñ ïîìîùüþ õèðóðãè÷åñêîé îïåðàöèè Ñìåéëà ìû êîíñòðóèðóåì ìîäåëüíûå
äèôôåîìîðôèçìû äâóìåðíîãî òîðà, ðåàëèçóþùèå äèàãðàììû Õàññå.
Òåîðåìà Ëþáàÿ ñâÿçíàÿ äèàãðàììà Õàññå ðåàëèçóåòñÿ íåêîòîðûì Ω-

óñòîé÷èâûì äèôôåîìîðôèçìîì.
Áëàãîäàðíîñòè. Àâòîð ïîääåðæàí Ìåæäóíàðîäíîé ëàáîðàòîðèåé äèíàìè-

÷åñêèõ ñèñòåì è ïðèëîæåíèé, ÍÈÓ ÂØÝ, ãðàíò ïðàâèòåëüñòâà ÐÔ, äîãîâîð
075-15-2019-1931.
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Integrable hierarchies associated to in�nite families
of Frobenius manifolds
A. Basalaev (Moscow)

We propose a new construction of an integrable hierarchy associated to any
in�nite series of Frobenius manifolds satisfying a certain stabilization condition.
We study these hierarchies for Frobenius manifolds associated to A, D and B
singularities. As a side product to these results we illustrate the enumerative
meaning of certain coe�cients of A, D and B Frobenius potentials.

This is a joint work with S.M. Natanzon and P.I.Dunin-Barkowsky.

A topological classi�cation of billiards bounded by
confocal quadrics in three-dimensional Euclidean space

G. Belozerov (Moscow)

Let us consider a motion of material point inside a billiard table, i. e. inside a
compact three-dimensional domain bounded by confocal quadrics. Also we assume
that all dihedral angles on boundary of the billiard table are equal to π

2 . No
force acts on this material point and re�ection is absolutely elastic. As it turns
that out such billiards are integrable Hamiltonian systems. Let us consider rough
Liouville equivalence relation of such billiards (isomorphism of bases of their
Lagrangian �brations with singularities). Author proved that there are exactly
25 types of rough Liouville nonequivalent billiards. Also it turns out that we can
determinate homeomorphism class of regular isoenergy surfaces, if we know shape
of billard table. Author proved that each regular isoenergy surface of the billiard is
homeomorphic to S5 or S4 × S1 or S3 × S2.

Thanks. The work was done at Moscow State University under the support of
the Russian Science Foundation (project � 20-71-00155).
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Simulation of growth of a vapor bubble induced
by laser heating of a liquid

A. Chernov (Novosibirsk), A. Pil'nik (Novosibirsk),
M. Guzev (Vladivostok), V. Chudnovskii (Vladivostok)

A laser energy source for heating various substances, including biological tissues
and liquids, is widely used in various practical problems and applications, in
particular, in endoscopic and puncture surgical interventions, which are the safest
and most promising. One of the advantages of this method is the high intensity
of the thermal e�ect, mainly localized, as well as a good degree of controllability.
The essence of the method is as follows. Laser radiation is delivered through optical
�ber, which is in contact with biological tissues or �uids (blood, lymph, liquid
contents of cysts, etc.). The liquid is quickly heated near the end of the �ber. Its
explosive boiling is initiated. Since the liquid as a whole is signi�cantly subcooled,
boiling is accompanied not only by the growth, but also by the collapse of vapor-gas
bubbles, accompanied by the formation of hot submerged jets. These jets carry out
a destructive e�ect on pathological formations. Despite the fact that a huge number
of works have been devoted to the study of the boiling process, there are still many
issues that require their solution. In particular, this concerns the boiling process of
a locally superheated (under general subcooling) liquid.

In the present work, a mathematical model of the growth of a vapor bubble
in a superheated liquid, which simultaneously takes into account both dynamic
and thermal e�ects and includes the well-known classical equations, the Rayleigh
equation and the energy equation, written in relation to the problem under
consideration, taking into account the speci�cs associated with the process of liquid
evaporation is proposed.

It is shown that the presented problem is reduced to solving a system of three
ordinary di�erential equations of the �rst order. The obtained solution is in good
agreement with direct numerical calculations in a wide range of overheating and at
all stages of the process, including the transitional one, which is extremely necessary
if one considers the growth of a bubble in a highly superheated liquid, especially at
the initial stage.

It is shown that, at long times, the growth of a bubble is determined exclusively
by the supply of heat to the interface. The temperature �eld around the bubble (in
Lagrangian variables) becomes stationary, and the solution of the thermal problem
becomes self-similar. The dependence of the bubble radius on time takes a root
form, and the proportionality coe�cient becomes a function of only the Jacob
number. It is shown that at certain operating parameters of the process, this stage
is unattainable at times that are foreseeable in real processes.

Thanks. This work was supported by the Russian Science Foundation, project
� 19-19-00122.

On fractal cubes with �nite intersection property
D. Drozdov (Novosibirsk)

Let P k = [0, 1]k be the unit k-dimensional cube (or, simply k-cube).
Let n ≥ 2. Take a set D = {ξ1, ..., ξm} ⊂ {0, 1, . . . , n− 1}k, 2 ≤ #D = m < nk,

and call it a digit set. The elements ξi of the set D de�ne the system S = {S1, ..., Sm}

of the similarities Si(x) =
x+ ξi
n

in Rk, mapping P k to cubes with side 1/n which
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belong to the nk partition of P k. There is a unique non-empty compact set F ⊂ P k
that satis�es the equation

F =

m⋃
i=1

Si(F ) =
F +D
n

,

which we will call a fractal k-cube of the order n (see [2,3]).
A fractal 1-cube is called a fractal segment, a fractal 2-cube is a fractal square.
The intersections of a fractal k-cube F with l-faces of the k-cube P k are called

l-faces of F (for 0 ≤ l < k). Obviously, the l-faces of a fractal k-cube are fractal
l-cubes.

The partition cube P ki = Si(P
k) of the k-cube P k can intersect each other only

by the images of the respective pairs of opposite l-faces of the k-cube P k. Since
Si(F ) ⊂ P ki , these copies can intersect each other only by the images of respective
pairs of opposite l-faces of F .

To verify that a fractal cube F has �nite intersection property (see [1]), we
need to study �nite intersection conditions for pairs of fractal segments and fractal
squares (the intersection of 0-faces is at most one-point).

Suppose D1 and D2 are the digit sets de�ning fractal segments K1 and K2 and
suppose that 1 ∈ D1 and n − 1 ∈ D2. Then if m ∈ D1 ∩ (D2 + 1), then the point
m/n ⊂ K1 ∩K2. Such point is called a transition point for these fractal segments.
Theorem 1. The fractal segments K1 and K2 of the the order n generated by

the digit sets D1 and D2 have a �nite intersection in the following cases:
1. #(D1∩D2) = 1, and K1 and K2 have no transition points, then #(K1∩K2) = 1;
2. D1 ∩ D2 = ∅, and K1 and K2 have s transition points, then #(K1 ∩K2) = s.
Theorem 2. Two fractal squares K1 and K2 of the order n, with digit sets D1

and D2 have a �nite intersection in the following cases:
1. #(D1 ∩ D2) = 0, there is at least one pair of vertex- or edge-adjacent copies
Si(K1) ⊂ K1 and Sj(K2) ⊂ K2 that have a non-empty �nite intersection, and
there is no such pair of edge-adjacent copies of K1 and K2 that intersect at an
in�nite number of points (see Theorem 1);
2. #(D1 ∩ D2) = 1, and any pair of vertex- or edge-adjacent copies of K1 and K2

has an empty intersection, then #(K1 ∩K2) = 1.
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On the wave turbulence theory for the stochastically
perturbed nonlinear Schrodinger equation

A. Dymov (Moscow)

The wave turbulence (WT) was developed in 1960's by V.E. Zakharov and
his school as a heuristic tool to study small-amplitude oscillations in nonlinear
Hamiltonian PDEs with periodic boundary conditions of large period. Since then
WT has been intensively developed in physical works, which employ some di�erent
(but consistent) approaches. Non of them was ever rigorously justi�ed, despite
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the strong interest in physical and mathematical communities to the questions,
addressed by these works.

The principal assertion of WT is that one of the main characteristics of solution,
called the energy spectrum, approximately satis�es a nonlinear kinetic equation,
called the wave kinetic equation. I will talk about my joint work with S.B. Kuksin,
in which we made an attempt to rigorously justify this assertion for the energy
spectrum of the damped/driven nonlinear Schrodinger equation. This stochastic
model for WT was earlier suggested by Zakharov and L'vov.

Ê âîïðîñó î ôîðìèðîâàíèè âûñîêîñêîðîñòíîé ñòðóè ïðè
êîëëàïñå ãàçîâîãî ïóçûðüêà âáëèçè òîíêîãî âîëîêíà ïîãðóæåííîãî

â æèäêîñòü. ×èñëåííîå èññëåäîâàíèå
Ð.Â. Ôóðñåíêî (Íîâîñèáèðñê),

Ñ.Ñ. Ìèíàåâ (Âëàäèâîñòîê), Â.Ì. ×óäíîâñêèé (Âëàäèâîñòîê)

Íåäàâíèå ýêñïåðèìåíòàëüíûå èññëåäîâàíèÿ [1] ïðîäåìîíñòðèðîâàëè âîç-
ìîæíîñòü ôîðìèðîâàíèÿ âûñîêîñêîðîñòíûõ (îò íåñêîëüêèõ äî ñîòåí ì/ñ)
ñòðóé â ðåçóëüòàòå êîëëàïñà ïàðî-ãàçîâîãî ïóçûðüêà âáëèçè îïòîâîëêíà ïîãðó-
æåííîãî â æèäêîñòü è ñëóæàùåãî ïðîâîäíèêîì ëàçåðíîãî èçëó÷åíèÿ. Ýíåðãî-
ïîäâîä ñ òîðöà îïòîâîëîêíà ïðèâîäèò ê âñêèïàíèþ ïðèëåãàþùèõ ê íåìó ñëîåâ
æèäêîñòè è îáðàçîâàíèþ ïàðîâîãî ïóçûðÿ. Ïîñëå ñòàäèè ðîñòà ïóçûðüêà ïðî-
èñõîäèò åãî ñæàòèå, ñâÿçàííîå ñ êîíäåíñàöèåé çà ñ÷åò îõëàæäåíèÿ ïàðà âáëèçè
ãðàíèöû ðàçäåëà ïàð - õîëîäíàÿ æèäêîñòü. Íàêîíåö, â ðåçóëüòàòå ñõëîïûâàíèÿ
ïóçûðüêà ôîðìèðóåòñÿ ñòðóÿ æèäêîñòè, íàïðàâëåííàÿ îò òîðöà îïòîâîëîêíà.
Îïèñàííûé ïðîöåññ íàøåë ìíîãîîáåùàþùèå ïðèìåíåíèÿ â ìåäèöèíå, íàïðè-
ìåð, ïðè ëå÷åíèè áèîëîãè÷åñêèõ òêàíåé. Â òî æå âðåìÿ, ìåõàíèçìû ôîðìèðî-
âàíèÿ ñòðóè è âëèÿíèå ïàðàìåòðîâ çàäà÷è íà åå õàðàêòåðèñòèêè íåäîñòàòî÷íî
èçó÷åíû. Â ýòîé ðàáîòå, ïðîöåññ ôîðìèðîâàíèÿ ñòðóè â ðåçóëüòàòå êîëëàï-
ñà ãàçîâîãî ïóçûðüêà âáëèçè òîíêîãî (ðàäèóñ 0.1-0.6 ìì) âîëîêíà èññëåäóåòñÿ
÷èñëåííî ñ ïîìîùüþ ìåòîäà îáúåìà æèäêîñòè [2]. Ðåçóëüòàòû ÷èñëåííîãî ìî-
äåëèðîâàíèÿ ïîçâîëèëè îïèñàòü íåêîòîðûå äåòàëè ìåõàíèçìà ôîðìèðîâàíèÿ
ñòðóè è îïðåäåëèòü óñëîâèÿ, íåîáõîäèìûå äëÿ åå ñóùåñòâîâàíèÿ. Òàê æå èñ-
ñëåäîâàíî âëèÿíèå ðàäèóñà âîëîêíà, ðàäèóñà ïàðîâîãî ïóçûðÿ è òåìïåðàòóðû
îêðóæàþùåé æèäêîñòè íà ñêîðîñòü ñòðóè. Â ÷àñòíîñòè îáíàðóæåíî, ÷òî ïîä-
õîäÿùåå îáåçðàçìåðèâàíèå íà÷àëüíîãî ðàäèóñà ïóçûðüêà è ñðåäíåé ñêîðîñòè
ñòðóè ïðèâîäèò ê òîìó, ÷òî âñå ÷èñëåííûå äàííûå ëîæàòñÿ íà îäíó ëèíèþ [3].

