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ON FACETS OF THE NEWTON POLYTOPE FOR THE

DISCRIMINANT OF THE POLYNOMIAL SYSTEM

I.A. ANTIPOVA, E.A. KLESHKOVA

Abstract. We study normal directions to facets of the Newton polytope
of the discriminant of the Laurent polynomial system via the tropical
approach. We use the combinatorial construction proposed by Dickenstein,
Feichtner and Sturmfels for the tropicalization of algebraic varieties admit-
ting a parametrization by a linear map followed by a monomial map.

Keywords: discriminant, Newton polytope, tropical variety, Bergman
fan, matroid.

1. Introduction

Consider a system of n polynomial equations of the form

(1) Pi :=
∑
λ∈A(i)

a
(i)
λ yλ = 0, i = 1, . . . , n

with unknowns y = (y1, . . . , yn) ∈ (C \ 0)
n
, variable complex coe�cients a = (a

(i)
λ ),

where the sets A(i) ⊂ Zn are �xed, �nite and contain the zero element 0, λ =
(λ1, . . . , λn), yλ = yλ1

1 · . . . · yλnn . Solution y(a) = (y1(a), . . . , yn(a)) of (1) has a
polyhomogeneity property, and thus the system usually can be reduced by means
of monomial transformations x = x(a) of coe�cients (see [1]). To do this, it is
necessary to distinguish a collection of n exponents ω(i) ∈ A(i) such that the matrix
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ω =
(
ω(1), . . . , ω(n)

)
is non-degenerated. As a result, we obtain a reduced system

of the form

(2) Qi := yω
(i)

+
∑
λ∈Λ(i)

x
(i)
λ yλ − 1 = 0, i = 1, . . . , n,

where Λ(i) := A(i)\{ω(i), 0} and x = (x
(i)
λ ) are variable complex coe�cients. Denote

by Λ the disjoint union of the sets Λ(i) and by N the cardinality of this union, that is
the number of variable coe�cients in the system (2). The coe�cients of the system
vary in the vector space CNx in which points x = (xλ) are indexed by elements
λ ∈ Λ.

Denote by ∇◦ the set of all coe�cients x =
(
x

(i)
λ

)
such that the polynomial

mapping Q = (Q1, . . . , Qn) has multiple zeros in the complex algebraic torus

(C \ 0)
n
, that is zeros for which the determinant of the Jacobi matrix ∂Q

∂y of the

mapping Q equals zero. The discriminant set ∇ of the system (2) is de�ned to be
the closure of the set ∇◦ in the space of coe�cients. If ∇ is a hypersurface, then its
de�ning polynomial ∆(x) is said to be the discriminant of the system (2). The set ∇
is also called the reduced discriminant set of the system (1). Following the concept
of the A�discriminant developed in the book [8], the discriminant of a system of
equations is appropriate to call the (A(1), . . . , A(n))�discriminant.

The goal of our research is to construct the tropicalization of the discriminant
set ∇ of the system (2) and to �nd normal vectors to facets of the Newton polytope
of the discriminant ∆(x). Recall that the Newton polytope N∆ of the polynomial
∆(x) is de�ned to be the convex hull of its support in Rn.

The idea of computing the tropical discriminant is adopted from the paper [5],
where the general combinatorial construction of the tropicalization is given for
algebraic varieties that admit a parametrization in the form of the product of linear
forms. We use the parametrization of the discriminant set for the system of n
Laurent polynomials (2) proposed and comprehensively studied in [1].

We write the set Λ in the form of the block matrix Λ = (Λ(1)| . . . |Λ(n)) whose
columns are vectors of exponents of monomials of the system. Introduce (n×N)�
matrices

Ψ := ω∗Λ, Ψ̃ := Ψ− |ω|χ,
where ω∗ is the adjoint matrix to the matrix ω, χ is the matrix whose i-th row
represents the characteristic function of the subset Λ(i) ⊂ Λ and |ω| is the determinant

of the matrix ω. In what follows, we denote the rows of the matrices Ψ and Ψ̃ by
ψ1, . . . , ψn and ψ̃1, . . . , ψ̃n correspondingly, and we denote the rows of the identity
matrix EN by e1, . . . , eN . One of the main results of this paper is

Theorem 1. The vectors

(3) e1, . . . , eN ,−ψ1, . . . ,−ψn, ψ̃1, . . . , ψ̃n ∈ ZN

de�ne the normal directions of facets of the Newton polytope of the discriminant
for the system (2).

