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Abstract. The paper considers the �rst boundary value problem in
a rectangle for the equation describing torsional vibrations of an elastic
rod. Existence and uniqueness theorems are proved for a generalized
solution of the �rst boundary value problem in Sobolev space.

Keywords: generalized solution, pseudohyperbolic equation, torsional
vibrations, Sobolev space, unique solvability, Galerkin method.

1. Introduction

In the work, we consider the �rst boundary value problem in a rectangle for the
equation

(I −D2
x)D2

t u+D4
xu− a2D2

xu = f(t, x). (1.1)

Equation (1.1) is not resolved with respect to the highest-order derivative. Such
equations are often called Sobolev type equations, since it was S.L. Sobolev whose
works were the beginning of a systematic study on such equations. In the works by
S.L. Sobolev [1], detailed study on one equation nonresolved with respect to the
highest-order derivative was �rst performed and a number of new mathematical
problems were formulated. In particular, Sergei Lï¨�vovich Sobolev stated a problem
of constructing a theory on boundary value problems for di�erential equations
nonresolved with respect to the highest-order time derivative.
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The study [2] was devoted to solving that problem. This book distinguishes
between three classes of equations of the form

L0(Dx)Dl
tu+

l−1∑
k=0

Ll−k(Dx)Dk
t u = f(t, x).

In particular, the equations of Sobolev type, pseudoparabolic, and pseudohyperbolic
equations. For these equations, the Cauchy problem and general mixed boundary
value problems in the quarter of the space have been studied. The works [3�7] are
dedicated to studying of the Cauchy problem for pseudohyperbolic equations. In [2],
also the boundary value problems for systems of Sobolev type and pseudoparabolic
ones were investigated.

The class of pseudohyperbolic equations, introduced by G.V. Demidenko (see
[2]), includes the equation that describes torsional vibrations of an elastic rod (see,
for example, [8])

ρIpθtt − µIkθxx + EIdθxxxx − ρIdθxxtt = f(t, x), (1.2)

where θ(t, x) is the angle of cross-sectional rotation or twist angle, Ip is the polar
moment of inertia, µ is the Lame constant, Ik is the torsional moment of inertia,
E is the Young's modulus, Id is the moment of deplanation, f(t, x) is the external
force. In the literature, equation (1.2) is referred to as Vlasov's equation [8, 9].

It is easy to see that by performing the following substitution of variables

x̃ = x
√
Ip/Id, t̃ = t

√
E/ρ

√
Ip/Id, θ(t, x) ≡ Id

EI2
p

u(t̃, x̃), a2 =
µIk
EIp

,

equation (1.2) is reduced to the considered equation of the form (1.1). Note that
the equation describing longitudinal vibrations of the bar, the Rayleigh-Bishop
equation, can also be reduced to the equation of the form (1.1) [10, 11].

Our goal is to prove existence and uniqueness of a generalized solution of the
�rst boundary value problem in a rectangle.

2. The statement of the problem

Consider the �rst boundary value problem for equation (1.1) in a rectangle:
Π = {(t, x) : t ∈ (0, T ), x ∈ (0, 1)} :

(I −D2
x)D2

t u+D4
xu− a2D2

xu = f(t, x), (t, x) ∈ Π,
u|x=0 = 0, Dxu|x=0 = 0,
u|x=1 = 0, Dxu|x=1 = 0,
u|t=0 = ϕ1(x),
Dtu|t=0 = ϕ2(x).

(2.1)

Definition. The function u(t, x) belongs to the anisotropic Sobolev spaceW 1,2
2 (Π),

if u(t, x) ∈ L2(Π), there exist generalized derivatives

Dα1
t Dα2

x u(t, x) ∈ L2(Π), (α1, α2) ∈ Λ =
{α1

1
+
α2

2
≤ 1
}
,

the norm is de�ned in the following way:

‖u(t, x),W 1,2
2 (Π)‖ =

∑
(α1,α2)∈Λ

‖Dα1
t Dα2

x u(t, x), L2(Π)‖.
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We denote

W 1,2
2,add(Π) = {u(t, x) ∈W 1,2

2 (Π) : ∃D2
txu(t, x) ∈ L2(Π)}.