Áëàãîäàðíîñòè. Ðàáîòà âûïîëíåíà ïðè ôèíàíñîâîé ïîääåðæêå Ìèíèñòåð-
ñòâà íàóêè è âûñøåãî îáðàçîâàíèÿ Ðîññèéñêîé Ôåäåðàöèè (ïðîåêò �075-15-
2019-1878)
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Derivations of the Lie algebra of type F4 over the �eld
of characteristic two

V. Galkin (Nizhny Novgorod)

The computation of derivations of classical Lie algebras is interesting in
connection with the unsolved problem of classi�cation of simple Lie algebras
over �elds of small characteristic. Over a �eld of characteristic two, one of the
possibilities for obtaining new Lie algebras is to construct deformations of classical
Lie algebras. The space of external di�erentiations can serve as an indicator of the
non-isomorphism of the obtained Lie algebras.

In work was found space external di�erentiation of the lie algebra of type F4 over
a �eld of characteristic 2. To simplify computations space of external di�erentiation,
or the �rst cohomology group H1(L,L) is regarded as a direct sum of weight
subspaces of H1

µ(L,L), and separately evaluated each weight subspace. Algorithms
were written and implemented in the Maple environment.

A Lie algebra of type F4 has dimension 52. The structural constants in the
Chevalley basis of this algebra in characteristic 2 are calculated based only on the
Cartan matrix, i.e., a matrix of size 4×4. The corresponding algorithm for obtaining
these constants was implemented. Algorithms for obtaining weights and weight
spaces of cochains are also implemented. With the help of these programs, the �rst
group of weight µ cohomology was calculated. With the help of this program, the
theorem is proved.
Theorem. The space of external di�erentiations H1(L,L) of a Lie algebra F4

over a �eld of characteristic 2 is trivial.
Thanks. The author is partially supported by Laboratory of Dynamical Systems

and Applications NRU HSE, of the Ministry of science and higher education of the
RF grant ag. � 075-15-2019-1931.
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Íåîáõîäèìûå è äîñòàòî÷íûå óñëîâèÿ ñîïðÿæåííîñòè äåêàðòîâûõ
ïðîèçâåäåíèé ãðóáûõ ïðåîáðàçîâàíèé îêðóæíîñòè.

È. Ãîëèêîâà (Íèæíèé Íîâãîðîä)

Ðåçóëüòàòû áûëè ïîëó÷åíû ñîâìåñòíî ñ Î.Â. Ïî÷èíêîé è ïîñâÿùåíû òîïî-
ëîãè÷åñêîé êëàññèôèêàöèè äåêàðòîâûõ ïðîèçâåäåíèé ãðóáûõ ïðåîáðàçîâàíèé
îêðóæíîñòè.

Êàê ïîêàçàë À. Ã. Ìàéåð â [1], êëàññ òîïîëîãè÷åñêîé ñîïðÿæåííîñòè ñîõðà-
íÿþùåãî îðèåíòàöèþ ãðóáîãî ïðåîáðàçîâàíèÿ îêðóæíîñòè îäíîçíà÷íî îïðåäå-
ëÿåòñÿ ïàðàìåòðàìè n, k, l, ãäå k � ïåðèîä ïåðèîäè÷åñêèõ òî÷åê, 2n � ÷èñëî
ïåðèîäè÷åñêèõ îðáèò, l

k � ÷èñëî âðàùåíèÿ ïðåîáðàçîâàíèÿ. Òàêèì îáðàçîì,
ëþáîé òàêîé äèôôåîìîðôèçì òîïîëîãè÷åñêè ñîïðÿæåí íåêîòîðîìó ìîäåëüíî-
ìó ïðåîáðàçîâàíèþ φn,k,l : S1 → S1. Ñîîòâåòñòâåííî, äåêàðòîâî ïðîèçâåäå-
íèå ãðóáûõ ïðåîáðàçîâàíèé îêðóæíîñòè ÿâëÿåòñÿ ãðàäèåíòíî-ïîäîáíûì äèô-
ôåîìîðôèçìîì íà äâóìåðíîì òîðå, òîïîëîãè÷åñêè ñîïðÿæåííûì ìîäåëüíîìó
ïðåîáðàçîâàíèþ φn1,k1,l1 × φn2,k2,l2 : T2 → T2. Ïðè ýòîì êàæäûé ìîäåëüíûé
äèôôåîìîðôèçì èìååò 4n1n2k1k2 ïåðèîäè÷åñêèõ òî÷åê, à èõ ïåðèîä ðàâåí
q = HOK(k1, k2).

Îñíîâíûì ðåçóëüòàòîì ðàáîòû ÿâëÿåòñÿ äîêàçàòåëüñòâî ñëåäóþùåé òåîðå-
ìû.
Òåîðåìà. Äèôôåîìîðôèçìû φn1,k1,l1 ×φn2,k2,l2 , φn′1,k′1,l′1 ×φn′2,k′2,l′2 : T2 → T2

òîïîëîãè÷åñêè ñîïðÿæåíû òîãäà è òîëüêî òîãäà, êîãäà n1k1 = n′1k
′
1, n2k2 =

n′2k
′
2 è q = q′.
Òàêèì îáðàçîì, äëÿ äåêàðòîâûõ ïðîèçâåäåíèé ãðóáûõ ïðåîáðàçîâàíèé

îêðóæíîñòè èõ ÷èñëà âðàùåíèÿ íå ÿâëÿþòñÿ òîïîëîãè÷åñêèìè èíâàðèàíòà-
ìè. Äîêàçàòåëüñòâî êëàññèôèêàöèîííîé òåîðåìû ñóùåñòâåííî îïèðàåòñÿ íà
ðåçóëüòàòû ðàáîòû [2], â êîòîðîé óñòàíîâëåíî, ÷òî ïîëíûì òîïîëîãè÷åñêèì
èíâàðèàíòîì ãðàäèåíòíî-ïîäîáíîãî äèôôåîìîðôèçìà ïîâåðõíîñòè ÿâëÿåòñÿ
òðåõöâåòíûé ãðàô. Èçîìîðôèçì ãðàôîâ ïðè âûïîëíåíèè ÷èñëîâûõ ðàâåíñòâ â
òåîðåìå ñòðîèòñÿ ìåòîäàìè ðàáîòû [3], ãäå ïîëó÷åíà êëàññèôèêàöèÿ äåêàðòî-
âûõ ïðîèçâåäåíèé ïîâîðîòîâ îêðóæíîñòåé ñ òî÷íîñòüþ äî ñîïðÿæåíèÿ ëèíåé-
íûì ïðåîáðàçîâàíèåì.

Áëàãîäàðíîñòè. Èññëåäîâàíèå ïîääåðæàíî Ëàáîðàòîðèåé ÄÑÏ, ÍÈÓ ÂØÝ,
ãðàíò ïðàâèòåëüñòâà ÐÔ, äîãîâîð � 075-15-2019-1931.
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On uniqueness of a cycle of one dynamical system
V. Golubyatnikov (Novosibirsk), L. Minushkina (Novosibirsk)

Àííîòàöèÿ. We obtain conditions of uniqueness of a cycle in phase portrait
of a Elowitz-Leibler type piecewise linear dynamical system which simulates
functioning of one gene network.

Following [1], we consider mathematical model of one natural circular gene
network

dm1

dt
= L1(p3)− k1m1;

dp1

dt
= Γ1(m1)− l1p1;

dm2

dt
= L2(p1)− k2m2;

dp2

dt
= Γ2(m2)− l2p2;

dm3

dt
= L3(p2)− k3m3;

dp3

dt
= Γ3(m3)− l3p3. (1)

Here mj(t) are concentrations of three mRNAs, pj(t) are concentrations of
corresponding proteins, and step-functions Lj , Γj are de�ned by Lj(w) = Aj >
kj > 0 for 0 ≤ w < 1, Lj(w) = 0 for 1 ≤ w; Γj(w) = 0 for 0 ≤ w < 1,
Γj(w) = Bj > lj > 0 for 1 ≤ w; j = 1, 2, 3. They describe negative, respectively,
positive feedbacks in the gene network.

Let aj = Aj/kj , bj = Bj/lj , and Q = [0, a1]× [0, b1]× [0, a2]× [0, b2]× [0, a3]×
[0, b3] ⊂ R6

+.
Hyperplanes mj = 1, pj = 1 decompose Q to 64 blocks; we denote them by multi-
indices {ε1ε2ε3ε4ε5ε6}, where ε2j−1 = 0 ifmj < 1 in this block, otherwise ε2j−1 = 1.
Respectively, ε2j = 0, if pj < 1 in this block, and ε2j = 1 otherwise.

It was shown in [2] that all trajectories of (1) which start in any block of the
diagram (2) follow its arrows, and pass through all 12 blocks listed there. Let W1

be their union, this is positively invariant domain of the system (1). This domain
contains all blocks of Q such that trajectories of their points can pass out of each
of them to one incident block only, we call them one-valent blocks.

{110011} −−−−→ {010011} −−−−→ {000011} −−−−→ {001011}x y
{110010} {001111}x y
{110000} {001101}x y
{110100} ←−−−− {111100} ←−−−− {101100} ←−−−− {001100}

(2)

Similar State Transition Diagrams appear in combinatorial description of other
piecewise linear and smooth gene networks models in di�erent dimensions, see
[3,4,5].

Theorem. If Aj > kj, and Bj > lj, then the system (1) has a unique cycle
C ⊂ W1; it passes through all one-valent blocks according arrows of the diagram
(2).

Let F0 = {110011}∩{010011} be common face of two incident blocks in (2), and
let Φ : F0 → F0 be the Poincar�e map of the cycle C. The proof of the Theorem is
based on the fact that �rst derivatives of the coordinate functions of Φ are strictly
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positive in an appropriate coordinate system in F0, and their second derivatives are
strictly negative.

Similar considerations can be reproduced for various dynamical systems of the
type (1) in other dimensions as well. For one analogous 4-dimension system

dx1

dt
= L(y4)−k1x1;

dy2

dt
= Γ2(x1)−k2y2;

dy3

dt
= Γ3(y2)−k3y3;

dy4

dt
= Γ4(y3)−k4y4,

considered in [5], we have described necessary and su�cient conditions of uniqueness
and exponential stability of the cycle in its invariant neighborhood W1.

