
S e©MR ISSN 1813-3304

ÑÈÁÈÐÑÊÈÅ ÝËÅÊÒÐÎÍÍÛÅ

ÌÀÒÅÌÀÒÈ×ÅÑÊÈÅ ÈÇÂÅÑÒÈß

Siberian Electronic Mathematical Reports

http://semr.math.nsc.ru

Òîì 18, �2, ñòð. 1238�1250 (2021) ÓÄÊ 519.63

DOI 10.33048/semi.2021.18.094 MSC 65M08

THE ACCURACY OF NUMERICAL SIMULATION OF THE

ACOUSTIC WAVE PROPAGATIONS IN A LIQUID MEDIUM

BASED ON NAVIER-STOKES EQUATIONS

A.S. KOZELKOV, O.L. KRUTYAKOVA, V.V. KURULIN,
D.YU. STRELETS, M.A. SHISHLENIN

Abstract. The space and time resolution needed to simulate the pro-
pagation of acoustic perturbations in a liquid medium is estimated. The
dependence of the solution accuracy on the parameters of an iterative
procedure and a numerical discretization of the equations is analyzed.
As a numerical method, a widely used method called SIMPLE is used
together with a �nite-volume discretization of the equations. A problem
of propagation of perturbations in a liquid medium from a harmonic
source of oscillations is considered for the estimation. Estimates of the
required space and time resolution are obtained to provide an acceptable
accuracy of the solution. The estimates are tested using the problem of
propagation of harmonic waves from a point source in a liquid medium.

Kozelkov, A.S., Krutyakova, O.L., Kurulin, V.V., Strelets, D.Yu., Shishlenin,
M.A., The accuracy of numerical simulation of the acoustic wave propagations in
a liquid medium based on Navier-Stokes equations.
© 2021 Kozelkov A.S., Krutyakova O.L., Kurulin V.V., Strelets D.Yu., Shishlenin

M.A.
The work of A.S. Kozelkov and M.A. Shishlenin was supported by RSCF under grant 19-11-

00154 �Developing of new mathematical models of acoustic tomography in medicine. Numerical
methods, HPC and software�. The work of A.S. Kozelkov and D.Yu. Strelets was supported by the
Program for Creation and Development of World-Class Scienti�c Center �Supersonic� in 2020-2022
with �nancial support of the Russian Ministry of Education and Science (Agreement � 075-15-
2020-924 dated 16.11.2020). The results of A.S. Kozelkov, O.L. Krutyakova and V.V. Kurulin
have been obtained with �nancial support from the Science & Universities National Project under
the Young Scientists Lab Program of the RF Ministry of Education and Science (Research Topic:
Development of CFD methods, models and algorithms to simulate liquids and gases in natural
and industrial environments under normal and critical conditions on petascale supercomputers).

Received October, 5, 2021, published November, 17, 2021.

1238



THE ACCURACY OF NUMERICAL SIMULATION OF THE ACOUSTIC WAVE 1239

Keywords: hydroacoustics, numerical simulation, Navier-Stokes equations,
method SIMPLE, �nite-volume discretization, numerical dissipation, Logos
software package, acoustic tomography.

1. Introduction

An important problem in �uid dynamics is simulating the phenomena of genera-
tion and propagation of acoustic waves in a liquid medium [1, 2]. Such problems
arise in medicine acoustic tomography [25, 27, 28, 29], simulating the rotation
of propeller engines to decrease the generated noise level [3] and �ows in the
elements of reactor units to study the interaction of noise of turbulent structures
with the structural elements of the units [4], etc. Currently, a three-dimensional
numerical simulation method based on solving the Navier-Stokes equations is widely
used to simulate the above problems [5, 6]. This approach allows describing the
process of generation and propagation of acoustic waves by taking into account the
unsteady processes of turbulent mixing. A popular approach to numerically solving
the Navier-Stokes equations for incompressible and weakly compressible �uids is
a �nite-volume discretization in space together with an iterative method called
SIMPLE [7, 8] or its modi�cations [9, 10].