We will formulate the notion of a generalized solution to the boundary value
problem (2.1).

Suppose that f(t, x) ∈ L2(Π), ϕ1(x) ∈ W̊ 2
2 (0, 1), ϕ2(x) ∈ W̊ 1

2 (0, 1).

Definition. The function u(t, x) ∈W 1,2
2,add(Π) such that

u|t=0 = ϕ1(x), u|x=0 = 0, Dxu|x=0 = 0, u|x=1 = 0, Dxu|x=1 = 0, (2.2)

is called a generalized solution of the boundary value problem (2.1), if for every

function v(t, x) ∈W 1,2
2,add(Π) satisfying

v|t=T = 0, v|x=0 = 0, Dxv|x=0 = 0, v|x=1 = 0, Dxv|x=1 = 0, (2.3)

the following equality holds:

T∫
0

1∫
0

[
DtuDtv+D2

txuD
2
txv−a2DxuDxv−D2

xuD
2
xv

]
dx dt = −

T∫
0

1∫
0

f(t, x)v(t, x)dx dt

−
1∫

0

[
ϕ2(x)v(t, x)

∣∣
t=0

+Dxϕ2(x)Dxv(t, x)
∣∣
t=0

]
dx. (2.4)

Theorem 1. The boundary value problem (2.1) cannot have more than one generali-
zed solution.

Theorem 2. Suppose that f(t, x) ∈ L2(Π) and ϕ1(x) = 0, ϕ2(x) = 0. Then the
boundary value problem (2.1) has a unique generalized solution u(t, x) ∈ W 1.2

2 (Π),
moreover,

‖u(t, x),W 1.2
2 (Π)‖ ≤ c‖f(t, x), L2(Π)‖, (2.5)

where the constant c > 0 does not depend on f .

Corollary 1. Let f(t, x) = 0 and ϕ1(x) ∈ W̊ 2
2 (0, 1), ϕ2(x) ∈ W̊ 1

2 (0, 1). Then the

boundary value problem (2.1) has a unique generalized solution u(t, x) ∈ W 1,2
2 (Π),

moreover,

‖u(t, x),W 1,2
2 (Π)‖ ≤ c

[
‖ϕ1(x),W 2

2 (0, 1)‖+ ‖ϕ2(x),W 1
2 (0, 1)‖

]
,

where the constant c > 0 does not depend on ϕ1 and ϕ2.

3. Proof of uniqueness

We will carry out the proof of uniqueness using the standard scheme (see, for
example, [12]). We will need the following formula:

t∫
0

ϕ(τ)

( t∫
τ

ϕ(s) ds

)
dτ ≡ 1

2

( t∫
0

ϕ(τ) dτ

)2

, t ∈ [0, T ], (3.1)

which holds for every integrable function ϕ.
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We will prove the uniqueness of a generalized solution by contradiction. Assume
that there exist two distinct generalized solutions of the boundary value problem
(2.1): u1(t, x), u2(t, x). Then the function

u(t, x) = u1(t, x)− u2(t, x) 6= 0, u(t, x) ∈W 1,2
2,add(Π),

satis�es (2.2) for ϕ1(x) = 0 and

T∫
0

1∫
0

[
DtuDtv +D2

txuD
2
txv − a2DxuDxv −D2

xuD
2
xv

]
dx dt = 0 (3.2)

holds for the derivative v(t, x) ∈ W 1,2
2,add(Π), satisfying (2.3). We �x an arbitrary

number τ ∈ (0, T ) and take the following function for v(t, x):

v(t, x) =


τ∫
t

u(s, x)ds for t ∈ (0, τ),

0 for t ∈ (τ, T ).
(3.3)

It is easy to verify that v(t, x) ∈ W 1,2
2 (Π), D2

txv(t, x) ∈ L2(Π), (2.3) are ful�lled,
moreover,

Dtv(t, x) =

{
−u(t, x) for t ∈ (0, τ),

0 for t ∈ (τ, T ),

Dxv(t, x) =


τ∫
t

Dxu(s, x)ds for t ∈ (0, τ),

0 for t ∈ (τ, T ),

D2
txv(t, x) =

{
−Dxu(t, x) for t ∈ (0, τ),

0 for t ∈ (τ, T ),

D2
xv(t, x) =


τ∫
t

D2
xu(s, x)ds, for t ∈ (0, τ),

0 for t ∈ (τ, T ).