For higher-dimensional systems of this type, non-invariant domains Q \W1 can
contain invariant surfaces and other cycles, see [2,4] and references therein. Most
of provious publications on piecewise linear systems of the type (1) were devoted
to the �dimensionless case� kj = lj = 1.
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Îá îáðàòèìîé òðåõìåðíîé ñèñòåìå, ñîäåðæàùåé àòòðàêòîð
è ðåïåëëåð òèïà Ëîðåíöà

À. Ãîí÷åíêî (Íèæíèé Íîâãîðîä), Å. Ñàìûëèíà (Íèæíèé Íîâãîðîä)

Â ðàáîòå ðàññìàòðèâàåòñÿ òðåõìåðíàÿ ñèñòåìà âèäà ẋ = y,
ẏ = Fx+ Cyz +Dx3 + Exz2,
ż = µ+Az2 +Bx2,

(1)

ãäå A,B,C,D,E, F è µ � åå ïàðàìåòðû. Ñèñòåìà (1) îáëàäàåò ñèììåòðèåé,
â òî÷íîñòè òàêîé æå êàê ó èçâåñòíîé ñèñòåìû Ëîðåíöà, ò.å. îíà èíâàðèàíò-
íà îòíîñèòåëüíî çàìåíû êîîðäèíàò x → −x, y → −y, z → z. Ïðèíöèïèàëü-
íî âàæíîé îñîáåííîñòüþ ñèñòåìû (1) ÿâëÿåòñÿ åå îáðàòèìîñòü � îíà èíâà-
ðèàíòíà îòíîñèòåëüíî îáðàùåíèÿ âðåìåíè t → −t è çàìåíû êîîðäèíàò âèäà
h : x → x, y → −y, z → −z, êîòîðàÿ ÿâëÿåòñÿ èíâîëþöèåé, ò.å. h2 = Id. Çà-
ìåòèì, ÷òî ìíîæåñòâî Fix(h) íåïîäâèæíûõ òî÷åê èíâîëþöèè h îäíîìåðíî:
Fix(h) = {y = 0, z = 0}.

Ñèñòåìà (1) áûëà ïðåäëîæåíà íàìè â ñâÿçè ñ îáùåé çàäà÷åé èññëåäîâàíèÿ
áèôóðêàöèé îáðàòèìûõ ñèñòåì, ïðèâîäÿùèõ ê ðîæäåíèþ ñèììåòðè÷íîé ïà-
ðû �àòòðàêòîð Ëîðåíöà è ðåïåëëåð Ëîðåíöà�. Â ñëó÷àå òðåõìåðíûõ îòîáðàæå-
íèé ñóùåñòâîâàíèå ñèììåòðè÷íûõ äèñêðåòíûõ àòòðàêòîðà Ëîðåíöà è ðåïåë-
ëåðà Ëîðåíöà áûëî âïåðâûå óñòàíîâëåíî ðàáîòå [1] äëÿ íåãîëîíîìíîé ìîäåëè
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êåëüòñêîãî êàìíÿ. Ãëîáàëüíûå áèôóðêàöèè, ïðèâîäÿùèå ê ïîÿâëåíèþ â òàêîé
ìîäåëè äèñêðåòíîãî àòòðàêòîðà (ðåïåëëåðà) Ëîðåíöà, áûëè èçó÷åíû â ðàáî-
òå [2]. Â ñâÿçè ñ ýòèìè èññëåäîâàíèÿìè, âîçíèêëà íîâàÿ çàäà÷à î ñòðóêòóðå
ëîêàëüíûõ áèôóðêàöèé îáðàòèìûõ òðåõìåðíûõ îòîáðàæåíèé, ïðèâîäÿùèõ ê
ðîæäåíèþ ñèììåòðè÷íîé ïàðû �àòòðàêòîð è ðåïåëëåð Ëîðåíöà�. Â ñëó÷àå îáðà-
òèìûõ òðåõìåðíûõ îòîáðàæåíèé ñ èíâîëþöèåé R, ó êîòîðîé dim(Fix(R)) = 1,
êàê îæèäàåòñÿ, òàêèå ëîêàëüíûå áèôóðêàöèè ìîãóò áûòü ó íåïîäâèæíîé ñèì-
ìåòðè÷íîé îòíîñèòåëüíî R òî÷êè ñ òðèïëåòîì (−1,−1,+1) ìóëüòèïëèêàòîðîâ.
Â ñèëó îáðàòèìîñòè îòîáðàæåíèé, êîðàçìåðíîñòü òàêîé áèôóðêàöèè ðàâíà 2
(â îáùåì ñëó÷àå, ýòî ëîêàëüíàÿ áèôóðêàöèÿ êîðàçìåðíîñòè 3). Êàê ìû ïîêà-
çàëè, ñèñòåìà (1) ÿâëÿåòñÿ ëîêàëüíîé ïîòîêîâîé íîðìàëüíîé ôîðìîé áèôóð-
êàöèè ñèììåòðè÷íîé íåïîäâèæíîé òî÷êè ñ òðèïëåòîì (−1,−1,+1) ìóëüòèïëè-
êàòîðîâ äëÿ êâàäðàòà ñîîòâåòñòâóþùåãî îáðàòèìîãî îòîáðàæåíèÿ â íåêîòîðîé
ìàëîé îêðåñòíîñòè ýòîé òî÷êè. Ïîñòðîåíèå òàêîé íîðìàëüíîé ôîðìû ïðîâî-
äèòñÿ ñòàíäàðòíûì ïóòåì. Ñíà÷àëà ðàññìàòðèâàåòñÿ êâàäðàò îòîáðàæåíèÿ è
ëîêàëüíî âêëàäûâàåòñÿ â íåêîòîðûé íåàâòîíîìíûé òðåõìåðíûé ïîòîê, îò êîòî-
ðîãî áåðåòñÿ åãî îñíîâíàÿ àâòîíîìíàÿ ÷àñòü. Çàòåì, â ïîëó÷åííîì òðåõìåðíîì
ïîòîêå äåëàþòñÿ çàìåíû ïåðåìåííûõ è âðåìåíè (ðåñêåéëèíãè) ñ öåëüþ óïðî-
ùåíèÿ è óíèôèêàöèè åãî ïðàâûõ ÷àñòåé. Â ðåçóëüòàòå ïîëó÷àåòñÿ ñèñòåìà (1)
ñ ñåìüþ íåçàâèñèìûìè ïàðàìåòðàìè. Ýòî ïîêàçûâàåò, ÷òî ñòðóêòóðà áèôóðêà-
öèé â ñèñòåìå è ñàìà åå äèíàìèêà ìîæåò áûòü âåñüìà ðàçíîîáðàçíîé. Íî åñëè
îãðàíè÷èòüñÿ çàäà÷åé èññëåäîâàíèÿ àòòðàêòîðîâ è ðåïåëëåðîâ Ëîðåíöà è èõ
áèôóðêàöèé â ñèñòåìå, òî îíà ñòàíîâèòñÿ îáîçðèìîé.

Â ïðèíöèïå, ñèñòåìà (1) ìîæåò èìåòü 6 ñîñòîÿíèé ðàâíîâåñèÿ

O1(0, 0,
√
− µ
A ), O2(0, 0,−

√
− µ
A ),

O3(S, 0, Q), O4(S, 0,−Q), O5(−S, 0, Q), O3(−S, 0,−Q),

ãäå

S =

√
µE −AF
AD −BE

, Q =

√
BF − µD
AD −BE

.

Â äîêëàäå ðàññìàòðèâàåòñÿ ñèñòåìà (1) ñ A = 1, B = 1, D = −25, E = 50,
µ = −1, â êîòîðîé ïàðàìåòðû C è F ÿâëÿþòñÿ óïðàâëÿþùèìè. Ïðè ýòîì êîîð-
äèíàòû ñîñòîÿíèé ðàâíîâåñèÿ èìåþò ñëåäóþùèé âèä: O1(0, 0, 1), O2(0, 0,−1),

O3

(√
F+50

75 , 0,
√

25−F
75

)
, O4

(√
F+50

75 , 0,−
√

25−F
75

)
, O5

(
−
√

F+50
75 , 0,

√
25−F

75

)
,

O6

(
−
√

F+50
75 , 0,−

√
25−F

75

)
.

Â äîêëàäå ïðåäñòàâëåíû ñëåäóþùèå ðåçóëüòàòû. Íà ïëîñêîñòè ïàðàìåòðîâ
C è F ïîñòðîåíà áèôóðêàöèîííàÿ äèàãðàììà ñîñòîÿíèé ðàâíîâåñèÿ è ãîìî-
êëèíè÷åñêèõ ïåòåëü, ñ ïîìîùüþ êîòîðîé ÷èñëåííî è àíàëèòè÷åñêè èçó÷åíû
îñíîâíûå ëîêàëüíûå è ãëîáàëüíûå áèôóðêàöèè, ïðèâîäÿùèå ê âîçíèêíîâåíèþ
ñèììåòðè÷íûõ àòòðàòîðà è ðåïåëëåðà Ëîðåíöà. Â ñèñòåìå (1) áûëè ïðîñëåæå-
íû äâà ñöåíàðèÿ âîçíèêíîâåíèÿ àòòðàêòîðà Ëîðåíöà. À òàêæå íàéäåí íîâûé
òèï àòòðàêòîðà Ëîðåíöà, êîòîðûé íå ñîäåðæèò âíóòðè åãî äûðîê ñîñòîÿíèé
ðàâíîâåñèÿ. Â ýòîì ñëó÷àå, ïðè F > 25, ñèñòåìà (1) èìååò òîëüêî äâà ñèì-
ìåòðè÷íûõ ñîñòîÿíèÿ ðàâíîâåñèÿ, îäíî èç êîòîðûõ ïðèíàäëåæèò àòòðàêòîðó,
à äðóãîå ðåïåëëåðó.
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Áëàãîäàðíîñòè. Ðàáîòà âûïîëíåíà ïðè ïîääåðæêå Ëàáîðàòîðèè äèíàìè÷å-
ñêèõ ñèñòåì è ïðèëîæåíèé ÍÈÓ ÂØÝ, ãðàíò Ìèíèñòåðñòâà íàóêè è âûñøå-
ãî îáðàçîâàíèÿ ÐÔ cîãëàøåíèå �075-15-2019-1931. À.Ñ. Ãîí÷åíêî áëàãîäàðèò
ÐÍÔ (ãðàíò � 20-71-00079).
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Êîíòðïðèìåðû â äèôôåðåíöèàëüíîé òåîðèè Ãàëóà
Ñ. Î. Ãîð÷èíñêèé (Ìîñêâà)

Äèôôåðåíöèàëüíàÿ òåîðèÿ Ãàëóà èññëåäóåò ñèììåòðèè ðåøåíèé ñèñòåì ëè-
íåéíûõ äèôôåðåíöèàëüíûõ óðàâíåíèé íàä àáñòðàêòíûì ïîëåì ñ äèôôåðåí-
öèðîâàíèåì. Êëþ÷åâûì ïîíÿòèåì â äàííîé òåîðèè ÿâëÿþòñÿ òàê íàçûâàåìûå
ðàñøèðåíèÿ Ïèêàðà-Âåññèî � àíàëîã ïîëåé ðàçëîæåíèÿ ìíîãî÷ëåíîâ â îáû÷-
íîé òåîðèè Ãàëóà. Îäíàêî îêàçûâàåòñÿ, ÷òî, â îòëè÷èå îò îáû÷íîé òåîðèè Ãà-
ëóà, ðàñøèðåíèÿ Ïèêàðà-Âåññèî ñóùåñòâóþò íå äëÿ ëþáîé ñèñòåìû ëèíåéíûõ
äèôôåðåíöèàëüíûõ óðàâíåíèé. Ïåðâûé êîíòðïðèìåð, ò.å. ïðèìåð òàêîãî ôå-
íîìåíà, áûë ïîñòðîåí â 50-õ ãîäàõ ïðè ïîìîùè ÿâíîãî âû÷èñëåíèÿ. Â äîêëàäå
áóäåò ðàññêàçàíî î òîì, êàê êîíöåïòóàëüíî ñòðîèòü ñåðèè òàêèõ êîíòðïðèìåðîâ
ïðè ïîìîùè àëãåáðî-ãåîìåòðè÷åñêîãî ïîäõîäà ê äàííûì âîïðîñàì.

