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ON FACETS OF THE NEWTON POLYTOPE FOR THE
DISCRIMINANT OF THE POLYNOMIAL SYSTEM

LLA. ANTIPOVA, E.A. KLESHKOVA

ABsTRACT. We study normal directions to facets of the Newton polytope
of the discriminant of the Laurent polynomial system via the tropical
approach. We use the combinatorial construction proposed by Dickenstein,
Feichtner and Sturmfels for the tropicalization of algebraic varieties admit-
ting a parametrization by a linear map followed by a monomial map.
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1. INTRODUCTION

Consider a system of n polynomial equations of the form

(1) P= Y alyr=0i=1...n

A€A®)
with unknowns y = (y1,...,yn) € (C\ 0)", variable complex coefficients a = (af\i)),
where the sets A® C Z" are fixed, finite and contain the zero element 0, A =
Aty An), ¥ = 42 ... -y, Solution y(a) = (y1(a),...,yn(a)) of (1) has a

polyhomogeneity property, and thus the system usually can be reduced by means
of monomial transformations z = x(a) of coefficients (see [1]). To do this, it is
necessary to distinguish a collection of n exponents w® € A® such that the matrix
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w = (w®,...,w™) is non-degenerated. As a result, we obtain a reduced system
of the form
(2) Q="+ 3 PP —1=0i=1,..,n,

AEA®

where A® := A\ {w® 0} and = = (2{”) are variable complex coefficients. Denote
by A the disjoint union of the sets A®) and by N the cardinality of this union, that is
the number of variable coefficients in the system (2). The coefficients of the system
vary in the vector space CY in which points » = (z,) are indexed by elements
AeA.

Denote by V° the set of all coefficients z = (:EE\”) such that the polynomial

mapping @ = (Q1,...,Qn) has multiple zeros in the complex algebraic torus
(C\ 0)", that is zeros for which the determinant of the Jacobi matrix % of the

mapping @ equals zero. The discriminant set V of the system (2) is defined to be
the closure of the set V° in the space of coefficients. If V is a hypersurface, then its
defining polynomial A(x) is said to be the discriminant of the system (2). The set V
is also called the reduced discriminant set of the system (1). Following the concept
of the A—discriminant developed in the book [8], the discriminant of a system of
equations is appropriate to call the (A, ..., A()-discriminant.

The goal of our research is to construct the tropicalization of the discriminant
set V of the system (2) and to find normal vectors to facets of the Newton polytope
of the discriminant A(x). Recall that the Newton polytope Na of the polynomial
A(x) is defined to be the convex hull of its support in R™.

The idea of computing the tropical discriminant is adopted from the paper [5],
where the general combinatorial construction of the tropicalization is given for
algebraic varieties that admit a parametrization in the form of the product of linear
forms. We use the parametrization of the discriminant set for the system of n
Laurent polynomials (2) proposed and comprehensively studied in [1].

We write the set A in the form of the block matrix A = (AM|...|A(™)) whose
columns are vectors of exponents of monomials of the system. Introduce (n x N)-
matrices

U=w*A, U= — |w|y,
where w™* is the adjoint matrix to the matrix w, x is the matrix whose i-th row
represents the characteristic function of the subset A C A and |w| is the determinant
of the matrix w. In what follows, we denote the rows of the matrices ¥ and ¥ by

P1,..., %y and 1;1, . ,@n correspondingly, and we denote the rows of the identity
matrix Ey by eq,...,en. One of the main results of this paper is

Theorem 1. The vectors

(3) 61,.--,€N7_’lp1,---,_an,l&l,...,?&nEZN

define the normal directions of facets of the Newton polytope of the discriminant
for the system (2).

The discriminant we study is the generalization of the notion of A—discriminant
[8]- In [9], Kapranov proved that A-discriminants characterize hypersurfaces with
birational logarithmic Gauss mappings, and also that any reduced discriminant
hypersurface admit the parametrization by monomials depending on linear forms,
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which is called the Horn-Kapranov uniformization. The tropical analogue of the
Horn-Kapranov uniformization was obtained in [5].

In the present research, we use the parametrization of the discriminant set that
occurs to be the inverse of the logarithmic Gauss mapping in the case when the
set V is an irreducible hypersurface that depends on all groups of the variable
coefficients of the system (see [1]). However, the logarithmic Gauss mapping for
the hypersurface V is not always birational, thus, in general, (A(l)w..,A(”))f
discriminants are not reducible to A-discriminants, and consequently, require careful
research.

It is important to note that Theorem 1 does not bring all normals of the Newton
polytope to light, but only those that are represented in the parametrization of the
set V explicitly, as vectors of coefficients in linear forms. Section 2 of the paper
discusses the properties of parametrization. Section 3 presents the construction of
the tropical variety and the proof of Theorem 1. Finally, in Section 4, we explain
how the constructed tropical variety brings out the so-called «hidden» facets of the
Newton polytope for the discriminant of the system.