We substitute the mentioned function v(t, x) from (3.3) into (3.2), now we have

1∫
0

τ∫
0

[
Dtu(t, x)u(t, x) +D2

txu(t, x)Dxu(t, x) + a2Dxu(t, x)

( τ∫
t

Dxu(s, x) ds

)

+D2
xu(t, x)

( τ∫
t

D2
xu(s, x) ds

)]
dt dx = 0.

Noting that

Dtu(t, x)u(t, x) +D2
txu(t, x)Dxu(t, x) =

1

2
Dt(u(t, x))2 +

1

2
Dt(Dxu(t, x))2,

and taking into account (3.1), we have that

1

2

1∫
0

τ∫
0

Dtu
2(t, x) dt dx+

1

2

1∫
0

τ∫
0

Dt(Dxu(t, x))2 dt dx+
a2

2

1∫
0

( τ∫
0

Dxu(t, x) dt

)2

dx
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+
1

2

1∫
0

( τ∫
0

D2
xu(t, x) dt

)2

dx = 0.

Integrating, we obtain

1∫
0

u2(τ, x) dx+

1∫
0

(Dxu(τ, x))2 dx+ a2

1∫
0

( τ∫
0

Dxu(t, x) dt

)2

dx

+

1∫
0

( τ∫
0

D2
xu(t, x) dt

)2

dx = 0.

From here, in particular, we have

1∫
0

u2(τ, x) dx = 0.

Due to the fact that τ ∈ (0, T ) is arbitrary, we obtain u(τ, x) = 0 almost
everywhere in Π, which is a contradiction.
The theorem is proved.

4. Proof of existence of a generalized solution

We will perform the proof of existence of a generalized solution of the boundary
value problem (2.1) using a well-known scheme, constructing a sequence of approxi-
mate solutions by the Galerkin method (see, for example, [12, 13]).

We will describe the proof of Theorem 2 in detail.
Let {vp(x )} be an orthonormal basis in W̊ 2

2 (0, 1). We can assume that vp(x) ∈
C∞0 (0, 1). We will seek for a sequence of approximate solutions in the form

um(t, x) =

m∑
p=1

cp(t)vp(x), (4.1)

where

cp(t) ∈W 2
2 (0, T ), c(0) = 0, Dtc(0) = 0, p = 1, . . . ,m,

moreover, for almost every t ∈ (0, T ) we assume that the following relations are
ful�lled:

1∫
0

[
(I −D2

x)D2
t u
m(t, x) +D4

xu
m(t, x)− a2D2

xu
m(t, x)

]
vk(x) dx

=

1∫
0

f(t, x)vk(x) dx, k = 1, . . . ,m. (4.2)

Taking into account de�nition (4.1) of the functions um(t, x) and the equalities

−
1∫

0

v′′p (x)vk(x) dx =

1∫
0

v′p(x)v′k(x) dx,
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relations (4.2) can be rewritten in the following way:

m∑
p=1

D2
t cp(t)

( 1∫
0

vp(x)vk(x) dx+

1∫
0

v′p(x)v′k(x) dx

)

+

m∑
p=1

cp(t)

( 1∫
0

v′′p (x)v′′k (x) dx+ a2

1∫
0

v′p(x)v′k(x) dx

)

=

1∫
0

f(t, x)vk(x) dx, k = 1, . . . ,m. (4.3)