Î âçàèìîîòíîøåíèÿõ ìåæäó áàçèñíûìè ìíîæåñòâàìè ñòðóêòóðíî
óñòîé÷èâûõ äèôôåîìîðôèçìîâ ïîâåðõíîñòåé

Â. Ç. Ãðèíåñ (Íèæíèé Íîâãîðîä), Ä. È. Ìèíö (Íèæíèé Íîâãîðîä)

Ïóñòü Mn - çàìêíóòîå ãëàäêîå ìíîãîîáðàçèå ðàçìåðíîñòè n ≥ 1.
Â [1] äîêàçàíî, ÷òî åñëè íåáëóæäàþùåå ìíîæåñòâî NW (f) ñòðóêòóðíî

óñòîé÷èâîãî äèôôåîìîðôèçìà f : Mn → Mn (n ≥ 3) ñîäåðæèò ðàñòÿãèâà-
þùèéñÿ îðèåíòèðóåìûé àòòðàêòîð Ω êîðàçìåðíîñòè îäèí, òî: 1) ìíîãîîáðàçèå
Mn ãîìîòîïè÷åñêè ýêâèâàëåíòíî n-ìåðíîìó òîðó Tn; åñëè n 6= 4, òî Mn ãî-
ìåîìîðôíî Tn; 2) ìíîæåñòâî NW (f)\Ω ñîñòîèò èç êîíå÷íîãî ÷èñëà èçîëèðî-
âàííûõ èñòî÷íèêîâ è ñåäåë.

Äëÿ ñëó÷àÿ n = 2 äàííîå óòâåðæäåíèå íåâåðíî. Íåñóùàÿ ïîâåðõíîñòü
M2 ñòðóêòóðíî óñòîé÷èâîãî äèôôåîìîðôèçìà f , íåáëóæäàþùåå ìíîæåñòâî
NW (f) êîòîðîãî ñîäåðæèò îðèåíòèðóåìûé àòòðàêòîð Ω, íå îáÿçàòåëüíî ÿâ-
ëÿåòñÿ òîðîì, à ìîæåò áûòü ëþáîé îðèåíòèðóåìîé ïîâåðõíîñòüþ, îòëè÷íîé
îò ñôåðû, è äèíàìèêà íà ìíîæåñòâå NW (f)\Ω ìîæåò áûòü óñòðîåíà ãîðàçäî
áîëåå ñëîæíî.

Ïóñòü M2 - çàìêíóòàÿ ïîâåðõíîñòü (íå îáÿçàòåëüíî îðèåíòèðóåìàÿ) ðîäà g,
ãäå g ≥ 0.

Theorem 2. Ïóñòü f : M2 →M2 - ñòðóêòóðíî óñòîé÷èâûé äèôôåîìîðôèçì,
âñå òðèâèàëüíûå áàçèñíûå ìíîæåñòâà êîòîðîãî ÿâëÿþòñÿ èñòî÷íèêîâûìè
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ïåðèîäè÷åñêèìè òî÷êàìè α1, ..., αk, ãäå k ≥ 1. Òîãäà íåáëóæäàþùåå ìíîæå-
ñòâî NW (f) äèôôåîìîðôèçìà f ñîñòîèò èç òî÷åê α1, ..., αk è â òî÷íîñòè
îäíîãî îäíîìåðíîãî àòòðàêòîðà Λ.

Â ñòàòüå [2] áûëî àíîíñèðîâàíî îáîáùåíèå õèðóðãè÷åñêîé îïåðàöèè Ñ.
Ñìåéëà íà ïñåâäîàíîñîâñêèå äèôôåîìîðôèçìû ïðîèçâîëüíûõ ïîâåðõíîñòåé.
Äàííàÿ îïåðàöèÿ ïðèâîäèò ê ïîÿâëåíèþ ñòðóêòóðíî óñòîé÷èâîãî äèôôåî-
ìîðôèçìà òîé æå ïîâåðõíîñòè ñ íåáëóæäàþùèì ìíîæåñòâîì, ñîñòîÿùèì â
òî÷íîñòè èç îäíîãî îäíîìåðíîãî àòòðàêòîðà è êîíå÷íîãî ÷èñëà èñòî÷íèêî-
âûõ ïåðèîäè÷åñêèõ òî÷åê. Ïîëó÷åííûå â ðåçóëüòàòå îáîáù¼ííîé õèðóðãè÷å-
ñêîé îïåðàöèè äèôôåîìîðôèçìû, à òàêæå äèôôåîìîðôèçìû äâóìåðíîé ñôå-
ðû, íåáëóæäàþùåå ìíîæåñòâî êîòîðûõ ñîäåðæèò àòòðàêòîð Ïëûêèíà, è DA-
äèôôåîìîðôèçìû äâóìåðíîãî òîðà ÿâëÿþòñÿ ïðèìåðàìè äèôôåîìîðôèçìîâ,
óäîâëåòâîðÿþùèõ óñëîâèÿì òåîðåìû 2.

Íåòðèâèàëüíîå áàçèñíîå ìíîæåñòâî Ω A-äèôôåîìîðôèçìà f : M2 → M2

íàçûâàåòñÿ ïðîñòîðíî ðàñïîëîæåííûì, åñëè íå ñóùåñòâóåò ãîìîòîïíîé íóëþ
ïåòëè, îáðàçîâàííîé ïàðîé îòðåçêîâ óñòîé÷èâîãî è íåóñòîé÷èâîãî ìíîãîîáðà-
çèé êàêîé-ëèáî òî÷êè x ∈ Ω. Îïðåäåëåíèå ñâÿçêè, èñïîëüçóåìîå äàëåå, ñì.,
íàïðèìåð, â [3].

Corollary 1. Ïóñòü âûïîëíÿþòñÿ óñëîâèÿ òåîðåìû 2, àòòðàêòîð Λ íå èìå-
åò ñâÿçîê ñòåïåíè îäèí è g ≥ 1, åñëè ïîâåðõíîñòü M2 îðèåíòèðóåìàÿ, g ≥ 3,
åñëè ïîâåðõíîñòü M2 íåîðèåíòèðóåìàÿ. Òîãäà àòòðàêòîð Λ ïðîñòîðíî ðàñ-
ïîëîæåí íà ïîâåðõíîñòè M2.

Corollary 2. Ïóñòü âûïîëíÿþòñÿ óñëîâèÿ òåîðåìû 2 è k = 1 (α1 - íåïîäâèæ-
íàÿ òî÷êà). Òîãäà ïîâåðõíîñòü M2 èìååò ðîä g ≥ 1, åñëè îíà îðèåíòèðóåìàÿ,
g ≥ 3, åñëè îíà íåîðèåíòèðóåìàÿ, àòòðàêòîð Λ ïðîñòîðíî ðàñïîëîæåí íà ïî-
âåðõíîñòè M2 è íå èìååò ñâÿçîê ñòåïåíè îäèí.

Â [3] (òåîðåìà 1) äîêàçàíî, ÷òî åñëè íåáëóæäàþùåå ìíîæåñòâî ñòðóêòóðíî
óñòîé÷èâîãî äèôôåîìîðôèçìà ïîâåðõíîñòè ñîäåðæèò îäíîìåðíûé àòòðàêòîð
(ðåïåëëåð), òî îíî òàêæå ñîäåðæèò èñòî÷íèêîâóþ (ñòîêîâóþ) ïåðèîäè÷åñêóþ
òî÷êó. Ñëåäóþùàÿ òåîðåìà äîïîëíÿåò äàííîå óòâåðæäåíèå.

Theorem 3. Åñëè íåáëóæäàþùåå ìíîæåñòâî ñòðóêòóðíî óñòîé÷èâîãî äèô-
ôåîìîðôèçìà f : M2 → M2 ñîäåðæèò íåòðèâèàëüíîå íóëüìåðíîå áàçèñíîå
ìíîæåñòâî Ω, òî îíî ñîäåðæèò èñòî÷íèêîâóþ è ñòîêîâóþ ïåðèîäè÷åñêèå
òî÷êè.

Ðåçóëüòàòû, ïðåäñòàâëåííûå â äàííîì äîêëàäå, áóäóò îïóáëèêîâàíû â [4].
Áëàãîäàðíîñòè. Äîêëàä ïîäãîòîâëåí ïðè ïîääåðæêå Ëàáîðàòîðèè äèíàìè-

÷åñêèõ ñèñòåì è ïðèëîæåíèé ÍÈÓ ÂØÝ, ãðàíò Ìèíèñòåðñòâà íàóêè è âûñøåãî
îáðàçîâàíèÿ ÐÔ cîãëàøåíèå � 075-15-2019-1931.
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Study on laser heating of biological �uids in the interests of medicine
M. A. Guzev (Vladivostok), V.M. Chudnovskii (Vladivostok)

Ontological grounds have been formulated for carrying out studies of laser
heating inside the tissues of the human body when developing methods of treating
some common pathological formations. The physical laws of laser heating, boiling,
and evaporation of biological �uids, through which the main heat transfer in
tissues is carried out, are indicated. A model of interstitial contact laser heating is
presented. Within its framework, submerged jets' formation is observed at the end of
an optical �ber immersed in a liquid and in the end vicinity. These jets are shown to
be capable of transferring heat at high speed through a relatively cold environment,
dissecting tissues, foaming bio�uids, and performing biological cleaning of surfaces.
Using numerical and analytical methods to analyze the proposed model makes it
possible to understand the laser heating processes' mechanism and put the basis
for new technologies for the surgical treatment of a wide range of diseases.

Connections between dynamic, spectral and scattering inverse problems
S. Kabanikhin (Novosibirsk)

Connections between inverse problems for hyperbolic equations (dynamic inverse
problems), inverse spectral and inverse scattering problems have been investigating
by many authors starting from M. Krein. In 1D case the impulse-response function
(data for dynamic inverse problem) is connected with spectral function and Jost
function by explicit formulas. In multidimensional case even for the simplest wave
equation the trace of the solution at the time-like surface has some special properties
(R. Courant). We will discuss some of those properties.

Realization of topological invariants by integrable billiard books
I. Kharcheva (Moscow)

Let us consider a free motion of a particle in some �xed domain Ω ⊂ R2 with
elastic re�ection at the boundary P = ∂Ω. We obtain a Hamiltonian dynamical
system with a Hamiltonian that equals to the scalar square of the velocity vector.
Such dynamical systems and their generalizations usually are called billiards

If the domain's boundary P is a piecewise curve and consist of several arcs of
confocal ellipses and hyperbolas then the billiard has a following special property:
the straight lines containing the segments of the billiard trajectory are tangents to
a certain quadric (ellipse or hyperbola). The parameter of this quadric is the value
of the additional integral Λ (see [1]). Thus this billiard is integrable and called an
elementary billiard.

A billiard book is a generalization of elementary billiards obtained by glueing
them along the boundaries. A billiard book is still an integrable Hamiltonian system
on a piecewise smooth phase space (see [2]).
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Integrable Hamiltonian systems can be classi�ed by topological invariants: 3-
atoms, f -graphs, coarse and marked molecules (see [3]). Such invariants allow us to
speak about Liouville equivalence of di�erent dynamical systems.

Researching billiard books we try to realize well-known classical dynamical
systems in terms of topological invariants (see, for example, [4]). So V. V. Ve-
dyushkina and I. S. Kharcheva found an algorithm that constructs a billiard book
which realizes 3-atoms and f -graphs. This algorithm can be extended to another
one that realizes any coarse molecule. Details of this result will be presented.

Thanks. The work was done at Moscow State University under the support of
the Russian Science Foundation (project no. 17-11-01303).
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Cuspidal singularities in integrable systems of dynamics
V. Kibkalo (Moscow)

Integrable Hamiltonian systems usually have singularities, i.e. points, trajectories
and Lagrangian �bers near which topology and dynamics of system di�ers from the
regular one (rational or irrational motion on a half-dimensional Liouville torus).

Classi�cation of singularities of IHS (for some equivalence relation) generates
various solved and open problems. In non-degenerate case several results by L.
Eliasson, A.Fomenko, A.Bolsinov, L.Lerman, N.Zung and A.Oshemkov described
such singularities and their invariants in great detail (see book [1] and review [2]).

Case of degenerate singularities is much more wider and complicated for study.
This area is also deeply connected with bifurcation theory. In a recent paper [3]
by A.Bolsinov, L. Guglielmi and E.Kudryavtseva a class of cuspidal (parabolic)
singularities was introduced, investigated and classi�ed. Such singularities have a
critical degenerate (not of Morse-Bott type) S1-orbits which momentum map image
is a cusp of the local bifurcation diagram. Topological and symplectic invariants of
such singularities were determined and their structural stability was proved in [3].