2. PARAMETRIZATION OF THE DISCRIMINANT SET V

We introduce two copies of the space C: the space CY of variables x = (z)),
and the space CY of variables s = (s)). In both cases, coordinates of points
are indexed by elements A € A. The space CY is considered as the space of
homogeneous coordinates for (C]P’iv ~1 It is proved in [1] that the parametrization of
the discriminant set V of the system (2) is determined by the multivalued algebraic
mapping from the projective space (CIPiV ~Linto the space CY of the coefficients of
the system with components

. n ~ PrX )
(1) o) == 2T (E0) " xea®, i=tn,
P, s

where ¢, and (@, are rows of matrices ® := w™'A and d:=d—y correspondingly,
@ is a coordinate of the row ¢y indexed by A € A® C A, the angle brackets
denote the inner product. The number of branches in (4) equals to the absolute
value of the determinant |w| but some branches may coincide. If the discriminant
set V of the system (2) is an irreducible hypersurface that depends on all groups of
variables, then the mapping (4) parametrizes it with the multiplicity that is equal
to the index |Z™ : H| of the sublattice H C Z™ generated by columns of the matrix
(w|A), i.e., by all exponents of the monomials from the system (2). The image of
the mapping (4) is a hypersurface if all coordinates of vectors yg, @y are non-zero,
k=1,...,n.

We consider the rational mapping CPY ™' — CN that is obtained from the
mapping (4) as a result of raising of all its coordinates to the power |w|. It has
components

I\ @l pn ~ Prx
5) e |({|5(A) 11 (Yk; 5)
<’L/J“S> o <'l/}kas>
where 9y, is a coordinate of the row 1, indexed by A € A® c A. The mapping (5)
defines the hypersurface V C C whose amoeba has the same asymptotic directions
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as the amoeba of the discriminant hypersurface V. Recall that the amoeba Ay of
the algebraic hypersurface

V={ze @\ :Ax) =0}
is determined to be the image of V under the mapping

Log: (x1,...,zn) = (logl|z1],...,log|zyN]).

Each component of the mapping (5) is a monomial with integer exponents composed
with linear functions. It is convenient to associate the mapping (5) with two block
matrices

(6) U= (—|w|EN w7 | @T)T, V= (\w|EN Bz \i/T),

where Epy is the identity matrix. The rows of the matrix U determine linear
functions, and the rows of V' determine exponents of monomials in the parametriza-
tion (5).

3. TROPICALIZATION OF THE RATIONAL VARIETY

Further, we pay attention to the algebraic variety V. C CN. Let us study
its tropicalization T(@) At the very beginning of the section, we recall some
notions and facts from the tropical geometry. Basic concepts of this theory and
numerous references to fundamental research can be found in the book [10]. Since
the variety V admits the parametrization in the form of the product of linear forms,
we implement the general combinatorial construction proposed in [5] in order to
compute the tropical variety 7(V).

A tropical variety has the structure of the polyhedral fan. In particular, the
tropicalization of a linear subspace X C CF is the Bergman fan of the matroid
M (X)) associated with this subspace (see [2], [7]). The construction of the Bergman
fan of a variety X is related to the notion of the logarithmic limit-set of the variety X
introduced in [3]. The Bergman fan of an irreducible subvariety X C C* is the finite
union of convex polyhedral cones with the vertex at the origin of the dimension that
coincides with the dimension of the variety [4].

Let us consider in more detail the definition of the matroid, which covers the
general combinatorial essence of the concepts of independence in linear algebra,
graph theory, etc. There exist several different equivalent systems of axioms that
define the matroid (see, for instance, [2], [10], [13] ). Let us determine it as follows.

Definition 1. The matroid M is defined to be a pair (£,Z) that consists of a finite
set £ and a collection T of subsets of € such that

(I-1) D eZ.

(I-2) If JeZ and I C J, then I € T.

(I-3) If I,J € Z and |I| < |J|, then there exists j € J — I such that I Uj € T.

Elements of T are called independent sets.

It is supposed that all one-element subsets of £ are independent. Maximal
independent sets are said to be bases of a matroid. From the axiom (I-3), it follows
that all bases of a matroid M have the same cardinality r = (M) that is called the
rank of the matroid. If A is a subset of the set £, then the cardinality of maximal
independent set in A is called the rank of A, and it is denoted by r(A). The minimal
by inclusion dependent set C' C £ is said to be the cycle of the matroid M. A subset
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F C €& is said to be the flatif r(FUe) > r(F) for all e ¢ F. We say F is proper
if its rank equals neither 0 nor r. Every flat F' of the matroid M is represented by
the incidence vector

ep = Z €;.

ieF
The vector ey is considered to be an element of the tropical projective space R|5|/R1,
where 1 = (1,1,...,1). The partially ordered set of all flats forms the lattice of flats
of the matroid.
The Bergman fan is one of geometric models of matroids. We use the first
statement of Theorem 2 as the definition of the Bergman fan of the matroid M.