The discriminant we study is the generalization of the notion of A�discriminant
[8]. In [9], Kapranov proved that A�discriminants characterize hypersurfaces with
birational logarithmic Gauss mappings, and also that any reduced discriminant
hypersurface admit the parametrization by monomials depending on linear forms,
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which is called the Horn-Kapranov uniformization. The tropical analogue of the
Horn-Kapranov uniformization was obtained in [5].

In the present research, we use the parametrization of the discriminant set that
occurs to be the inverse of the logarithmic Gauss mapping in the case when the
set ∇ is an irreducible hypersurface that depends on all groups of the variable
coe�cients of the system (see [1]). However, the logarithmic Gauss mapping for
the hypersurface ∇ is not always birational, thus, in general, (A(1), . . . , A(n))�
discriminants are not reducible toA�discriminants, and consequently, require careful
research.

It is important to note that Theorem 1 does not bring all normals of the Newton
polytope to light, but only those that are represented in the parametrization of the
set ∇ explicitly, as vectors of coe�cients in linear forms. Section 2 of the paper
discusses the properties of parametrization. Section 3 presents the construction of
the tropical variety and the proof of Theorem 1. Finally, in Section 4, we explain
how the constructed tropical variety brings out the so-called ¾hidden¿ facets of the
Newton polytope for the discriminant of the system.

2. Parametrization of the discriminant set ∇

We introduce two copies of the space CN : the space CNx of variables x = (xλ),
and the space CNs of variables s = (sλ). In both cases, coordinates of points
are indexed by elements λ ∈ Λ. The space CNs is considered as the space of

homogeneous coordinates for CPN−1
s . It is proved in [1] that the parametrization of

the discriminant set ∇ of the system (2) is determined by the multivalued algebraic

mapping from the projective space CPN−1
s into the space CNx of the coe�cients of

the system with components

(4) x
(i)
λ = −

s
(i)
λ

〈ϕ̃i, s〉

n∏
k=1

(
〈ϕ̃k, s〉
〈ϕk, s〉

)ϕkλ
, λ ∈ Λ(i), i = 1, . . . , n,

where ϕk and ϕ̃k are rows of matrices Φ := ω−1Λ and Φ̃ := Φ−χ correspondingly,
ϕkλ is a coordinate of the row ϕk indexed by λ ∈ Λ(i) ⊂ Λ, the angle brackets
denote the inner product. The number of branches in (4) equals to the absolute
value of the determinant |ω| but some branches may coincide. If the discriminant
set ∇ of the system (2) is an irreducible hypersurface that depends on all groups of
variables, then the mapping (4) parametrizes it with the multiplicity that is equal
to the index |Zn : H| of the sublattice H ⊂ Zn generated by columns of the matrix
(ω|Λ), i.e., by all exponents of the monomials from the system (2). The image of
the mapping (4) is a hypersurface if all coordinates of vectors ϕk, ϕ̃k are non-zero,
k = 1, . . . , n.