In the talk we will discuss about appearance of cuspidal singulairites in integrable
systems of dynamics. A lot of such systems (e.g. Zhukovsky, Klesch, Kovalevskaya
cases) have cusp points on the curves of their bifurcation diagram and degenerate rk
1 orbits in pre-images of such points. As it turns out, cuspidal singularities indeed
appear there.

Thanks. The reported study was funded by RFBR, project number 20-31-90114
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On invariant surfaces in the smooth gene network models
N. Kirillova (Novosibirsk)

Àííîòàöèÿ. In previous works we have already established the conditions
for the existence of cycles for some smooth dynamical systems modeling the
functioning of circle gene networks. Now for a six-dimensional system (1) we
construct an invariant surface, containing the cycle. The reduction of phase
portrait dimension simpli�es the analysis of the trajectory behavior of such
systems.

A dynamical system is considered here in the folloing form:

dmj

dt
= −kjmj + fj(pj−1);

dpj
dt

= µjmj − νjpj ; j = 1, 2, 3, (1)

where fj(pj−1) are smooth monotonically decreasing functions of non-negative
argument; pj and mj are the concentrations of some proteins and their
corresponding mRNAs; µj , νj and kj are positive constants, characterizing the
rate of synthesis of these proteins and mRNAs. Here, if j = 1, then j − 1 = n,
where n = 3.

A simpli�ed version of such system was discussed in [3] as a model for the
functioning of one gene network. Earlier, see [1], it was shown that parallelepiped

Q =
∏j=3
j=1([0, Aj ] × [0, Bj ]) is an invariant domain of the system (1). Here Aj :=

fj(0)/kj and Bj := µjAj/νj , wherein the system (1) has exactly one equilibrium
point S0.

Divide the invariant parallelepiped Q by the planes parallel to the coordinate
planes and passing through equilibrium point S0 = (m0

1, p
0
1,m

0
2, p

0
2,m

0
3, p

0
3) on 64

smaller parallelepipeds, which we will call blocks and number binary multi-indices:

E = {ε1ε2ε3ε4ε5ε6} ={
X ∈ Q | m1 ≷ε1 m

0
1; p1 ≷ε2 p

0
1; . . . ;m3 ≷ε5 m

0
3; p3 ≷ε6 p

0
3

}
,

where X = (m1, p1,m2, p2,m3, p3), ε1, ε2, ε3, ε4, ε5, ε6 ∈ {0, 1}, and the order
relations are de�ned as follows: the symbol ≷0 corresponds ≤, and the symbol ≷1

corresponds ≥. For blocks of valency one a transition diagram is constructed, see
[2]. Valence one means that from each block the trajectories can pass in only one
adjacent block. Denote by Ω1 the union of such blocks.

Let λ1,2 = α1 ± iβ1 are eigenvalues of the linearization matrix M6 of the
system (1), where α1 > 0, β1 6= 0. Then these eigenvalues correspond to the real
plane P 2

1 , which is invariant subspace of the matrix M6.
De�nition. An equilibrium point of a dynamical system is called hyperbolic if

the eigenvalues of the corresponding linearization matrix have positive and negative
real parts and they are not purely imaginary.
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Lemma. If S0 is hyperbolic, then U ∩ P 2
1 ⊂ Ω1, where U is a neighborhood of

S0.
Theorem. If S0 is hyperbolic equilibrium point, then an invariant surface passes

through it, and this surface contains the cycle C of the system (1).
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Ýâîëþöèÿ ñêðûòîé áèôóðêàöîííîé ãðàíèöû â âîçìóùåííîì
óðàâíåíèè Ïåíëåâå-2

Î. Êèñåëåâ (Èííîïîëèñ, Óôà)

Îñöèëëèðóþùèå ïðè îòðèöàòåëüíûõ çíà÷åíèÿõ íåçàâèñèìîé ïåðåìåííîé ðå-
øåíèÿ óðàâíåíèÿ Ïåíëåâå-2 ïðåòåðïåâàþò äèíàìè÷åñêóþ áèôóðêàöèþ â ìàëîé
îêðåñòíîñòè íóëÿ è ïðè áîëüøèõ ïîëîæèòåëüíûõ çíà÷åíèÿõ íåçàâèñèìîé ïå-
ðåìåííîé îñöèëëèðóþò ëèáî îêîëî

√
x/2, ëèáî îêîëî −

√
x/2. Åñòü åùå îäíî-

ïàðàìåòðè÷åñêîå ðåøåíèå â îêðåñòíîñòè íóëÿ, íî îíî íåóñòîé÷èâî.
Îòâåò íà âîïðîñ î òîì, ãäå áóäåò îñöèëëèðîâàòü ðåøåíèå ïîñëå áèôóðêà-

öèè ìîæíî ïîëó÷èòü èç òåîðèè èçîìîíîäðîìíûõ áèôóðêàöèé, ðàçâèòîé äëÿ
Ïåíëåâå-2 Èòñîì, Êàïàåâûì è äð.

Äëÿ íåèíòåãðèðóåìûõ âîçìóùåíèé ìîæíî âîñïîëüçîâàòüñÿ òåîðèåé óñðåä-
íåíèÿ äëÿ ïàðàìåòðîâ àñèìïòîòèêè, ïðèãîäíîé ïðè áîëüøèõ îòðèöàòåëüíûõ
çíà÷åíèÿõ íåçàâèñèìîé ïåðåìåííîé, è ïîëó÷èòü îòâåò íà âîïðîñ îá îêðåñòíî-
ñòè îñöèëëÿöèé ïîñëå áèôóðêàöèè äëÿ òðàåêòîðèé ñ çàäàííîé àñèìïòîòèêîé
ïðè x→ −∞.

Îñíîâíîé ðåçóëüòàò èçëîæåí â ïðåïðèíòå https://arxiv.org/abs/2012.07895

Einstein's equation on three-dimensional locally homogeneous
(pseudo) Riemannian spaces with vectorial torsion

P. N. Klepikov (Barnaul), E. D. Rodionov (Barnaul), O. P. Khromova (Barnaul)

For the �rst time a metric connection with vectorial torsion, or a semi-
symmetric metric connection, was discovered by E. Cartan. Later properties of this
connections have been studied by many mathematicians. For example, K.Yano,
I.Agricola and others mathematicians investigated the properties of the curvature
tensor, geodesis, and behavior of connection under conformal deformations of the
original metric. In this paper, we study the Einstein equation on three-dimensional
locally homogeneous (pseudo) Riemannian manifolds with metric connection and
invariant vector torsion. A theorem was proved that all such manifolds either are
Einstein manifolds with respect to the Levi-Civita connection, or are conformally
�at. Earlier, the authors investigated the Einstein equation in the case of three-
dimensional locally symmetric (pseudo) Riemannian manifolds.



THE CONFERENCE �DYNAMICS IN SIBERIA� A.73

Asymptotic �bouncing ball� type eigenfunctions with focal
points of the Schr�odinger operator

A. I. Klevin (Moscow)

We consider a semiclassical spectral problem for the Schrodinger operator
−h2ψ + V (x, y)ψ = Eψ with the parameter h → +0. The corresponding
Hamiltonian system with the Hamiltonian H = p2 + V (x, y) is generally
nonintegrable. We consider the case when the potential V (x, y) is non-negative,
grows at in�nity, and is a smooth even function of y. Then the Hamiltonian system
has an invariant subspace py = 0, y = 0, which generates a family of libration
motions along the x coordinate axis with two turning points. Such a family implies
a series of asymptotic eigenfunctions localized in the vicinity of a trajectory with
two focal points, and analogous to the eigenfunctions of the �bouncing ball� type
of the spectral problem for the two-dimensional Laplace operator in a bounded
domain with Dirichlet boundary conditions [1, 2]. A signi�cant di�erence between
the problem under consideration and [1, 2] is the presence of turning points in
it, and the asymptotics is determined by Gaussian beams with focal points. The
problem is solved using the theory of the Maslov's complex germ [3, 4] and its
modi�cation, which made it possible to write the solution globally using Gaussian
exponents and Airy functions of complex argument [5]. The application of the
results obtained in the three-dimensional quantum anisotropic Kepler problem
(potential (V = −(x2 + y2 + γz2)−1/2)) is considered.

Thanks. The reported study was funded by RFBR, project number 20-31-90111.
References
[1] J. B. Keller, S. I. Rubinow, Asymptotic solution of eigenvalue problems.,

Annals of Physics, 1960, 9, pp. 24-75.
[2] V.M. Babich, V. S. Buldyrev, Asymptotic Methods in Short Wave Di�raction

Problems., Nauka, Moscow, 1972.
[3] V. P. Maslov, The Complex WKB Method for Nonlinear Equations I: Linear

Theory, Birkh�auser, Basel, 1994.
[4] V.V. Belov, S.Yu. Dobrokhotov,Semiclassical maslov asymptotics with

complex phases. I. General approach., Theoret. and Math. Phys., 1992, 92(2), pp.
843-868.

[5] A. I. Klevin, Asymptotic eigenfunctions of the �bouncing ball� type for the two-
dimensional Schrodinger operator with a symmetric potential., Theoret. and Math.
Phys., 2019, 199(3), pp. 849-863.

Berezin-Toeplitz quantizations associated with Landau levels
of the Bochner Laplacian on a symplectic manifold

Y. A. Kordyukov (Ufa)

We consider the Bochner Laplacian on high tensor powers of a positive line
bundle on a compact symplectic manifold. First, we give a rough asymptotic
description of its spectrum in terms of the spectra of certain model operators.
It allows us to prove clustering of the spectrum near some points, which can be
naturally called Landau levels, under some assumption on the Riemannian metric.
We develop the Toeplitz operator calculus with the quantum space, which is the
eigenspace of the Bochner Laplacian with eigenvalues from a �xed cluster. We show
that it provides a Berezin-Toeplitz type quantization of the symplectic manifold.
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Dynamics of curved gauge vortex in parity-breaking media
A.A. Kozhevnikov (Novosibirsk)

The shape and dynamics of the curved vortex in parity-broken medium is
considered in the framework of Abelian Higgs gauge �eld model. It is shown that the
static solution is a helix with the speci�c relation between the curvature and torsion
of the vortex line, depending on the strength of the parity-breaking term in the
energy functional. Nonlinear dynamical equation of the vortex motion is linearized
in the case of small oscillations around the static solution, and the dispersion law
of the propagating waves is obtained.

The singular braid group and its representations
T.A. Kozlovskaya (Tomsk)

The group of singular braids SBn arrives in the theory of invariants of �nite
types (invariants of Vassiliev-Goussarov). The singular pure braid group SPn is the
kernel of the natural homomorphism of SBn to the symmetric group Sn. We �nd
a �nite set of generators and de�ning relations for SPn, describe some properties
of this group. Also we construct local linear representations and representation by
automorphisms of free group for SBn.

Thanks. The work is supported by the Ministry of Science and Higher Education
of Russia.

Àãåíòíîå ìîäåëèðîâàíèå è ïîñòðîåíèå ñöåíàðèåâ ïðîãíîçà
ðàñïðîñòðàíåíèÿ ýïèäåìèè COVID-19 â Íîâîñèáèðñêîé îáëàñòè

Î.È. Êðèâîðîòüêî (Íîâîñèáèðñê), Ì.È. Ñîñíîâñêàÿ (Íîâîñèáèðñê),
È.À. Âàùåíêî (Íîâîñèáèðñê), Ñ.È. Êàáàíèõèí (Íîâîñèáèðñê)

Ïàíäåìèÿ COVID-19 ïîñòàâèëà âîïðîñû ñîçäàíèÿ ñîâðåìåííûõ èíñòðóìåí-
òîâ äëÿ òåñòèðîâàíèÿ ñòðàòåãèé ñíèæåíèÿ óùåðáà è ðàçðàáîòêè ýôôåêòèâíûõ
ìåð ñäåðæèâàíèÿ.

