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ITERATIVELY REGULARIZED GAUSS�NEWTON METHOD IN

THE INVERSE PROBLEM OF IONOSPHERIC RADIOSONDING

M.YU. KOKURIN, A.E.NEDOPEKIN

Abstract. The paper is concerned with the problem of reconstructing
the vertical pro�le of the electron concentration of the ionosphere. The
pro�le is reconstructed based on the results of measuring the incident
phase of the probing signal from a moving satellite. The simplest measure-
ment model with a single point of signal reception is adopted. The model
under investigation takes into account the curvature of the probe beam
when passing through the inhomogeneous ionosphere. The problem is
reduced to a nonlinear integral equation. We prove that the resulting
equation has a non�unique solution. To approximate the solution closest
to the selected initial approximation, an iteratively regularized Gauss�
Newton method is used with a projection on the set de�ned by a priori
constraints on the solution. The results of numerical experiments are
presented.

Keywords: nonlinear equation, irregular equation, iterative regulariza-
tion, ionosphere, radiotomography.

1. Description of the model

The object of research in this work is the problem of ionospheric tomography
using satellite radio signals. The ionosphere is the upper part of the atmosphere
at altitudes of 60�2000 km, consisting of ionized gas. The causes of ionization
are solar wind and solar radiation. The composition of the ionosphere varies in
height, which causes the presence of areas of di�erent ionization, called layers.
The problem of ionospheric tomography has a variety of practical applications, for
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example, in assessing the total electronic content and taking into account plasma
inhomogeneities for correcting the operation of short�wave radio navigation systems
[1]. GPS and GLONASS satellite navigation systems are used for this purpose.

Free electrons are the main carriers of charges in the ionosphere, a�ecting the
passage of electromagnetic radiation through the ionosphere. The concentration of
free electrons N is one of the most important parameters of the ionosphere. In
this paper we assume that the characteristics of the ionosphere depend only on the
height z above the Earth's surface. The dependence of the electron concentration on
the height is called the electron concentration pro�le. Figure 1 shows examples of
typical electron concentration pro�les N = N (z) for day (solid line) and night
(broken line). At night, only one maximum is usually observed on the pro�le,
corresponding to the ionospheric layer F2. During the day, along with the increase in
solar activity, the number of maxima also increases, but the maximum corresponding
to the F2 layer remains the largest in magnitude. The paper studies the problem of
reconstructing the pro�le N (z) based on results of measuring the phase incursion
during the passage of the probing signal through the ionosphere. The main attention
is paid to determining the maximum value of the electron concentration and its
position in height.

Figure 1 . Typical electron concentration pro�les

The ionosphere is a randomly inhomogeneous medium and has signi�cant dispersion
properties, so that signals with di�erent frequencies propagate in it at di�erent
speeds. Denote by c0 and c(z) the speeds of light in vacuum and in the medium at an
altitude z, respectively. The ratio n(z) = c(z)/c0 is called the refraction coe�cient
of the inhomogeneous medium. The friction force and electromagnetic force have
a negligible e�ect on high�frequency signals. In this paper, for a frequency signal
ν = 15.42 MHz, we will consider the refraction coe�cient as a value that depends
only on the electrostatic force. This allows to write the representation [2], [3]

(1.1) n(z) =
√

1− εN (z), ε =
80.8

ν2
.
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Assume for simplicity that the moving satellite and the receiving point are in
the same plane (x, z). The receiver is located at the point (0, 0), the satellite has
coordinates (χ, h), where χ ∈ [χ1, χ2] is the horizontal coordinate of the satellite,
h is its height above the Earth's surface. The probing signal from the satellite
propagates from the point (χ, h) along the geodesic curve γ(χ) in the Riemannian
metric dσ2 = (dx2 + dz2)/n2(z) connecting the points (χ, h) and (0, 0). It is
convenient to parametrize geodesics by the angle of inclination at the point (0, 0)
with respect to the positive direction of the axis x. Everywhere below we assume
that c(0) = c0. The geodesic coming out from (0, 0) with the unit tangent vector
(cosα, sinα) is determined by the following system of di�erential equations with
respect to (x(t), y(t), z(t); px(t), py(t), pz(t)) [4]:

ẋ = c2(z)px, ẏ = c2(z)py, ż = c2(z)pz,

ṗx = −c−1(z)
∂c(z)

∂x
≡ 0, ṗy = −c−1(z)

∂c(z)

∂y
≡ 0,

ṗz = −c−1(z)
∂c(z)

∂z
= −c−1(z)c′(z).

Here t is the physical time of the signal movement, while along the geodesic γ(χ)
we have x = x(t), y(t) ≡ 0, z = z(t). The system is solved together with the initial
conditions

x(0) = 0, y(0) = 0, z(0) = 0;

px(0) = c−10 cosα, py(0) = 0, pz(0) = c−10 sinα.

By virtue of these equalities, px(t) ≡ c−10 cosα, py(t) ≡ 0. Therefore the original
system is simpli�ed as follows:

ẋ = c2(z)c−10 cosα, ż = c2(z)pz, ṗz = −c−1(z)c′(z);

x(0) = 0, z(0) = 0, pz(0) = c−10 sinα.
(1.2)

For all t ≥ 0, the eikonal equation p2x + p2y + p2z = c−2(z) holds. Thus,

(c−10 cosα)2 + (pz)
2 = c−2(z).

It follows that

pz =

√
1

c2(z)
− cos2 α

c20
.

The plus sign is taken before the root, since the function z(t) increases along the
ray, see equation ż = c2(z)pz in (1.2). From (1.2) we obtain the following system
for (x(t), z(t)):

(1.3) ẋ = c2(z)c−10 cosα, ż = c2(z)

√
1

c2(z)
− cos2 α

c20
.

The initial conditions for (1.3) has the form

(1.4) x(0) = 0, z(0) = 0.

From (1.3) with the use of equality c(z) = c0n(z) we get

(1.5)
dx

dz
=

1√
1

n2(z) cos2 α − 1
.
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Since according to (1.4), x = 0 for z = 0, this implies an explicit representation for
the geodesic γ(χ):

x = x(z) =

z∫
0

dz√
1

n2(z) cos2 α − 1
, z ∈ [0, h].

Letting z = h, for the horizontal coordinate of the satellite we get the representation

(1.6) χ = x(h) =

h∫
0

dz√
1

n2(z) cos2 α − 1
.

As is known from [5], for a radio signal with a wavelength of Λ, the phase
incursion is determined by the expression

(1.7) Φ(χ) = κ

∫
γ(χ)

Ndσ, χ ∈ [χ1, χ2],

where κ = Λre, re is the standard electron radius. By (1.1) and (1.5), with the use
of equality

dσ =

√
dx2 + dz2

n(z)
=

1

n(z)

√
1 +

(dx
dz

)2
dz

we get

(1.8) N (z) =
1− n2(z)

ε
, dσ =

dz

n2(z)
√

1
n2(z) − cos2 α

.

From (1.7) and (1.8) we obtain

(1.9) Φ(χ) =
κ

ε

h∫
0

( 1

n2(z)
− 1
) dz√

1
n2(z) − cos2 α

.

Denote

(1.10) µ(z) =
1

n2(z)
− 1,

then in view of (1.8),

(1.11) N (z) =
µ(z)

ε(1 + µ(z))
.

According to (1.7), the measurement results give the function Ψ(χ) = ε
κΦ(χ) for

χ ∈ [χ1, χ2]. From (1.9) and (1.10) we get

(1.12) Ψ(χ) =

h∫
0

µ(z)dz√
µ(z) + sin2 α

.