Theorem 2 (Ardila—Klivans|2]).

(1) The Bergman fan By of a matroid M on & is the polyhedral complez in
RI€I/R1 that consists of the cones

or = cone{ep : F € F}

for each flag F = {Fy C ... C F;} of proper flats of M. Here, ep =
e, +...teg, for F = {fl,...,fk}.

(2) The tropicalization of a linear subspace X is the Bergman fan B (x) of
the matroid M(X) related to the subspace X .

Proof of Theorem 1. We first find the tropicalization T(@) of the hypersurface V.
Note that in the case of an irreducible hypersurface the tropicalization is the union
of all cones of codimension one of the normal fan for the Newton polytope of the
polynomial defining the hypersurface. Moreover, the collection of one-dimensional
generators of the normal fan for the Newton polytope of the polynomial defining V
coincides with the same collection for the polynomial defining the discriminant
hypersurface V.

Let X be a linear subspace in CN*27 and let it be the image of the linear
mapping s — Us given by the matrix U, where s € (CIP’éV ~1. We consider the
matroid M (X) on the set of rows of the matrix U (on the set £ = {1,2,..., N + 2n}).
By Theorem 2, the Bergman fan B ;(x) of the matroid M (X) is the tropicalization
of the subspace X. The following lemma holds.

Lemma 1. The tropical variety 7(V) is the image of the Bergman fan B/ x)
under the mapping RVNT2" — RN given by the matriz V.

Proof of Lemma 1. Coordinates of the parametrization of the variety V given by (5)
are monomials composed with linear forms. The linear forms are defined by the rows
of the matrix U that is associated with the matroid M (X) of the rank N on the
set €. Exponents of the monomials in parametrization are rows of the matrix V.
According to [5, Theorem 3.1], the tropicalization of the variety V can be defined
in terms of the matrices U and V. More precisely, the tropicalization is the image
of the Bergman fan 5 ,,(x) under the linear mapping V. O

It follows from Lemma 1 that one-dimensional cones (rays) of the tropical variety
7(V) are generated by the columns of the matrix V. They do determine the normal
directions for the facets of the Newton polytope for the discriminant of the system.

Thus Theorem 1 is proved. (I
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It is important to note that the acquired information about the structure of the
normal fan of the Newton polytope for the discriminant, as well as the parametriza-
tion (4), can be used for the study of truncations of the discriminant A(z) of the
system (2). The ¢runcation of the polynomial A(z) with respect to a face h of the
Newton polytope N is defined to be the sum of all monomials of A(z) whose
exponents lie in the face h. The geometric proofs of factorization identities for
truncations of the classical discriminant with respect to faces of its Newton polytope
are given in two recent papers [11], [12]. The proof is based on the blow-up property
of the logarithmic Gauss map for the zero set of the discriminant. These identities
were proved earlier in the book [8, Chapter 10] using the complicated machinery of
the theory of A—determinants.

4. «<HIDDEN» NORMAL DIRECTIONS

Consider a system of two equations with two unknowns y1, 2 and three variable
coefficients 1, zs, x3:

(7)

y12 + T1y1Y2 + Toy1y2® — 1 =0,
y2? + 23y1%y2 — 1 = 0.

The matrix of exponents of the system (7) has the form

2 01 1 2
(“"A):(o 2|1 2 1)'

The index of the sublattice in Z? generated by its columns equals one. It is the
greatest common divisor of all second order minors of the matrix. Moreover, matrices

oo (V2R ) (L)

do not contain zero elements, so the discriminant set V of the system (7) is
the hypersurface, which can be parametrized with the multiplicity one by the
mapping CP? — C3 of the form

251 (—51—52+283)%(51+282—53)%
Tl = — )
—s1 — 82+ 2s3 \ s1+ 82+ 2s3 81+ 282 + 83
289 —81 — 82 + 283 % 81 + 289 — s3
(8) T2 = — )
—s1 — 82 + 253 \ s1 + s2 + 2s3 s1 4+ 282 + s3

1
2s3 (—51—824—253)(81-‘,-282—83)5
T3 = — .
s1+2s2 —s3 \ S1+ 52+ 2s3 s1+2s2 + 53
Here s = (s1, $2,53) € C® are homogeneous coordinates in CP?2.