Â äîêëàäå ïðîâåäåí àíàëèç àðõèòåêòóðû àãåíò-îðèåíòèðîâàííûõ ìîäåëåé
ðàñïðîñòðàíåíèÿ ýïèäåìèé è âûÿâëåíû îñíîâíûå êîìïîíåíòû äëÿ ìîäåëèðî-
âàíèÿ ýïèäåìè÷åñêèõ ïðîöåññîâ [1]. Ðàññìîòðåíû ïðåèìóùåñòâà àãåíòíîãî ïîä-
õîäà, ïîçâîëÿþùèå èìèòèðîâàòü äèíàìèêó ðàñïðîñòðàíåíèÿ èíôåêöèîííûõ
çàáîëåâàíèé â íåîäíîðîäíîé ïîïóëÿöèè è ìîäåëèðîâàòü ñõåìû è ìåõàíèçìû
ïåðåäà÷è çàáîëåâàíèÿ ñ ó÷åòîì äåìîãðàôè÷åñêèõ, ñîöèàëüíî-ýêîíîìè÷åñêèõ è
òåððèòîðèàëüíî-ïðîñòðàíñòâåííûõ ôàêòîðîâ. Èñïîëüçîâàíèå àãåíòíîãî ïîäõî-
äà äàåò âîçìîæíîñòü ìîäåëèðîâàòü ñöåíàðèè ýïèäåìè÷åñêèõ âñïûøåê, òåñòèðî-
âàòü ñòðàòåãèè áîðüáû ñ ýïèäåìèåé è îöåíèâàòü âëèÿíèå íà äèíàìèêó ýïèäåìèé
ìíîãîêîìïîíåíòíûõ ìåð è îãðàíè÷åíèé. Ïðè ñîçäàíèè àãåíò-îðèåíòèðîâàííîé
ìîäåëè ðàñïðîñòðàíåíèÿ ýïèäåìèè â óñëîâèÿõ Íîâîñèáèðñêîé îáëàñòè ó÷èòû-
âàåòñÿ ñîöèàëüíûé ñòàòóñ àãåíòîâ, ñîñòîÿíèå çäîðîâüÿ, äåìîãðàôè÷åñêèå ïî-
êàçàòåëè ðåãèîíà è óðîâåíü ñèñòåìû çäðàâîîõðàíåíèÿ.

Ïåðâûé ýòàï ìîäåëèðîâàíèÿ âêëþ÷àåò â ñåáÿ àíàëèç äàííûõ î åæåäíåâ-
íîì êîëè÷åñòâå äèàãíîñòèðóåìûõ, òåñòèðóåìûõ, ãîñïèòàëèçèðîâàííûõ, êðèòè-
÷åñêèõ è ñìåðòåëüíûõ ñëó÷àåâ, îñíîâàííûé íà ìåòîäàõ ìàøèííîãî îáó÷åíèÿ.
Ýòî ïîçâîëÿåò îïðåäåëèòü îñîáåííîñòè ñòðîåíèÿ äàííûõ, èõ êîððåëÿöèþ, ñå-
çîííîñòü, ñòàöèîíàðíûå ó÷àñòêè äëÿ îïòèìàëüíîãî èñïîëüçîâàíèÿ ïðè ðåøå-
íèè çàäà÷è óòî÷íåíèÿ ïàðàìåòðîâ ìîäåëè.
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Íà âòîðîì ýòàïå íåèçâåñòíûå ïàðàìåòðû ìîäåëè, òàêèå êàê ÷èñëî ðåïðî-
äóêöèè âèðóñà, êîëè÷åñòâî áåññèìïòîìíûõ áîëüíûõ, âåðîÿòíîñòè ïðîòåêàíèÿ
ëåãêèõ è òÿæåëûõ ôîðì, óòî÷íÿþòñÿ ïî äîïîëíèòåëüíîé èíôîðìàöèè î êî-
ëè÷åñòâå åæåäíåâíî äèàãíîñòèðóåìûõ, òåñòèðóåìûõ è ñìåðòåëüíûõ ñëó÷àåâ, à
òàêæå äðóãîé ñòàòèñòè÷åñêîé èíôîðìàöèè î çàáîëåâàåìîñòè [2]. Äëÿ ìèíèìè-
çàöèè êâàäðàòè÷íîãî öåëåâîãî ôóíêöèîíàëà èñïîëüçóåòñÿ àëãîðèòì OPTUNA,
â îñíîâå êîòîðîãî ëåæèò àëãîðèòì äðåâîâèäíûõ îöåíîê Ïàðçåíà [3].

Íà òðåòüåì ýòàïå ìîäåëèðóþòñÿ ñöåíàðèè ðàñïðîñòðàíåíèÿ COVID -19 è
àíàëèçèðóåòñÿ âëèÿíèå êàðàíòèííûõ ìåð.
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On functional moduli of surface non-singular �ows with two limit cycles
V. Kruglov (Nizhny Novgorod)

Two �ows f t, f ′t : M → M are called topologically equivalent if there exists
a homeomorphism h : M → M sending trajectories of f t into trajectories of f ′t

preserving orientations of the trajectories. In di�erence with it, two �ows are called
topologically conjugate if h ◦ f t = f ′t ◦ h, it means that h sends trajectories into
trajectories preserving not only directions but in addition the time of moving.
To �nd an invariant showing the class of topological equivalence or topological
conjugacy of each �ow from some class of �ows means to construct topological
classi�cation for the class. Note that for some classes their classi�cations in sense of
equivalence and conjugacy coincide; for other classes these classi�cations completely
di�er. The second case is about the class that we consider in this paper.

The Morse-Smale �ows were introduced on the plane for the �rst time in the
classical paper of A.A. Andronov and L.S. Pontryagin in [1]. The non-wandering set
of such �ows consists of a �nite number of hyperbolic �xed points and �nite number
of hyperbolic limit cycles, besides, saddle separatrices cross-sect only transversally
(which means that saddle points of a �ow on the plain can not be connected by
a separatrix). This important class of �ows was topologically classi�ed for many
times on di�erent manifolds during the twentieth century. The most important
combinatorial invariants are the Leontovich-Maier's scheme [2,3] for �ows on the
plane, the Peixoto's directed graph [5] for Morse-Smale �ows on any closed surface
and the Oshemkov-Sharko's three-colour graph [4] for Morse-Smale �ows on any
closed surface.

All these invariants classify �ows only in sense of topological equivalence. The
next step is conjugacy. In the work [6] it was proved that for gradient-like �ows
(i.e. Morse-Smale �ows without limit cycles) classes of topological equivalence and
topological conjugacy on surfaces coincide. But any limit cycle generates in�nite
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many conjugacy classes for each equivalence class (even two cycles with di�erent
periods cannot be conjugate). For two saddles connected by a separatrix the
invariant (the so-called modulus of stability or modulus of topological conjugacy)
was found by J. Palis in [7].

Any limit cycle obviously gives at least one modulus equal to its period. In this
talk there is considered the class of non-singular �ows on the annulus with only two
limit cycles on the annulus's boundary components. For these �ows there is proved
that they have in�nite number of moduli, also there is constructed topological
classi�cation in sense of topological conjugacy for the considered class of �ows.

Thanks. The results have been obtained in collaboration with O. Pochinka and
G. Talanova. The authors are partially supported by Laboratory of Dynamical
Systems and Applications NRU HSE, grant No 075-15-2019-1931 of the Ministry
of Science and Higher Education of Russian Federation.
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Realization of homeomorphisms of surfaces of algebraically
�nite type by Morse-Smale di�eomorphisms with orientable heteroclinic

A. Morozov (Nizhny Novgorod)

In this paper, we describe the realization of each homotopy class of type
T2 by a Morse-Smale di�eomorphism with an orientable heteroclinic set. Such
di�eomorphisms have relatively simple dynamics, since, by virtue of the results
of A.N. Bezdezhnykh and V.Z. Grines, have only a �nite number of heteroclinic
orbits. Moreover, we prove that the type of the homotopy class of any Morse-Smale
di�eomorphism with a �nite number of heteroclinic orbits is uniquely determined
by the index of its heteroclinic intersection.

Let Sg,k, g ≥ 0, k ≥ 0 � be a connected compact orientable surface of genus
g with the boundary consisting of k connected components. We set Sg,0 = Sg.
Everywhere below, surface mappings are assumed to preserve orientation.

A homeomorphism h : Sg,k → Sg,k is called a periodic homeomorphism if there
exists m ∈ N, such that hm = id, where id � is the identity transformation. The
smallest of these numbers m is called the period of the periodic homeomorphism.
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A homeomorphism h : Sg → Sg, g ≥ 1 is called a reducible by system C of
disjoint simple closed curves Ci, i = 1, . . . , l, non-homotopic to zero and pairwise
not homotopic to each other if the system of curves C is invariant under h.

A reducible nonperiodic homeomorphism h : Sg → Sg, g ≥ 1 is called
a homeomorphism of algebraically �nite type, f there exists an h-invariant
neighborhood C of curves of the set C, which consists of the union two-dimensional
anulus and such that for each connected component Sgj ,kj , j = 1, . . . , n of the set
Sg \ intC there is a number mj ∈ N such that hmj |Sgj,kj : Sgj ,kj → Sgj ,kj � is a

periodic homeomorphism.
Recall that a di�eomorphism f : Sg → Sg is called a Morse-Smale

di�eomorphism if

1) the non-wandering set Ωf consists of a �nite number of hyperbolic orbits;
2) the invariant manifolds W s

p , W
u
q intersect transversally for any non-

wandering points p, q.

Denote byMS(Sg) the set of Morse-Smale di�eomorphisms. In the set of periodic
orbits of any di�eomorphism f ∈MS(Sg) one can introduce a total order relation,
which is a continuation of the partial order introduced by S. Smale [6]. Precisely,
let Oi,Oj � be the periodic orbits of the Morse-Smale di�eomorphism f . They say
that the orbits Oi,Oj are in the relation ≺ (Oi ≺ Oj), if

W s
Oi ∩W

u
Oj 6= ∅.

A sequence of di�erent periodic orbits Oi = Oi0 ,Oi1 , ...,Oik = Oj (k > 1), such
that Oi0 ≺ Oi1 ≺ . . . ≺ Oik is called a chain of length k, connecting periodic
orbits Oi and Oj . The chain connecting the periodic orbits of saddle points will be
called saddle chain. Since the non-wandering set is �nite, for any di�eomorphism
f ∈ MS(Mn) there is a well-de�ned number equal to the length of the maximal
saddle chain, which is denoted by

beh(f).

Let σi, σj � be saddle points of the di�eomorphism f such that W s
σi ∩W

u
σj 6= ∅.

Recall that the intersection W s
σi ∩W

u
σj is a countable set and each point of this

set is called heteroclinic point, and each orbit of a heteroclinic point is called a
heteroclinic orbit. For any heteroclinic point x ∈ W s

σi ∩W
u
σj For any heteroclinic

point (~υux , ~υ
s
x), where:

• ~υux � the tangent vector to the unstable manifold of the point σj at the
point x;

• ~υsx � the tangent vector to the stable manifold of the point σi at the point
x.

Following [?](or see for example [2, p. 7]), we call a heteroclinic intersection of the
di�eomorphism f orientable, if the ordered pairs of vectors (~υux , ~υ

s
x) set the same

orientation of the bearing surface Sg. Otherwise, the heteroclinic intersection is
called non-orientable.

Two homeomorphisms h, h′ : Sg → Sg are called homotopic, if there exists a
continuous mappingH : Sg×[0, 1]→ Sg such thatH(x, 0) = h(x) ?H(x, 1) = h′(x).
By [h] we denote the homotopy class of the homeomorphism h.

Theorem 4. In every homotopy class [h] of the homeomorphism h : Sg → Sg, g ≥ 1
of algebraically �nite type, there exists a Morse-Smale di�eomorphism f : Sg → Sg
with orientable heteroclinic intersection.
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In [4], it was announced and then proved in [3] that any di�eomorphism f ∈
MS(Sg) with orientable heteroclinic intersections has beh(f) = 1 . This fact was
also proved in the work [5] using the factorization method.