Suppose that the angle α changes on the segment [a1, a2] when χ ∈ [χ1, χ2].
Combining (1.6) and (1.12), we arrive at the following nonlinear integral equation
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for the function µ = µ(z):

h∫
0

µ(z)dz√
µ(z) + sin2 α

= Ψ
(

cosα

h∫
0

dz√
µ(z) + sin2 α

)
, α ∈ [a1, a2].

Let H0 and H be, respectively, lower and upper bounds of heights such that below
H0 and above H the electron concentration N di�ers little from zero, so that the
values µ(z) at these z give an insigni�cant contribution to the integral. Then the
previous equality takes the form

(1.13)

H∫
H0

µ(z)dz√
µ(z) + sin2 α

= Ψ
(
H0ctgα+ cosα

H∫
H0

dz√
µ(z) + sin2 α

)
, α ∈ [a1, a2].

Equation (1.13) is the main object of theoretical and numerical analysis in this
work.

2. Study of the mathematical model

Turning to the study of equation (1.13), we describe a class of functions µ, a
priori containing the desired solutions. Following the discussion in �1, we assume
that for some 0 < Hj < Hj+1, 0 ≤ j ≤ 4 with H5 = H, the function µ ∈ Cl[H0, H],
l ≥ 2, µ is convex on [H0, H1], increases on [H1, H2], concave on [H2, H3], decreases
on [H3, H4] and convex on [H4, H5]. Denote this class of functions by M.

We now prove that the solution µ ∈M of equation (1.13) is not unique for any
l ≥ 2. Let there be a solution y = µ(z) whose graph on some segment [a0, a] ⊂
(H2, H3), µ(a0) = µ(a), has a maximum at z = z∗ ∈ (a0, a). Assume that

µ = max
z∈[a0,a]

µ′′(z) < 0.

Below we will show how to obtain from this solution another smooth solution of
equation (1.13) with a concave graph on [a0, a] and a di�erent position of the
extremum. The value of the extremumM = µ(z∗) will remain unchanged. Without
changing the function µ outside of [a0, a], in this segment we will subject it to the
variation described below. Denote M0 = µ(a0) = µ(a). We choose an arbitrarily
smooth monotonically increasing function g : [M0,M ]→ [0, τ ] such that

(2.1) g(M0) = g′(M0) = · · · = g(l)(M0) = 0, g(M) = τ, τ ∈ (0, a− z∗),

and denote

λ1 = max
z∈[a0,a]

|µ′(z)|, λ2 = max
z∈[a0,a]

|µ′′(z)|,

η1 = max
y∈[M0,M ]

g′(y), η2 = max
y∈[M0,M ]

|g′′(y)|.
(2.2)

Pick a function g subject to conditions

(2.3) η1λ1 < 1, µ+
λ1(η1λ2 + η2λ

2
1)

1− η1λ1
< 0.

It follows from (2.2) that the conditions (2.3) can be ful�lled by the choice of g
having su�ciently small �rst and second derivatives on [M0,M ]. Below we need
the auxiliary function

ϕ(z) = z + g(µ(z)).
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By virtue of the �rst condition in (2.3),

(2.4) ϕ′(z) = 1 + g′(µ(z))µ′(z) ≥ 1− η1λ1 > 0, z ∈ [a0, a].

Therefore ϕ(z) increases monotonically on [a0, a] and maps this segment into itself.
Therefore, for any w ∈ [a0, a] there is a unique solution z = z[w] of the equation
ϕ(z) = w. Consider the function µ̃, which outside [a0, a] coincides with µ, and on
[a0, a] is de�ned by the equality

(2.5) µ̃(w) = µ(z[w]), w ∈ [a0, a].