We consider the rational mapping CPN−1
s → CNw that is obtained from the

mapping (4) as a result of raising of all its coordinates to the power |ω|. It has
components

(5) w
(i)
λ =

(
−
|ω|s(i)

λ

〈ψ̃i, s〉

)|ω| n∏
k=1

(
〈ψ̃k, s〉
〈ψk, s〉

)ψkλ
,

where ψkλ is a coordinate of the row ψk indexed by λ ∈ Λ(i) ⊂ Λ. The mapping (5)

de�nes the hypersurface ∇̃ ⊂ CNw whose amoeba has the same asymptotic directions
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as the amoeba of the discriminant hypersurface ∇. Recall that the amoeba A∇ of
the algebraic hypersurface

∇ = {x ∈ (C \ 0)
N

: ∆(x) = 0}
is determined to be the image of ∇ under the mapping

Log : (x1, . . . , xN )→ (log |x1|, . . . , log |xN |).
Each component of the mapping (5) is a monomial with integer exponents composed
with linear functions. It is convenient to associate the mapping (5) with two block
matrices

(6) U =
(
−|ω|EN

∣∣ΨT
∣∣ Ψ̃T

)T
, V =

(
|ω|EN

∣∣−ΨT
∣∣ Ψ̃T

)
,

where EN is the identity matrix. The rows of the matrix U determine linear
functions, and the rows of V determine exponents of monomials in the parametriza-
tion (5).

3. Tropicalization of the rational variety

Further, we pay attention to the algebraic variety ∇̃ ⊂ CN . Let us study
its tropicalization τ(∇̃). At the very beginning of the section, we recall some
notions and facts from the tropical geometry. Basic concepts of this theory and
numerous references to fundamental research can be found in the book [10]. Since

the variety ∇̃ admits the parametrization in the form of the product of linear forms,
we implement the general combinatorial construction proposed in [5] in order to

compute the tropical variety τ(∇̃).
A tropical variety has the structure of the polyhedral fan. In particular, the

tropicalization of a linear subspace X ⊂ Ck is the Bergman fan of the matroid
M(X) associated with this subspace (see [2], [7]). The construction of the Bergman
fan of a varietyX is related to the notion of the logarithmic limit-set of the varietyX
introduced in [3]. The Bergman fan of an irreducible subvariety X ⊂ Ck is the �nite
union of convex polyhedral cones with the vertex at the origin of the dimension that
coincides with the dimension of the variety [4].

Let us consider in more detail the de�nition of the matroid, which covers the
general combinatorial essence of the concepts of independence in linear algebra,
graph theory, etc. There exist several di�erent equivalent systems of axioms that
de�ne the matroid (see, for instance, [2], [10], [13] ). Let us determine it as follows.

De�nition 1. The matroid M is de�ned to be a pair (E , I) that consists of a �nite
set E and a collection I of subsets of E such that

(I-1) ∅ ∈ I.
(I-2) If J ∈ I and I ⊆ J , then I ∈ I.
(I-3) If I, J ∈ I and |I| < |J |, then there exists j ∈ J − I such that I ∪ j ∈ I.

Elements of I are called independent sets.

It is supposed that all one-element subsets of E are independent. Maximal
independent sets are said to be bases of a matroid. From the axiom (I-3), it follows
that all bases of a matroidM have the same cardinality r = r(M) that is called the
rank of the matroid. If A is a subset of the set E , then the cardinality of maximal
independent set in A is called the rank of A, and it is denoted by r(A). The minimal
by inclusion dependent set C ⊂ E is said to be the cycle of the matroidM . A subset
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F ⊆ E is said to be the �at if r(F ∪ e) > r(F ) for all e /∈ F . We say F is proper
if its rank equals neither 0 nor r. Every �at F of the matroid M is represented by
the incidence vector

eF :=
∑
i∈F

ei.

The vector eF is considered to be an element of the tropical projective space R|E|/R1,
where 1 = (1, 1, . . . , 1). The partially ordered set of all �ats forms the lattice of �ats
of the matroid.

The Bergman fan is one of geometric models of matroids. We use the �rst
statement of Theorem 2 as the de�nition of the Bergman fan of the matroid M .

Theorem 2 (Ardila�Klivans[2]).

(1) The Bergman fan BM of a matroid M on E is the polyhedral complex in

R|E|/R1 that consists of the cones

σF = cone{eF : F ∈ F}

for each �ag F = {F1 ( . . . ( Fl} of proper �ats of M . Here, eF :=
ef1 + . . .+ efk for F = {f1, . . . , fk}.