With the notations

apk =

1∫
0

vp(x)vk(x) dx+

1∫
0

v′p(x)v′k(x) dx, A = (apk),

bpk =

1∫
0

v′′p (x)v′′k (x) dx+ a2

1∫
0

v′p(x)v′k(x) dx, B = (bpk),

F (t) =


F1(t)
· · ·
· · ·
Fm(t)

, where Fk(t) =

1∫
0

f(t, x)vk(x) dx,

c(t) =


c1(t)
· · ·
· · ·
cm(t)

 ,

relation (4.3) can be rewritten in the form

AD2
t c+Bc = F (t), (4.4)

moreover, as it follows from the de�nition of um(t, x), we have that

c(0) = 0, Dtc(0) = 0. (4.5)

Since the vector function F (t) has components from L2(0, T ), it is easy to show that
there exists a unique solution of Cauchy problem (4.4), (4.5) is the vector function
of c(t) ∈W 2

2 (0, T ), and the sequence of Galerkin approximations um is well-de�ned
(see, for example, [12, 13]).

Lemma 4.1. For every m ≥ 1, the following estimate holds

‖um(t, x),W 1,2
2 (Π)‖ ≤ c‖f(t, x), L2(Π)‖,

where the constant c > 0 does not depend on m and f .

Proof. Multiplying the k-th relation in (4.2) by Dtck and taking a sum over k
from 1 to m, given the de�nition of the function um, we obtain

1∫
0

[
(I −D2

x)D2
t u
m(t, x) +D4

xu
m(t, x)− a2D2

xu
m(t, x)

]
Dtu

m(t, x) dx
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=

1∫
0

f(t, x)Dtu
m(t, x) dx.

Integrating from 0 to t, using the formula for integrating by parts, and taking into
account

um(t, x)
∣∣
x=0

= um(t, x)
∣∣
x=1

= 0, Dxu
m(t, x)

∣∣
x=0

= Dxu
m(t, x)

∣∣
x=1

= 0,

we obtain that
t∫

0

1∫
0

[
Dτ

(
(Dτu

m(τ, x))2
)

+Dτ

((
D2
τxu

m(τ, x)
)2)

+Dτ ((D2
xu

m(τ, x))2)

+a2Dτ

((
Dxu

m(τ, x)
)2)]

dx dτ = 2

t∫
0

1∫
0

f(τ, x)Dτu
m(τ, x) dx dτ.

Since um(t, x)
∣∣
t=0

= 0, Dtu
m(t, x)

∣∣
t=0

= 0, we will have

1∫
0

[
|Dtu

m(t, x)|2 + |D2
txu

m(t, x)|2 + a2|Dxu
m(t, x)|2 + |D2

xu
m(t, x)|2

]
dx

= 2

t∫
0

1∫
0

f(τ, x)Dτu
m(τ, x) dx dτ.

We integrate this relation with respect to t from 0 to T . Then, taking into account
the formula

T∫
0

t∫
0

F (τ)dτdt ≡
T∫

0

(T − t)F (t)dt,

we obtain
T∫

0

1∫
0

[
|Dtu

m(t, x)|2 + |D2
txu

m(t, x)|2 + a2|Dxu
m(t, x)|2 + |D2

xu
m(t, x)|2

]
dx dt

≤ 2T

T∫
0

1∫
0

∣∣f(t, x)Dtu
m(t, x)

∣∣dx dt.
From here due to H�older's inequality, it follows that

T∫
0

1∫
0

[
|Dtu

m(t, x)|2 + |D2
txu

m(t, x)|2 + a2|Dxu
m(t, x)|2 + |D2

xu
m(t, x)|2

]
dx dt

≤ 2T‖f(t, x), L2(Π)‖‖Dtu
m(t, x), L2(Π)‖.