Let f : Sg → Sg be an orientation-preserving Morse-Smale di�eomorphism such
that beh(f) ≤ 1 (that is, the di�eomorphism f has a �nite number of heteroclinic
orbits). Let us denote byMS1(Sg) the set of such di�eomorphisms. By virtue of [7],
the dynamics of any di�eomorphism f ∈MS1(Sg) can be represented as follows.

The set Ωf of periodic orbits of the maps f can be divided into subsets Ωif , i ∈
{ω, s, u, α} as follows:

* Ωωf � the set of all sink orbits;

* Ωsf � s the set of saddle orbits whose unstable manifolds do not contain
heteroclinic points;

* Ωuf � the set of the remaining saddle orbits of the system;

* Ωαf � the set of source orbits.

Let

Af = Ωωf ∪Wu
Ωsf
, Rf = Ωαf ∪W s

Ωuf
, Vf = Sg \ (Af ∪Rf ).

By construction, all heteroclinic points of the di�eomorphism f belong to the set Vf ,
which consists of a �nite number of connected components Vi, i = 1, . . . ,m. Each
component Vi is homeomorphic to an open two-dimensional ring and is invariant
with respect to some power qi ∈ N of the di�eomorphism f . Each heteroclinic orbit
Ox ⊂ Vi of the di�eomorphism fqi is assigned the index ξOx , equal to +1(−1), if
the orientation of the carrier the surface (not) coincides with the orientation de�ned
by the pair of vectors (~υux , ~υ

s
x). Since the di�eomorphism f preserves orientation,

the index ξOx does not depend on the choice of a point in the orbit Ox. We set

ξi =
∑
Ox⊂Vi

ξOx , ξf =

m∑
i=1

|ξi|

and we will call the number ξf the index of the heteroclinic intersection of the
di�eomorphism f ∈MS1(Sg).

It follows directly from the de�nition that the heteroclinic intersection index is
a non-negative number. The next result shows that it uniquely determines the type
of the homotopy class [f ] of the di�eomorphism f ∈MS1(Sg).

Theorem 5. Let f ∈MS1(Sg). Then [f ] is of type T1, if ξf = 0 and [f ] is of type
T2, if ξf > 0.
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On bifurcations changing the homotopy type of the closure of
an invariant saddle manifold of a surface di�eomorphism

E. Nozdrinova (Nizhny Novgorod)

The results have been obtained in collaboration with Olga Pochinka.
It is well known from the homotopy theory of surfaces that an ambient isotopy

does not change the homotopy type of a closed curve. In the language of dynamical
systems, this means that any arc in the space of di�eomorphisms connecting
isotopic di�eomorphisms with invariant closed curves from di�erent homotopy
classes necessarily passes through a bifurcation value. In this paper, we describe
a scenario that changes the homotopy type of the closure of the invariant manifold
of a saddle point of a polar di�eomorphism on a two-dimensional torus to any given
homotopy nontrivial type. Moreover, the arc constructed is stable in the space of
di�eomorphisms and does not change the topological conjugacy class of the original
di�eomorphism. The ideas proposed in this paper for constructing such an arc for
a two-dimensional torus can be naturally generalized to surfaces of a larger genus.

The problem of the existence of an arc with no more than a countable
(�nite) number of bifurcations connecting structurally stable systems (Morse-Smale
systems) on manifolds is included in the list of �fty Palis-Pugh problems [5] under
number 33. The report will present a solution this problem for polar gradient-like
di�eomorphisms of a torus.

In 1976, S. Newhouse, J. Palis, F. Takens [2] introduced the concept of a stable
arc connecting two structurally stable systems on a manifold. Such an arc does not
change its quality properties with little movement. In the same year, S. Newhouse
and M. Peixoto [3] proved the existence of a simple arc (containing only elementary
bifurcations) between any two Morse-Smale �ows. From the result of the work of
J. Fleitas [1] it follows that a simple arc constructed by Newhouse and Peixoto
can always be replaced by a stable one. For Morse-Smale di�eomorphisms given
on manifolds of any dimension, examples of systems that cannot be connected
by a stable arc are known. In this connection, the question naturally arises of
�nding an invariant that uniquely determines the equivalence class of the Morse-
Smale di�eomorphism with respect to the connection relation by a stable arc (is a
component of stable connection).
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In this report, a stable arc will be constructed connecting any two cascades from
the class in question. Note that it was shown in [4] that polar cascades on a two-
dimensional sphere are always connected by an arc without bifurcations. For a two-
dimensional torus, the situation is di�erent due to the fact that the closures of the
invariant manifolds of saddle points of the polar cascade are circles belonging to any
previously de�ned homotopy class. It follows directly from this that in the general
case there is no arc without bifurcations between the systems under consideration.
Nevertheless, the authors of this paper established the following result.
Theorem. Any di�eomorphisms f0, f1 ∈ G belong to the same class of stable

isotopy connection. Moreover, there exists a stable arc connecting them, all the
bifurcation points of which are saddle-nodes.

Thanks. The author is partially supported by Laboratory of Dynamical Systems
and Applications NRU HSE, of the Ministry of science and higher education of the
RF grant ag. � 075-15-2019-1931.
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Êâàçè-ñèììåòðè÷íàÿ ôîðìà äâóìåðíûõ èíòåãðèðóåìûõ ñèñòåì
Ì. Ïàâëîâ (Ìîñêâà)

Â äîêëàäå áóäåò ïîêàçàíî, ÷òî ìíîãèå ìíîãîêîìïîíåíòíûå èíòåãðèðóåìûå
ñèñòåìû (íàïðèìåð, âñå äâóìåðíûå ðåäóêöèè èåðàðõèè ÊÏ) ìîãóò áûòü çàïè-
ñàíû â êâàçè-ñèììåòðè÷íîé ôîðìå.

Ïîñòðîåíèå êâàçè-ñèììåòðè÷íîé ôîðìû áóäåò ïðîäåìîíñòðèðîâàíî íà ïðè-
ìåðå ñèñòåì "ñöåïëåííûõ ÊäÔ".

Èìåííî â ýòîì ñëó÷àå, áóäåò ïîêàçàíî, ÷òî òàêàÿ êâàçè-ñèììåòðè÷íàÿ ôîðìà
ÿâëÿåòñÿ ãàìèëüòîíîâîé, ïðè÷¼ì, çàâèñÿùåé îò ÷èñëà ïðîèçâîëüíûõ ïàðàìåò-
ðîâ, ðàâíîãî ÷èñëó ïîëåâûõ ïåðåìåííûõ â ñèñòåìå. Ðàçëè÷íûìè ïðåäåëüíûìè
ïåðåõîäàìè ìîæíî ïîëó÷èòü óæå èçâåñòíûé ðåçóëüòàò Ì. Àíòîíîâè÷à è À.
Ôîðäè î ìàêñèìàëüíîì ÷èñëå ëîêàëüíûõ ãàìèëüòîíîâûõ ñòðóêòóð äëÿ èíòå-
ãðèðóåìûõ ñèñòåì óðàâíåíèé.

On possible rates of convergence for the ergodic averages
I. Podvigin (Novosibirsk)

New facts are presented about positive sequences tending to zero, which are
estimates of the pointwise rate of convergence for the ergodic averages. In particular,
by representing such sequences in the form of the ratio φ/n, it is shown that φ is



THE CONFERENCE �DYNAMICS IN SIBERIA� A.81

separated from zero on a subset of natural numbers with positive lower asymptotic
density.

On the non-integrability and dynamics of discrete models of threads
I. Polekhin (Moscow)

In the talk we will consider the dynamics of planar n-gons, which can be
considered as discrete models of threads. The main result is that, under some
weak assumptions, these systems are not integrable in the sense of Liouville. This
holds for both completely free threads and for threads with �xed points that
are placed in external force �elds. We will present su�cient conditions for the
positivity of topological entropy in such systems. We will brie�y consider other
dynamical properties of discrete threads and we will also consider discrete models
of inextensible yet compressible threads.

Äâîéñòâåííîñòü Äîëãà÷åâà-Íèêóëèíà è çåðêàëüíàÿ ñèììåòðèÿ
òðåõìåðíûõ ìíîãîîáðàçèé Ôàíî

Â. Ïðæèÿëêîâñêèé (Ìîñêâà)

Äâîéñòâåííîñòü Äîëãà÷åâà-Íèêóëèíà äëÿ ïîâåðõíîñòåé òèïà Ê3, ãðóáî ãî-
âîðÿ, ìåíÿåò ìåñòàìè ðåøåòêè àëãåáðàè÷åñêèõ è òðàíñöåíäåíòíûõ öèêëîâ âî
âòîðîé ãðóïïå êîãîìîëîãèé. Îæèäàåòñÿ, ÷òî ñëîé ìîäåëè Ëàíäàó-Ãèíçáóðãà
òðåõìåðíîãî ìíîãîîáðàçèÿ Ôàíî äâîéñòâåíåí ïî Äîëãà÷åâó-Íèêóëèíó àíòè-
êàíîíè÷åñêîìó ñå÷åíèþ ýòîãî ìíîãîîáðàçèÿ. Ìû îáñóäèì, êàê äîêàçàòü ýòî
îæèäàíèå, è êàê îíî ñâÿçàíî ñ òåîðåòèêî-õîäæåâûìè ãèïîòåçàìè çåðêàëüíîé
ñèììåòðèè.

Integrable magnetic billiard in circular domain
S. Pustovitov (Moscow)

Mathematical billiard is a dynamical system that describes the motion of a
material point inside a closed bounded domain (billiard table). The material point
moves along a smooth trajectory until it hits a boundary of the table and then
re�ects from it according to the usual re�ection law. We know that the classical
planar mathematical billiard, where a velocity vector of the point is constant,
is a Hamiltonian system. The integrability of this billiard depends on shape of
the table. For example, the billiard inside an ellipse or some domain bounded by
confocal ellipses and hyperbolas is integrable, i.e. there exist a �rst integral that is
functionally independent with the Hamiltonian. Such billiards were considered by
V. V. Vedyushkina in [2].

Consider a billiard obtained from the classical planar billiard by adding a
magnetic �eld forcing on a material point. Suppose the magnetic �eld is uniform
in signature b and orthogonal to the billiard table. It terns out that if the table
is bounded by an ellipse then there doesn't exist two functionally independent
�rst integrals, i.e. system is not integrable anymore [3]. Also the general problem
of the integrability of the magnetic billiard was investigated by M. Bialy and
A. E. Mironov [4]. The following theorem guarantees the integrability of a circular
billiard.
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Theorem 6. Consider a planar billiard inside a circle with orthogonal uniform
magnetic �eld. A trajectory of the material point is piecewise smooth curve which
consists of circular arcs (they are called the Larmor circles) of a common radius
A and centers of these circles are equidistant from the center of the table at a
distance R. Therefore there are two �rst integrals R and A, which are functionally
independent.

Theorem 7. Pre-image of every regular value of the integrals R and A is
homeomorphic to a torus in a phase space.

That means one can treat the system using the Fomenko-Zieschang theory of
marked molecules [1]. In particular, by �xing some values of the integral R one can
obtain a marked molecule of a kind A�A with r = ∞ and ε = −1, which was not
observed for billiards before.

Thanks. The work is supported by Russian Science Foundation (project 20-71-
00155
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Dynamic Inverse Problems and Conservation Laws
M.A. Shishlenin (Novosibirsk), S.I. Kabanikhin (Novosibirsk),
N.S. Novikov (Novosibirsk), D.V. Klyuchinskiy (Novosibirsk)

Conservation laws play a distinguished role in mathematical physics. They have
practical applications in several areas related to di�erential equations, including
integrability theory, asymptotic integrability, and the construction of geometric
numerical integration schemes.

The mathematical model of the acoustic tomography is based on the conservation
laws [2], which not only describes such e�ects as di�raction, refraction, reaction,
and acoustic absorption of inhomogeneous media on a physical level and allows
us to simulate the radiation patterns of sources and receivers [5], to decrease the
smoothness of the sought coe�cients [1].