Symbolically, we write (2.5) as µ̃ = Fg(µ). Equality (2.5) means that the graph of
y = µ̃(z) is constructed as follows. Pick y0 ∈ [M0,M) and consider the intersection
points (z1, y0), (z2, y0) of the line y = y0 with the graph y = µ(z). Then, on the
speci�ed line, points are marked that are spaced to the right of these points by
the distance g(y0). The two points obtained are the intersection points of y = y0
with the graph y = µ̃(z). Due to condition (2.1), the smoothness of the joining of
y = µ̃(z) on [a0, a] to y = µ(z) outside [a0, a] is preserved.

It is easy to see that the operator Fg is also well de�ned for any convex or concave
function θ ∈ C2[a0, a] satisfying the conditions

(2.6) θ(a0) = θ(a), η1 max
z∈[a0,a]

|θ′(z)| < 1

and having an extremum in (a0, a).
According to (2.5), µ̃(ϕ(z)) = µ(z) for z ∈ [a0, a]. Di�erentiating this equality

twice, we get

(2.7) µ̃′′(ϕ(z))(ϕ′(z))2 + µ̃′(ϕ(z))ϕ′′(z) = µ′′(z).

Here,

ϕ′′(z) = g′′(µ(z))(µ′(z))2 + g′(µ(z))µ′′(z), µ̃′(ϕ(z)) =
µ′(z)

ϕ′(z)
.

Therefore, taking into account (2.2) and (2.4),

(2.8) |µ̃′(ϕ(z))| ≤ λ1
1− η1λ1

, |ϕ′′(z)| ≤ η1λ2 + η2λ
2
1.

From (2.7), (2.8) and the second condition in (2.3) it follows that

µ̃′′(ϕ(z))(ϕ′(z))2 < 0, z ∈ [a0, a].

Thus µ̃′′(ϕ(z)) < 0 for all z ∈ [a0, a]. Since the function ϕ uniquely maps the
segment [a0, a] to itself, for all w ∈ [a0, a] we have µ̃′′(w) < 0. Thus, the constructed
function µ̃ is concave on [a0, a], along with µ.

For functions

θ1(z) =
1√

µ(z) + sin2 α
, θ2(z) =

µ(z)√
µ(z) + sin2 α

,

using (2.2) it is not di�cult to get estimates

max
z∈[a0,a]

|θ′1(z)| ≤ λ1

2M
3/2
0

, max
z∈[a0,a]

|θ′2(z)| ≤ λ1√
M0

.
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In addition, by virtue of the equality µ(a0) = µ(a) we have θ1(a0) = θ1(a), θ2(a0) =
θ2(a). Further, the function θ1 is convex, and θ2 is concave on [a0, a]. It follows from
(2.6) that if the additional condition is ful�lled

(2.9) η1λ1 max
{ 1

2M
3/2
0

,
1√
M0

}
< 1,

then the operator Fg is well de�ned for functions θ1, θ2, and

Fg(θ1)(z) =
1√

µ̃(z) + sin2 α
, Fg(θ2)(z) =

µ̃(z)√
µ̃(z) + sin2 α

.

For any function h = h(z), positive and continuous on [a0, a], we have the identity
[6, Theorem 3.6.3]

a∫
a0

h(z)dz =

∞∫
0

meas{z ∈ [a0, a] : h(z) > t}dt.

Here, measQ is the Lebesgue measure of the set Q ⊂ R. By construction,

meas{z ∈ [a0, a] : Fg(θj)(z) > t} = meas{z ∈ [a0, a] : θj(z) > t}.

Consequently,
a∫

a0

Fg(θj)(z)dz =

a∫
a0

θj(z)dz, j = 1, 2.

Thus, if g satis�es (2.1), (2.3), (2.4), then the function µ̃ = Fg(µ) is the solution of
equation (1.13) in the class M. We see that equation (1.13) has a continuous family
of smooth solutions.