(2) The tropicalization of a linear subspace X is the Bergman fan BM(X) of
the matroid M(X) related to the subspace X.

Proof of Theorem 1. We �rst �nd the tropicalization τ(∇̃) of the hypersurface ∇̃.
Note that in the case of an irreducible hypersurface the tropicalization is the union
of all cones of codimension one of the normal fan for the Newton polytope of the
polynomial de�ning the hypersurface. Moreover, the collection of one-dimensional
generators of the normal fan for the Newton polytope of the polynomial de�ning ∇̃
coincides with the same collection for the polynomial de�ning the discriminant
hypersurface ∇.

Let X be a linear subspace in CN+2n, and let it be the image of the linear
mapping s → Us given by the matrix U , where s ∈ CPN−1

s . We consider the
matroidM(X) on the set of rows of the matrix U (on the set E = {1, 2, . . . , N + 2n}).
By Theorem 2, the Bergman fan BM(X) of the matroidM(X) is the tropicalization
of the subspace X. The following lemma holds.

Lemma 1. The tropical variety τ(∇̃) is the image of the Bergman fan BM(X)

under the mapping RN+2n → RN given by the matrix V .

Proof of Lemma 1. Coordinates of the parametrization of the variety ∇̃ given by (5)
are monomials composed with linear forms. The linear forms are de�ned by the rows
of the matrix U that is associated with the matroid M(X) of the rank N on the
set E . Exponents of the monomials in parametrization are rows of the matrix V .
According to [5, Theorem 3.1], the tropicalization of the variety ∇̃ can be de�ned
in terms of the matrices U and V . More precisely, the tropicalization is the image
of the Bergman fan BM(X) under the linear mapping V . �

It follows from Lemma 1 that one-dimensional cones (rays) of the tropical variety

τ(∇̃) are generated by the columns of the matrix V . They do determine the normal
directions for the facets of the Newton polytope for the discriminant of the system.
Thus Theorem 1 is proved. �



ON FACETS OF THE NEWTON POLYTOPE FOR THE DISCRIMINANT 1185

It is important to note that the acquired information about the structure of the
normal fan of the Newton polytope for the discriminant, as well as the parametriza-
tion (4), can be used for the study of truncations of the discriminant ∆(x) of the
system (2). The truncation of the polynomial ∆(x) with respect to a face h of the
Newton polytope N∆ is de�ned to be the sum of all monomials of ∆(x) whose
exponents lie in the face h. The geometric proofs of factorization identities for
truncations of the classical discriminant with respect to faces of its Newton polytope
are given in two recent papers [11], [12]. The proof is based on the blow-up property
of the logarithmic Gauss map for the zero set of the discriminant. These identities
were proved earlier in the book [8, Chapter 10] using the complicated machinery of
the theory of A�determinants.

4. ¾Hidden¿ normal directions

Consider a system of two equations with two unknowns y1, y2 and three variable
coe�cients x1, x2, x3:

(7)

{
y1

2 + x1y1y2 + x2y1y2
2 − 1 = 0,

y2
2 + x3y1

2y2 − 1 = 0.

The matrix of exponents of the system (7) has the form

(ω|Λ) =

(
2 0 1 1 2
0 2 1 2 1

)
.

The index of the sublattice in Z2 generated by its columns equals one. It is the
greatest common divisor of all second order minors of the matrix. Moreover, matrices

Φ =

(
1/2 1/2 1
1/2 1 1/2

)
, Φ̃ =

(
−1/2 −1/2 1
1/2 1 −1/2

)
do not contain zero elements, so the discriminant set ∇ of the system (7) is
the hypersurface, which can be parametrized with the multiplicity one by the
mapping CP2

s → C3
x of the form

(8)

x1 = −
2s1

−s1 − s2 + 2s3

(
−s1 − s2 + 2s3

s1 + s2 + 2s3

) 1
2
(
s1 + 2s2 − s3

s1 + 2s2 + s3

) 1
2

,

x2 = −
2s2

−s1 − s2 + 2s3

(
−s1 − s2 + 2s3

s1 + s2 + 2s3

) 1
2
(
s1 + 2s2 − s3

s1 + 2s2 + s3

)
,

x3 = −
2s3

s1 + 2s2 − s3

(
−s1 − s2 + 2s3

s1 + s2 + 2s3

)(
s1 + 2s2 − s3

s1 + 2s2 + s3

) 1
2

.