We have( T∫
0

1∫
0

[
|Dtu

m(t, x)|2 + |D2
txu

m(t, x)|2 + a2|Dxu
m(t, x)|2 + |D2

xu
m(t, x)|2

]
dx dt

) 1
2

≤ 2T‖f(t, x), L2(Π)‖.
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Since for almost every t ∈ (0, T ), we have that um(t, x) ∈ W̊ 2
2 (0, 1), then the

Steklov's inequality holds:

‖um, L2(0, 1)‖ ≤ c‖D2
xu

m, L2(0, 1)‖.
Therefore, we will have( T∫

0

1∫
0

[
|um(t, x)|2 + |Dtu

m(t, x)|2 + |D2
txu

m(t, x)|2 + a2|Dxu
m(t, x)|2

+|D2
xu

m(t, x)|2
]
dx dt

) 1
2

≤ c‖f(t, x), L2(Π)‖.

Since from every sequence bounded in L2(Π) we can extract a subsequence weakly
converging to a function from L2(Π) (see, for example, [14, 15]), then, taking into
account the theorem on weak closedness of a generalized di�erentiation operator
(see, for example, [12]), we obtain that from {um} we can extract a subsequence,

weakly converging in W 1,2
2,add(Π) to some function u ∈ W 1,2

2,add(Π). For brevity, we

will denote this subsequence by the same symbol {um}.
We will study some properties of a limit function u. To do that, we will use

Mazur's theorem [16].

Theorem 3. Suppose that the sequence of elements {um} of the Hilbert space
H weakly converges to u ∈ H. Then there exists a sequence of convex linear
combinations { N∑

i=1

λi,Nu
i

}
, λi,N ≥ 0,

N∑
i=1

λi,N = 1,

strongly converging to u.

Using this theorem and the weakly converging Galerkin sequence {um}, we
construct a strongly converging sequence {ũN} of convex combinations

{ũN} =

N∑
i=1

λi,Nu
i(t, x), λi,N ≥ 0,

N∑
i=1

λi,N = 1, (4.6)

‖ũN (t, x)− u(t, x),W 1,2
2 (Π)‖ → 0, N →∞. (4.7)

‖D2
txũ

N (t, x)−D2
txu(t, x), L2(Π)‖ → 0, N →∞. (4.8)

From de�nition (4.6) and the properties of the functions ui, we get

ũN (t, x)
∣∣
t=0

= 0, ũN (t, x)
∣∣
x=0

= 0, ũN (t, x)
∣∣
x=1

= 0,

Dtũ
N (t, x)

∣∣
t=0

= 0, Dxũ
N (t, x)

∣∣
x=0

= 0, Dxũ
N (t, x)

∣∣
x=1

= 0, (4.9)

and also

‖ũN (t, x),W 1,2
2 (Π)‖ ≤

N∑
i=1

λi,N‖ui(t, x),W 1,2
2 (Π)‖ ≤ c‖f(t, x), L2(Π)‖,

‖D2
txũ

N (t, x), L2(Π)‖ ≤ c‖f(t, x), L2(Π)‖.

(4.10)

Taking into account the theorem on embedding for anisotropic Sobolev spaces
(see, for example, [17]), we have that

max
(t,x)∈Π

|ũN (t, x)− u(t, x)| ≤ c‖ũN (t, x)− u(t, x),W 1,2
2 (Π)‖.
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Due to (4.7), (4.9), we obtain

|u(t, x)
∣∣
x=0
| = |ũN (t, x)

∣∣
x=0
−u(t, x)

∣∣
x=0
| ≤ max

(t,x)∈Π
|ũN (t, x)− u(t, x)|

≤ c‖ũN (t, x)− u(t, x),W 1,2
2 (Π)‖ → 0, N →∞,

therefore, u(t, x)
∣∣
x=0

= 0.
By the same reasoning, it can be proved that

u(t, x)
∣∣
t=0

= 0, u(t, x)
∣∣
x=1

= 0.

Taking into account the theorem on traces for the functions from Sobolev spaces
W 1,2

2 (Π) (see, for example, [17]), and also Dxũ
N (t, x)

∣∣
x=0

= 0, we have

‖Dxu(t, x)
∣∣
x=0

, L2(0, T )‖ = ‖Dxu(t, x)
∣∣
x=0
−Dxũ

N (t, x)
∣∣
x=0

, L2(0, T )‖

≤ c‖ũN (t, x)− u(t, x),W 1,2
2 (Π)‖ → 0, N →∞.