3. Finite dimensional approximation and iteratively regularized

Gauss�Newton method

In order to discretize equation (1.13), we introduce uniform grids {zi}Ni=0 ⊂
[H0, H] and {αj}Jj=0 ⊂ [a1, a2] with steps hz = (H −H0)/N and hα = (a2 − a1)/J
respectively, where J ≥ N . Using the rectangular scheme for approximating the
integrals in (1.13), we obtain the following system of nonlinear equations

(3.1) hz

N∑
i=0

µi√
µi + sin2 αj

−Ψ
(
H0 cotαj+hz

N∑
i=0

cosαj√
µi + sin2 αj

)
= 0, 0 ≤ j ≤ J.

In (3.1), µi are the required approximations to µ(zi), 0 ≤ i ≤ N . The above�
mentioned property of non�uniqueness of the solution to equation (1.13) is naturally
transferred to its discrete approximation (3.1). It is not di�cult to see that along
with any of its solutions (µ0, . . . , µn), any of the (N + 1)!− 1 permutations of the
values of (µ0, . . . , µn) is also a solution of (3.1).

To narrow down the set of solutions taken for consideration, it is necessary to
clarify a priori information about solutions of physical interest. Assume that we
know the lower bound b0 > 0 for minz∈[H0,H1] µ

′′(z), the lower bound b1 > 0 for
minz∈[H1,H2] µ

′(z), the upper bound b2 < 0 for maxz∈[H2,H3] µ
′′(z), the upper bound

b3 < 0 for maxz∈[H3,H4] µ
′(z), and the lower bound b4 > 0 for minz∈[H4,H5] µ

′′(z).
Also suppose that functions p(z) < q(z), z ∈ (H0, H) are given such that p(z) ≤
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µ(z) ≤ q(z), z ∈ [H0, H]. In this case, the set of a priori constraints D in problem
(3.1) can be described as follows:

D = {(µ0, . . . , µN ) : p(zi) ≤ µi ≤ q(zi), 0 ≤ i ≤ N ;

µi−1 − 2µi + µi+1 ≥ b0h2z, 1 ≤ i ≤ K1; µi+1 − µi ≥ b1hz, K1 ≤ i ≤ K2;

µi−1 − 2µi + µi+1 ≤ b2h2z, K2 ≤ i ≤ K3;

µi+1 − µi ≤ b3hz, K3 ≤ i ≤ K4, µi−1 − 2µi + µi+1 ≥ b4h2z, K4 ≤ i ≤ K5 − 1}.

(3.2)

Here, Hj = H0 + Kjhz, Kj ∈ N, 1 ≤ j ≤ 4. Conditions (3.2) de�ne a convex
polyhedron in RN+1.

It is convenient to formalize the system (3.1) with a priori constraints (3.2) in
the form of an operator equation

(3.3) F (u) = f, u ∈ D.

Here, F : H1 → H2 is a Frechet di�erentiable operator, H1, H2 are Hilbert spaces,
and D ⊂ H1 is a convex closed set that a priori contains the solution of interest. In

general, the element f in (3.3) is given with errors, so that an approximation f̃ and

the error level δ > 0 are available instead, where ‖f̃ − f‖H2 ≤ δ. Additionally, we
assume that the derivative F ′ satis�es the Lipschitz condition in a neighborhood of
the desired solution u∗ ∈ D, i.e.,

‖F ′(u)− F ′(v)‖L(H1,H2) ≤ L‖u− v‖H1
, u, v ∈ ΩR(u∗),

where ΩR(u∗) = {u ∈ H1 : ‖u− u∗‖H1 ≤ R}. By ‖ · ‖z we denote the norm of the
Hilbert or Banach space Z, L(H1,H2) is the space of linear continuous operators
acting from H1 to H2. Under our conditions, equation (3.3) is irregular in the
sense that the continuous invertibility of the derivative F ′(u) or the symmetrized
derivative F ′∗(u)F ′(u) for points u from the neighborhood of the solution is not
guaranteed. This circumstance prevents the use of the standard iterative Newton�
Kantorovich and Gauss�Newton processes [7],[8], since these processes assume a
stable inversion of the mentioned operators at each iteration. Gradient type methods
[7],[9] as applied to (3.3), are formally realizable, but the convergence of approxima-
tions they produce can be established only if restrictive nonlinearity conditions on
F are ful�lled. In this paper, we turn to a group of iteratively regularized methods
of the Gauss�Newton type [10, Ch.4] whose convergence can be justi�ed without
involving the regularity or nonlinearity conditions. To solve the system (3.1) with
constraints (3.2), we use the iteratively regularized Gauss�Newton method, which,
when applied to the problem (3.3), has the form [10, �4.2]