Here s = (s1, s2, s3) ∈ C3 are homogeneous coordinates in CP2
s.

Let us study the tropicalization τ(∇̃) of the rational variety ∇̃ ⊂ C3
w given as

follows
(9)

w1 = (−4s1)
4(2s1 + 2s2 + 4s3)

−2(2s1 + 4s2 + 2s3)
−2(−2s1 − 2s2 + 4s3)

−2(2s1 + 4s2 − 2s3)
2,

w2 = (−4s2)
4(2s1 + 2s2 + 4s3)

−2(2s1 + 4s2 + 2s3)
−4(−2s1 − 2s2 + 4s3)

−2(2s1 + 4s2 − 2s3)
4,

w3 = (−4s3)
4(2s1 + 2s2 + 4s3)

−4(2s1 + 4s2 + 2s3)
−2(−2s1 − 2s2 + 4s3)

4(2s1 + 4s2 − 2s3)
−2.
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As we noted above, the mapping (9) is associated with matrices

U =



−4 0 0
0 −4 0
0 0 −4
2 2 4
2 4 2
−2 −2 4
2 4 −2


and V =

4 0 0 −2 −2 −2 2
0 4 0 −2 −4 −2 4
0 0 4 −4 −2 4 −2

 ,

which play a crucial role in constructing of the tropical variety τ(∇̃) ⊂ R3. Consider
a matroid M on the set E = {1, 2, 3, 4, 5, 6, 7} of rows of the matrix U . The tropical
linear space associated with the matroid M is the Bergman fan BM . It is a two-
dimensional fan in R7/R1 or a graph depicted in Fig. 1.

Fig. 1. The Bergman complex BM

The graph has nine vertices. Seven vertices correspond to one-element �ats 1,2,
3, 4, 5, 6, 7, and two ones correspond to cycles 346 and 357 of the matroid M .

The image of the fan BM under the mapping V is the two-dimensional fan in R3

(see Fig. 2). It consists of sixteen cones. Fifteen cones are spanned by pairs 12, 13,
14, 15, 16, 17, 23, 24, 25, 26, 27, 45, 47, 56, 67 of columns of the matrix V , and one
cone is generated by the triple 346.

Fig. 2. The tropical variety τ(∇̃)
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The tropical variety τ(∇̃) constructed in this way yields the normal fan for the
Newton polytope N∆ of the discriminant of the system (7). Seven rays of the fan

τ(∇̃) spanned by columns of the matrix V de�ne normal directions of facets of the
Newton polytope N∆. In Fig. 2, they are denoted by 1, 2, 3, 4, 5, 6, 7 . These are
exactly the normal directions obtained in Theorem 1. Besides these normals, there
are three more rays arising as a result of the intersection of cones of the fan τ(∇̃).

In particular, cones 346 and 25 intersect at the ray R>0(−1,−1,−1)
T
(number 8 in

Fig. 2), cones 67 and 23 intersect at R>0(0, 1, 1)
T
(number 9 in Fig. 2), while cones

67 and 12 intersect at R>0(1, 3, 0)
T
(number 10 in Fig. 2). All in all, ten inward

normals of the Newton polytope N∆ are found:

n1 = (4, 0, 0), n6 = (−2,−2, 4),
n2 = (0, 4, 0), n7 = (2, 4,−2),
n3 = (0, 0, 4), n8 = (−1,−1,−1),
n4 = (−2,−2,−4), n9 = (0, 1, 1),
n5 = (−2,−4,−2), n10 = (1, 3, 0).