Let us study the tropicalization T(@) of the rational variety V C C3, given as
follows

9)
w) = (—481)4(281 + 259 + 483)_2(281 + 4s9 + 283)_2(—251 — 289 + 483)_2(281 + 489 — 283)27

wo = (7482)4(281 + 252 + 483)_2(281 + 489 + 283)_4(7281 — 289 + 483)_2(281 + 489 — 283)4,
w3 = (—453)4(251 + 259 + 453)74(251 + 459 + 283)72(—281 — 289 + 483)4(281 + 459 — 283)72.
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As we noted above, the mapping (9) is associated with matrices

-4 0 0
0 -4 0
0 0 —4 400 -2 -2 -2 2
U=|2 2 4|andV=|[040 -2 -4 -2 4|,
2 4 2 00 4 -4 —2 4 -2
—2 -2 4
2 4 -2

which play a crucial role in constructing of the tropical variety T(@) C R3. Consider
a matroid M on the set £ = {1,2,3,4,5,6,7} of rows of the matrix U. The tropical
linear space associated with the matroid M is the Bergman fan 9,,. It is a two-
dimensional fan in R7/R1 or a graph depicted in Fig. 1.

Fi1G. 1. The Bergman complex By,

The graph has nine vertices. Seven vertices correspond to one-element flats 1,2,
3,4, 5,6, 7, and two ones correspond to cycles 346 and 357 of the matroid M.

The image of the fan %), under the mapping V is the two-dimensional fan in R3
(see Fig. 2). It consists of sixteen cones. Fifteen cones are spanned by pairs 12, 13,
14, 15, 16, 17, 23, 24, 25, 26, 27, 45, 47, 56, 67 of columns of the matrix V', and one
cone is generated by the triple 346.

6

F1G. 2. The tropical variety 7(V)
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The tropical variety 7(V) constructed in this way yields the normal fan for the
Newton polytope Na of the discriminant of the system (7). Seven rays of the fan
7(V) spanned by columns of the matrix V define normal directions of facets of the
Newton polytope Ma. In Fig. 2, they are denoted by 1, 2, 3, 4, 5, 6, 7 . These are
exactly the normal directions obtained in Theorem 1. Besides these normals, there
are three more rays arising as a result of the intersection of cones of the fan 7(V).
In particular, cones 346 and 25 intersect at the ray R>o(—1, —1, —l)T (number 8 in
Fig. 2), cones 67 and 23 intersect at Rx¢(0, 1, 1)" (number 9 in Fig. 2), while cones
67 and 12 intersect at R>o(1,3,0)” (number 10 in Fig. 2). All in all, ten inward
normals of the Newton polytope Na are found:

ny = (4’ 0, O)a Nne = (_27 -2, 4)3
ng = (0,4,0)7 nr = (254?_2)7
ng = (0,074), ng = (_17_17_1)7
Ny = (_27 _2a _4)3 ng = (07 17 1)7
ns = (_27 _4a _2)7 nio = ( ) ,0)
The discriminant of the system (7) looks as follows:
A(z) = 43221 @ — 129625525 — 64a)al + 1296 x5z] + 192¢] x5zl — 43252525 — 19225 254]
+ 64232525 + 207625 zox] — 20916252325 — 384aSmaxl + 957621 25as + 29282 ahal

— 3300z zhay — 1248a abes + 432x5 ) + 403225 x5 + 13272z  a5ay — 3684a ]}

— 45864z xaws + 85805 zox] + 43205 27 4 4356025 a5z — 9117623 waxl — 120023 230

— 15000z x5 + 96212525 + 120002z — 4068z5zoxs + 25136252522 — 1019225 w00

— 50568x x5xs + 3584z 5wy — 1056z zaxy + 420002 zhxs — 467344 zxs + 973352 whal
— 125002522 + 4800z5x3 + 48005z — 12500255 + 11360x] 25 + 10279245 2225 + 35522545

+ 17203225 252y — 13285025 232 — 509960z 25as + 567418z x5ay + 15000z, z5xs

— 36944z xom2 4 108528z x5 22 + 200037 maz) + 53328z w522 — 856566x° zonws — 33000  ToTs

— 118000z 22 + 417147523 — 1180002325 — 6427 x5 4 73282502y + 81922545 — 1446423 xhas

+ 47777625 25y — 64zl + 7200z 25wy — 621232z whahy + 130440z, z5a] — 99720 w0 x]

+ 26403255 2522 — 270485 zoxy — 340328z w2 — 340328z5xs — 512z x5 + 5795205 x2 x5
— 5122523 + 5673621 w53 4+ 3200642 w5xs + 432z s — 86425 x5 — 61440a T woa] + 43225
— 265536x5x5 + 43223 — 1024x5 3 + 1255681 x5w3 + 34565 zo + 3456z5 + 3456z2x3 + 6912z,
It is computed using the computer algebra system for polynomial computations
SINGULAR [6].

Fi1G. 3. The Newton polytope Na
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The Newton polytope N is depicted in Fig. 3 from two angles. It has ten two-
dimensional faces. They are enumerated in accordance with the sequence of rays of
the polyhedral fan in Fig. 2.
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