un+1 = PD(un+1),

un+1 = ξ − (F ′∗(un)F ′(un) + αnE1)−1F ′∗(un)·

· [F (un)− f̃ − F ′(un)(un − ξ)].

(3.4)

By PD we denote the operator of metric projection from H1 onto D,

PD(u) ∈ D, ‖PD(u)− u‖H1
= min

v∈D
‖v − u‖H1

; u ∈ H1,
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E1 is the identity operator in H1, ξ ∈ H1 is the parameter, the sequence of
regularization parameters {αn} is satis�es

0 < αn+1 ≤ αn, lim
n→∞

αn = 0, sup
n=0,1,...

αn
αn+1

<∞.

The process (3.4) does not assume unique solvability of equation (3.3) and is
intended to approximate the solution u∗ satisfying, together with the control parame-
ter ξ, the source condition

(3.5) u∗ − ξ = F ′∗(u∗)v, v ∈ H2.

Denote by R(A) the image of a linear bounded operator A. If R(F ′(u∗)) = H2,
then (3.5) is the necessary condition for u∗ to be a solution of equation F (u) = f
closest to ξ, i.e., the solution of the problem

min{‖u− ξ‖2H1
: F (u) = f, u ∈ H1},

see, e.g., [11, �1.1].
The necessary approximation properties of the method (3.4) are provided by

using suitable rules for stopping iterations. Of the greatest practical interest are
a posteriori stopping schemes, according to which iterations continue for n =

0, 1, . . . , N(δ, f̃)−1, while the stopping moment N = N(δ, f̃) is determined directly
during iterative process. We �x the positive parameterm and assume that the initial
guess u0 in (3.4) satis�es

‖F (u0)− f̃‖2H2
> mδ.

As in [12, Ch.2,�4], we de�ne the stopping moment by the rule

‖F (uN(δ,f̃))− f̃‖2H2
≤ mδ < ‖F (un)− f̃‖2H2

,

n = 0, 1, . . . , N(δ, f̃)− 1.
(3.6)

Under a number of additional conditions on the elements of (3.3) and parameters
of the process (3.4), it is established that the condition (3.6) determines the �nite

number N(δ, f̃). At the same time, for the resulting approximation uN(δ,f̃) there is
an accuracy estimate [12, Ch.2,�4,Theorem 3]

‖uN(δ,f̃) − u∗‖H1
≤ l√αN(δ,f̃).

Here, u∗ is the solution of (3.3) that satis�es condition (3.5).
We can write down the system (3.1) in the form (3.3), putting u = µ̂ = (µ0, . . . , µn),

f = 0, F (µ̂) = (Fj(µ̂))Jj=0, where Fj(µ̂) is the left hand side of equation (3.1). We
get

F ′(µ̂) =
(∂Fj(µ̂)

∂µk

)J,N
j,k=0

,
∂Fj(µ̂)

∂µk
=

= hz(µk+sin2 αj)
−3/2

[
(µk/2+sin2 αj)+

1

2
Ψ′
(
H0 cotαj+hz

N∑
i=0

cosαj√
µi + sin2 αj

)
cosαj

]
,

0 ≤ j ≤ J, 0 ≤ k ≤ N.
In numerical experiments we put

f̃ = (f̃j)
J
j=0, f̃j = (2ζj − 1)∆,
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where ζj are independent random variables uniformly distributed on [0, 1], ∆ is the
level of noise in data. Thus,

(3.7) δ =
( 1

J

J∑
j=0

(f̃j − fj)2
)1/2

= ∆
( 1

J

J∑
j=0

(2ζj − 1)2
)1/2

.