The discriminant of the system (7) looks as follows:

∆(x) = 432x
11
1 x

3
3 − 1296x

9
1x

2
2x

3
3 − 64x

9
1x

5
3 + 1296x

7
1x

4
2x

3
3 + 192x

7
1x

2
2x

5
3 − 432x

5
1x

6
2x

3
3 − 192x

5
1x

4
2x

5
3

+ 64x
3
1x

6
2x

5
3 + 2976x

8
1x2x

4
3 − 20916x

6
1x

3
2x

4
3 − 384x

6
1x2x

6
3 + 9576x

4
1x

5
2x

4
3 + 2928x

4
1x

3
2x

6
3

− 3300x
2
1x

7
2x

4
3 − 1248x

2
1x

5
2x

6
3 + 432x

7
2x

6
3 + 4032x

9
1x

3
3 + 13272x

7
1x

2
2x

3
3 − 3684x

7
1x

5
3

− 45864x
5
1x

4
2x

3
3 + 8580x

5
1x

2
2x

5
3 + 432x

5
1x

7
3 + 43560x

3
1x

6
2x

3
3 − 91176x

3
1x

4
2x

5
3 − 1200x

3
1x

2
2x

7
3

− 15000x1x
8
2x

3
3 + 96x1x

6
2x

5
3 + 12000x1x

4
2x

7
3 − 4068x

8
1x2x

2
3 + 25136x

6
1x

3
2x

2
3 − 10192x

6
1x2x

4
3

− 50568x
4
1x

5
2x

2
3 + 3584x

4
1x

3
2x

4
3 − 1056x

4
1x2x

6
3 + 42000x

2
1x

7
2x

2
3 − 467344x

2
1x

5
2x

4
3 + 97335x

2
1x

3
2x

6
3

− 12500x
9
2x

2
3 + 4800x

7
2x

4
3 + 4800x

5
2x

6
3 − 12500x

3
2x

8
3 + 11360x

7
1x

3
3 + 102792x

5
1x

2
2x

3
3 + 3552x

5
1x

5
3

+ 172032x
3
1x

4
2x

3
3 − 132850x

3
1x

2
2x

5
3 − 509960x1x

6
2x

3
3 + 567418x1x

4
2x

5
3 + 15000x1x

2
2x

7
3

− 36944x
6
1x2x

2
3 + 108528x

4
1x

3
2x

2
3 + 20003x

4
1x2x

4
3 + 53328x

2
1x

5
2x

2
3 − 856566x

2
1x

3
2x

4
3 − 3300x

2
1x2x

6
3

− 118000x
7
2x

2
3 + 417147x

5
2x

4
3 − 118000x

3
2x

6
3 − 64x

7
1x3 + 7328x

5
1x

2
2x3 + 8192x

5
1x

3
3 − 14464x

3
1x

4
2x3

+ 477776x
3
1x

2
2x

3
3 − 64x

3
1x

5
3 + 7200x1x

6
2x3 − 621232x1x

4
2x

3
3 + 130440x1x

2
2x

5
3 − 99720x

4
1x2x

2
3

+ 264032x
2
1x

3
2x

2
3 − 27048x

2
1x2x

4
3 − 340328x

5
2x

2
3 − 340328x

3
2x

4
3 − 512x

5
1x3 + 57952x

3
1x

2
2x3

− 512x
3
1x

3
3 + 56736x1x

4
2x3 + 320064x1x

2
2x

3
3 + 432x

4
1x2 − 864x

2
1x

3
2 − 61440x

2
1x2x

2
3 + 432x

5
2

− 265536x
3
2x

2
3 + 432x2x

4
3 − 1024x

3
1x3 + 125568x1x

2
2x3 + 3456x

2
1x2 + 3456x

3
2 + 3456x2x

2
3 + 6912x2.

It is computed using the computer algebra system for polynomial computations
Singular [6].

Fig. 3. The Newton polytope N∆
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The Newton polytope N∆ is depicted in Fig. 3 from two angles. It has ten two-
dimensional faces. They are enumerated in accordance with the sequence of rays of
the polyhedral fan in Fig. 2.
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