Therefore,

Dxu(t, x)
∣∣
x=0

= 0.

Similarly we get that Dxu(t, x)
∣∣
x=1

= 0.
Taking into account relation (4.10), we get

‖u(t, x),W 1,2
2 (Π)‖ ≤ c‖f(t, x), L2(Π)‖+ ‖ũN (t, x)− u(t, x),W 1,2

2 (Π)‖,

‖D2
txu(t, x), L2(Π)‖ ≤ c‖f(t, x), L2(Π)‖+ ‖D2

txu(t, x)−D2
txũ

N (t, x), L2(Π)‖.
From here due to the convergence (4.7), (4.8), for the function u(t, x) ∈ W 1,2

2 (Π)
follows the enequality (2.5) and

‖D2
txu(t, x), L2(Π)‖ ≤ c‖f(t, x), L2(Π)‖.

We will show that the limit function u ∈W 1,2
2 (Π) is a generalized solution of the

�rst boundary value problem (2.1) given ϕ1(x) = 0, ϕ2(x) = 0.

Multiplying the k-th relation in (4.2) by c̃k(t) and taking a sum over k from 1
to l, l ∈ N, given the notations

vl(t, x) =

l∑
k=1

c̃k(t)vk(x), c̃k(t)
∣∣
t=T

= 0, c̃k(t) ∈W 2
2 (0, T ), (4.11)

we obtain
1∫

0

[
(I −D2

x)D2
t u
m(t, x) +D4

xu
m(t, x)− a2D2

xu
m(t, x)

]
vl(t, x) dx

=

1∫
0

f(t, x)vl(t, x) dx, m ≥ l.

We integrate from 0 to t and use the formula for integrating by parts, taking into
account that Dtu

m(t, x)
∣∣
t=0

= 0 and vl(t, x) by construction satis�es (2.3), we will
have

T∫
0

1∫
0

[
Dtu

m(t, x)Dtv
l(t, x) +D2

txu
m(t, x)D2

txv
l(t, x)− a2Dxu

m(t, x)Dxv
l(t, x)
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−D2
xu

m(t, x)D2
xv
l(t, x)

]
dx dt = −

T∫
0

1∫
0

f(t, x)vl(t, x)dx dt, m ≥ l,

or, taking into account (4.6),

T∫
0

1∫
0

[
Dtũ

N (t, x)Dtv
l(t, x) +D2

txũ
N (t, x)D2

txv
l(t, x)− a2Dxũ

N (t, x)Dxv
l(t, x)

−D2
xũ

N (t, x)D2
xv
l(t, x)

]
dx dt = −

T∫
0

1∫
0

f(t, x)vl(t, x)dx dt, N ≥ l.

Due to the fact that ũN strongly converges to u in the norm W 1,2
2 (Π) and D2

txũ
N

strongly converges to D2
txu in the norm L2(Π) as N → ∞, taking into account

H�older's inequality, we obtain

T∫
0

1∫
0

∣∣∣∣(Dtũ
N (t, x)−Dtu(t, x)

)
Dtv

l(t, x) +
(
D2
txũ

N (t, x)−D2
txu(t, x)

)
D2
txv

l(t, x)

−a2
(
Dxũ

N −Dxu
)
Dxv

l −
(
D2
xũ

N −D2
xu
)
D2
xv
l

∣∣∣∣dx dt
≤ c
(
‖ũN (t, x)− u(t, x),W 1,2

2 (Π)‖+ ‖D2
txũ

N (t, x)−D2
txu(t, x), L2(Π)‖

)
→ 0

as N → ∞. Therefore, relation (2.4) holds for the functions v(t, x) = vl(t, x) from
(4.11):

T∫
0

1∫
0

[
Dtu(t, x)Dtv

l(t, x) +D2
txu(t, x)D2

txv
l(t, x)− a2Dxu(t, x)Dxv

l(t, x)

−D2
xu(t, x)D2

xv
l(t, x)

]
dx dt = −

T∫
0

1∫
0

f(t, x)vl(t, x)dx dt. (4.12)

Since C∞(Π) is everywhere dense in W 1,2
2 (Π) (see, for example, [17]), then it

su�ces to justify relation (2.4) for an arbitrary function v(t, x) ∈ C∞(Π), satisfying
(2.3).