Numerical simulation of measuring the signal received at (0, 0) from a satellite
moving at the altitude h consists in that we �x the electron concentration density
to be reconstructed N (z) = N ∗(z). Then using N ∗(z), by (1.11) we determine
µ∗(z) = εN ∗(z)/(1−εN ∗(z)), the desired solution of equations (1.13). To stimulate
the observation function Ψ = Ψ(χ), on a suitable grid

χj = H0 cotαj + hz

N∑
i=0

cosαj√
µ∗(zi) + sin2 αj

, j = j0, . . . , js

by (3.1) we �nd corresponding values

ηj = hz

N∑
i=0

µ∗(zi)√
µ∗(zi) + sin2 αj

,

where

(3.8) Ψ(χj) = ηj , j = j0, . . . , js.

In the calculations, we let Ψ(χ) = Ps(χ), where Ps is the interpolation polynomial
of degree s de�ned by conditions (3.8). We now turn to results of the numerical
experiment.

4. Numerical experiment

The discretized problem (3.1), (3.2) was solved with J = N = 50. When
implementing iterations (3.4), we put µ̂0(zi) = ξ(zi) = p(zi), 0 ≤ i ≤ N , iterations
were stopped according to criterion (3.6) with m = 160. The sequence of regulariza-
tion parameters {αn} was αn = 0.9nα0 with α0 = 100. The noise level δ, determined
according to (3.7), was δ ≈ 1.

To generate the model observation function Ψ(χ), we used the real pro�le of the
electron concentration N (z), obtained from the International Reference Model of
the Ionosphere IRI�2016, which is available at
https://ccmc.gsfc.nasa.gov /modelweb /models/iri2016_vitmo.php.

In (3.8) we put s = 14, the array of interpolation points {χjk}14k=0 was chosen as
{5, 23, 40, 58, 76, 93, 111, 129, 146,
164, 181, 198, 215, 232, 248} (kms). The resulting observation function Ψ is shown
on Figure 2.

When constructing the set of constraints (3.2), the functions p and q a priori
limiting the desired pro�le, were determined by p(z) = 2 · 10−5(z − H0)(H −
z) + 0.25µ∗(z1) and q(z) = 10−4(z − H0)(H − z) + 0.25µ∗(z1) respectively. We
put H = 700, {Hj}4j=0 = {50, 200, 250, 400, 510}, where the values are given in
kms. The constants bj de�ning a priori constraints of the derivatives and second
derivatives of the desired solution were chosen as bj = εb∗j , where b

∗
j is the value of

the minimum or maximum of the related derivative for the exact function µ∗ on the
corresponding interval, 0 ≤ j ≤ 4. The parameter ε ∈ (0, 1) characterizes the degree
of availability of the speci�ed information when processing the observation results.
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Figure 2 . Model observation function Ψ

In the calculations, we used the values ε = 0.32, ε = 0.45, ε = 0.5. The number
of iterations determined by criterion (3.6) in all cases turned out to be equal to 3.
The results for di�erent ε are given on Figure 3.

Figure 3 . Reconstructed electron concentration pro�les (smooth
line) against the true ones (polyline): a) ε=0.32, b) ε=0.45, c) ε=0.5

When modeling the processes of propagation of radio waves in the ionosphere, the
localization and the value of the maximum electron concentration are of considerable
interest. In the example, the error in determining the localization of the maximum
point of the function N is about 9% and weakly depends on the parameter ε. On
the other hand, the accuracy of the approximation of the maximum value increases
with the increase of ε and reaches about 2% at ε = 0.5, see Figure 3b).
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