We investigate the mathematical model of the 2D acoustic waves propagation in
homogeneous and heterogeneous areas. The hyperbolic �rst-order system of partial
di�erential equations is considered and solved by the Godunov method of the �rst
order of approximation. This is a direct problem with non-re�ecting boundary
conditions.

As the main aim of the work, we solve the coe�cient inverse problem of recovering
density and speed of sound propagation of the medium [4]. The inverse problem is
reduced to an optimization problem which is solved by the gradient descent method
[3].
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The hyperbolic �rst-order system allows us to propose a more realistic model
from the physical point of view. These equations are obtained directly from the
conservation laws of continuum mechanics. It allows us to control the preservation
of the basic invariants during the solution of direct and inverse problems. This
is important for solving unstable problems, as the conservation laws of the main
invariants are the only criterion of the well-posedness of the solution.
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Realization of homeomorphisms of surfaces of algebraically
�nite type by Morse-Smale di�eomorphisms with orientable heteroclinic

V. Shmukler (Nizhny Novgorod)

In this paper, we consider the class G of orientation-preserving Morse-Smale
di�eomorphisms de�ned on a closed 3-manifold whose non-wandering set consists
of exactly four points of pairwise di�erent Morse indices. It is known that the two-
dimensional saddle separatrices of any such di�eomorphism always intersect and
their intersection necessarily contains non-compact heteroclinic curves, but may
also contain compact ones. The main result of this work is the construction of a
path in the space of di�eomorphisms connecting the di�eomorphism f0 ∈ G with
the di�eomorphism f1 ∈ G, which does not have compact heteroclinic curves. This
result is an important step in solving the open problem of describing the topology of
3-manifolds admitting gradient-like di�eomorphisms with wildly embedded saddle
separatrices.

Despite the simple structure of the non-wandering set, the class under
consideration contains di�eomorphisms with wildly embedded saddle separatrices
[2]. It was proved in [1] that for any di�eomorphism f ∈ G the set Hf = W s

σ1
∩Wu

σ2

is not empty and contains at least one non-compact heteroclinic curve. According
to [3], in the case of a manual embedding of the closures of one-dimensional
separatrices of the di�eomorphism f ∈ G, the bearing manifold M3 admits a
Heegaard decomposition of genus 1 and, therefore, is a lens space. In the case
of wild embedding, the description of the topology of the supporting manifold is an
open problem formulated in [1].
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In the present paper, an important step has been taken in solving this problem,
namely, the following fact is proved.

Theorem 8. Let the manifold M3 admit a di�eomorphism f0 ∈ G. Then the same
manifold admits a di�eomorphism f1 ∈ G, a wandering set that does not contain
compact heteroclinic curves.
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Automorphism groups of Severi-Brauer varieties
C. Shramov (Moscow)

A Severi-Brauer variety is a form of a projective space, and its automorphism
group is an inner form of the group PGLn. I will prove a sharp multiplicative bound
for the orders of �nite subgroups of the latter group provided that the base �eld
contains all roots of unity (e.g. it is a function �eld on some algebraic variety over
the complex numbers).

On non-singular �ows on n-manifolds with two limit cycles
D. Shubin (Nizhny Novgorod)

The results were obtained in collaboration with O. Pochinka. This talk is devoted
to the so-called NMS-�ows (non-singular Morse-Smale �ows) which are Morse-
Smale �ows without �xed points. Such �ows have close connection with topology of
ambient manifold. Exhaustive classi�cation of this systems with exactly two limit
cycles on closed n-manifolds was obtained and will be presented.

General theory (see e.g. [1]) implies that ambient manifold Mn is the union of
stable manifolds and simultaneously the union of unstable manifolds. Thus, on of
this trajectories is attracting and another is repelling.

Due to Poincar�e-Hopf theorem, Euler characteristic of the ambient manifold is 0.
It leaves only torus and Klein bottle for two-dimensional manifold. Classi�cation of
such �ows is a part of the problem solved in [2,3,4]. Namely, there are two equivalent
classes of considered �ows on the torus and three on the Klein bottle.

For three-dimensional manifolds the fact that Euler characteristic is equal to zero
does not contract the class of manifolds since all three-dimensional manifolds have
Euler characteristic equal to zero. Necessary and su�cient conditions follow from
[5] where author considers wider class of dynamical systems. However, the results
are not contain realisation and it is impossible to judge whether one or other �ow
is admissible.

In case of two non-twisted orbits the topology of ambient manifolds is known
from [6]: they are so called lens spaces, which are obtained by attaching of two
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solid tori along their boundary. We establish that every lens space, except sphere,
admits exactly two equivalent classes of considered �ows. On the sphere S3 there is
unique class due to [6]. If orbits are twisted then there is only one ambient manifold
admitting such �ow. It is S2×̃S1.

This result was generalized for any lens space and also for any dimension n > 3.
So, ambient manifold Mn, n > 3 similarly to the previous case is two generalised
solid tori Dn−1 × S1 glued along boundaries. The results [7] and [8] imply that
only two manifolds which admit NMS-�ow with two limit cycles are Sn−1× S1 and
Sn−1×̃S1.

Thanks. The author is partially supported by Laboratory of Dynamical Systems
and Applications NRU HSE, of the Ministry of science and higher education of the
RF grant ag. � 075-15-2019-1931.
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Quasi-periodic Henon-like attractors:
universal scenario of appearance and radio-physical applications

N.V. Stankevich (Nizhny Novgorod)

Chaos is a typical attribute of nonlinear dynamical systems in various �elds of
science and technology [1-2]. One of the conventional indicator of chaotic dynamics
is the largest Lyapunov exponent. Chaos is implemented in a situation when the
spectrum of Lyapunov exponents have one positive, one zero and at least one
negative exponents for a �ow. In this work, we consider a somewhat di�erent
situation, when the spectrum of Lyapunov exponents of chaotic attractor contains
an additional zero Lyapunov exponent, it means it includes one positive, two zero
and several negative exponents [3]. Such kind of attractors called Quasi-periodic
Henon-like attractors because it's can be represented as multiplication of torus
and Henon attractor. As part of the work, examples of �ow systems will be
presented in which this type of chaotic dynamics is observed: modi�ed Anishchenko-
Astakhov generator, two-mode vand Pol oscillator, coupled generators of quasi-
periodic oscillations and ensemble of �ve van der Pol oscillators. A universal scenario
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such chaotic attractors occurrence associated with torus-doubling bifurcations and
homoclinc bifurcation of unstable torus will be discussed.

Thanks. This work is supported by the grant of Russian Foundation for Basic
Research (Project No. 19-31-60030)
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Quasi-periodic Henon-like attractors:
universal scenario of appearance and radio-physical applications

A. Tetenov (Novosibirsk), O. Chelkanova (Gorno-Altaisk)

A Jordan arc γ ⊂ Rn is called self-similar if there is a system S = {S1, ..., Sm} of
contracting similarities of Rn such that γ = S1(γ)∪ . . .∪Sm(γ). The self-similarity
condition is quite restrictive for Jordan arcs. As it was proved in [3], if the semigroup
G(S), generated by S1, ..., Sm contains a sequence of pairs of elements gn, hn ∈ G(S)
such that the intersections g−1

n hn(γ) ∩ γ converge to γ, then γ is a straight line
segment. This last property implies that each self-similar Jordan arc γ can be
obtained by iterating some �nite polygonal line whose vertices lie on γ on each step
of the iteration process. Moreover, unless γ is a line segment, its subarcs have the
same Hausdor� dimension s > 1 and none of these subarcs admits a one-to-one
projection to a line segment [2].

In the case of self-a�ne Jordan arcs the situation remained unclear. From one
hand, smooth a�ne fractal interpolation functions on [0, 1] form a dense subspace
of C([0, 1]; and their graphs are naturally projected to [0, 1]. From the other hand,
it was proved in [1] that each C2-smooth self-a�ne arc is a segment of a parabola.

A Jordan arc γ ⊂ Rn is called locally self-a�ne, if for any proper subarc γ′ ⊂ γ
there is a non-degenerate a�ne map S, such that S(γ) ⊂ γ′.

A injective a�ne map S of R2 is called a a�ne shift of a Jordan arc γ, if S has
no �xed points on γ and both γ \ S(γ) and S(γ) \ γ are proper subarcs in γ and
S(γ) respectively.

We prove the following rigidity theorem for locally self-a�ne arcs:

Theorem 9. Let γ ⊂ R2 be a locally self-a�ne Jordan arc such that there is a
sequence of a�ne shifts fk of the arc γ, which converges to Id.

Then γ is a segment of a parabola or straight line.

This theorem allows to prove that each self-a�ne Jordan arc γ can be obtained
by a�ne iterations of some �nite polygonal line whose vertices lie on γ on each step
of the iteration process.
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Lagrangian Mironov cycles in complex Grassmannians
N.A. Turin (Moscow, Dubna)

Every algebraic variety can be studied as a real symplectic manifold equipped
by a Kahler form coming from an embedding to an appropriate projective space.
Therefore it is natural problem to examine which lagrangian submanifolds can (or
can not) appear in this framework for a given algebraic variety and a choosen
polarization. This problem is important for both Geometric Quantization and
Mirror Symmetry; and this problem is widely open even for the basic algebraic
variety such as complex projective spaces. We study this problem for complex
Grassmanians taking as the symplectic form the Kahler form lifted by the Plucker
embedding. It is not hard to see that GrC(k, n + 1) admits Hamiltonian action
of real torus Tn, such that the corresponding moment maps µ1, ..., µn can be
described in pure geometrical terms; on the other hand this variety admits natural
anti holomorphic involution with real part GrR(k, n + 1). It follows one can apply
the construction, proposed by A. Mironov for the projective spaces, results with
a wide class of lagrangian submanifolds, which we call "Mironov cycles". In my
talk I present two "ends"of this class for GrC(k, n + 1), constructed with a single
moment map (the case of homogeneity 1) and with n moment maps (the case of
homogeneity n).

The Schur-Sato theory for quasi-elliptic rings and some of its
A.B. Zheglov (Moscow)

The notion of quasielliptic rings appeared as a result of an attempt to classify
a wide class of commutative rings of operators found in the theory of integrable
systems, such as rings of commuting di�erential, di�erence, di�erential-di�erence,
etc. operators. They are contained in a certain non-commutative "universe"ring
- a purely algebraic analogue of the ring of pseudodi�erential operators on a
manifold, and admit (under certain mild restrictions) a convenient algebraic-
geometric description. An important algebraic part of this description is the Schur-
Sato theory - a generalisation of the well known theory for ordinary di�erential
operators. I'll talk about this theory in dimension n and about some of its
unexpected corollaries: new short proofs of the generalized Birkho� decomposition
and of the Abhyankar formula.
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Morse-Bott function for topological �ows with
a �nite hyperbolic chain-recñurent set

S. Kh. Zinina (Saransk)

We introduce a class G of continuous �ows f t onMn that generalize the concept
of Morse-Smale �ows. Such �ows have a hyperbolic (in the topological sense) chain-
recurrent set Rft consisting of a �nite number of orbits (chain components). Each
non-wandering orbit is either a �xed point or a periodic orbit. The main result is
the following theorem: each �ow f t ∈ G has a Morse-Bott energy function whose
critical points are either nondegenerate or have a degeneracy degree of 1.

Numerical solution and stability analysis of the
inverse problem for the di�usion-logistic model

T. A. Zvonareva (Novosibirsk), O. I. Krivorotko (Novosibirsk)

The di�usion-logistic model describes the process of information dissemination
in social networks [1]. The type of information is determined by the coe�cients of
the mathematical model and the initial conditions of the problem. In the inverse
problem [2], it is necessary to determine the function of the initial data using
additional information. This problem was reduced to the problem of minimizing
a quadratic functional and solved using a combination of the particle swarm and
Nelder-Mead methods, the gradient descent method, and the multilevel gradient
method. The singular value decomposition analysis was carried out for two discrete
operators of linearized inverse problems. It helps one to control the degree of ill-
posedness of inverse problem and to construct the regularization algorithm.
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