Recall that vk(x) is an orthonormal basis in W̊ 2
2 (0, 1), therefore, taking into

account that for almost every t ∈ (0, T ) v(t, x) ∈ W̊ 2
2 (0, 1), Dtv(t, x) ∈ W̊ 2

2 (0, 1),
we obtain the following representations:

v(t, x) =

∞∑
k=1

c̃k(t)vk(x), (4.13)

Dtv(t, x) =

∞∑
k=1

Dtc̃k(t)vk(x), (4.14)

where c̃k(t) are the Fourier coe�cients of the function v, that is,

c̃k(t) = 〈v(t, x), vk(x)〉W̊ 2
2 (0,1),
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〈 , 〉W̊ 2
2 (0,1) is a scalar product in W̊ 2

2 (0, 1). We denote by

vl(t, x) =

l∑
k=1

c̃k(t)vk(x),

Dtvl(t, x) =

l∑
k=1

Dtc̃k(t)vk(x)

the partial sums of the series (4.13) and (4.14) respectively. The following Parseval�
Steklov identity holds:

∞∑
k=1

|c̃k(t)|2 + |Dtc̃k(t)|2 = ‖v, W̊ 2
2 (0, 1)‖2 + ‖Dtv, W̊

2
2 (0, 1)‖2. (4.15)

Due to Steklov's inequality,

‖Dtv(t, x)−Dtvl(t, x), L2(0, 1)‖ ≤ c‖Dtv(t, x)−Dtvl(t, x), W̊ 2
2 (0, 1)‖,

‖D2
txv(t, x)−D2

txvl(t, x), L2(0, 1)‖ ≤ c‖Dtv(t, x)−Dtvl(t, x), W̊ 2
2 (0, 1)‖.

Then

‖v(t, x)− vl(t, x), W̊ 2
2 (0, 1)‖2 + ‖Dtv(t, x)−Dtvl(t, x), L2(0, 1)‖2

+‖D2
txv(t, x)−D2

txvl(t, x), L2(0, 1)‖2 ≤ ‖v(t, x)− vl(t, x), W̊ 2
2 (0, 1)‖2

+C̃‖Dtv(t, x)−Dtvl(t, x), W̊ 2
2 (0, 1)‖2 =

∞∑
k=l+1

(
|c̃k(t)|2 + C̃|Dtc̃k(t)|2

)
.

Due to (4.15), for every t ∈ (0, T ) the series converges. We integrate with respect
to t from 0 to T

T∫
0

[
‖v(t, x)− vl(, t, x), W̊ 2

2 (0, 1)‖2 + ‖Dtv(t, x)−Dtvl(t, x), L2(0, 1)‖2

+‖D2
txv(t, x)−D2

txvl(t, x), L2(0, 1)‖2
]
dt ≤ C̃

T∫
0

∞∑
k=l+1

(
|c̃k(t)|2 + |Dtc̃k(t)|2

)
dt.

Therefore,

‖v(t, x)− vl(t, x),W 1,2
2 (Π)‖ → 0, ‖D2

txv(t, x)−D2
txvl(t, x), L2(Π)‖ → 0 (4.16)

as l→∞. Substituting into (4.11), (4.12) as vl(t, x) a partial sum (4.13), and taking
into account the convergence (4.16), we obtain the required equality (2.4) for every
v(t, x) ∈ C∞(Π), satisfying (2.3).

Theorem 2 is proved.
The proof of existence of a generalized solution of the boundary value problem

(2.1) in the case when f(t, x) = 0, ϕj(x) 6= 0, j = 1, 2, replicates the reasoning used
in Theorem 2.

The authors would like to thank G. V. Demidenko for the statement of the
problem and for the attention to their work.
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