Numerical solution of systems of PDE is widely used for hydroacoustics problems.
For instance, in [?, 30, 32] the 2D application to acoustic tomography based on the
system of linear hyperbolic equations is considered. The problem of modelling of
radiation patterns of sources was considered in [35]. The method of recovering
the initial state of a supernova is proposed [31]. The article [11] deals with �ows
passing by bodies that create pressure pulsations and generate acoustic waves,
as well as the in�uence of the shape of bodies on the frequency, amplitude and
nature of the signal. The acoustic oscillations in the near �eld are described by
solving the Navier-Stokes equations, and the propagation of noise in the far �eld,
by integral methods. In [12], the parameters of noise propagation are estimated for
�ows past a square cylinder. The in�uence of the aspect ratio of the body shape
is considered by using the compressible Navier-Stokes equations and high-order
accurate schemes. In [13], some modi�cations of the airfoil geometry and their
in�uence on noise propagation and dissipation are investigated, and the Navier-
Stokes equations, with an integral analogy, are solved in the near �eld. Although
this approach is widely used, the dependence of the accuracy of simulation of the
propagation of acoustic perturbations in a liquid medium on the space and time
resolution, the peculiarities of discretization, and the parameters of the iterative
process has been poorly studied. Therefore, estimating the accuracy of simulation
of the propagation of acoustic perturbations in a liquid medium is an important
problem.

The purpose of this paper is to estimate the space and time resolution needed
in simulating the propagation of acoustic perturbations in a liquid medium and
analyze the dependence of the solution accuracy on the parameters of the iterative
procedure and the numerical discretization used for the equations. In this study,
the SIMPLE method is implemented with a software package called LOGOS. The
software implementation of the method has been validated and tested on various
classes of problems [14, 15, 16, 17, 18]. The numerical discretization is based on
a �nite volume method and second-order accurate schemes for the space and time
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terms. The �nite propagation speed of an acoustic wave is taken into account by
using an equation of state for a liquid with a nonzero compressibility coe�cient.

Finite di�erence schemes providing an improved representation of a range of
scales (spectral-like resolution) in the evaluation of �rst, second, and higher order
derivatives were presented and compared with well-known schemes [24]. Schemes
were also presented for derivatives at mid-cell locations, for accurate interpolation
and for spectral-like �ltering and discussed for applications of �uid mechanics.

In this study, a problem of propagation of perturbations in a liquid medium
from a harmonic source of oscillations is solved, and the resulting wave pattern is
compared with an analytical solution and a measured wave di�usion coe�cient.
This paper presents estimates of the acceptable grid sizes, the time step, and the
number of iterations per step expressed in terms of dimensionless parameters with
respect to the wave parameters needed to guarantee the required accuracy of the
solution of the hydroacoustic problems. The e�ects of the discretization schemes for
the convective and transient terms and the number of internal iterations per step
on the solution accuracy are estimated.

The results presented in this paper are typical for most hydrodynamic �nite-
volume codes and can be used in solving many hydroacoustics problems.

2. Mathematical model and numerical method

The unsteady three-dimensional isothermal �ows of a viscous compressible �uid
are described by a system of Navier-Stokes equations containing a continuity equation
and a momentum conservation equation [5] supplemented by an equation of state.
In conservative form and in Cartesian coordinates, the equations may be written
as follows:

∂ρ

∂t
+

∂

∂xi
(ρui) = 0,(1)

∂(ρui)

∂t
+

∂

∂xj
(ρuiuj) = − ∂p

∂xi
+

∂

∂xj
τij ,(2)

ρ = ρ(p).(3)

Here t is the time variable, ui = {u1, u2, u3} = {u, v, w} is the velocity, ρ is the
density, p is the pressure, and τij is the viscous stress tensor:

(4) τij = µ

((
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3

∂uk
∂xk

δij

)
.

Here µ is the molecular dynamic viscosity. The relation between the pressure
and density is determined by the equation of state ρ = ρ0 + k(p − p0), where k is
the compressibility coe�cient, ρ0, p0 is the basic density and pressure, respectively.

This paper uses a method (the so-called SIMPLE method [8]) providing a relation
between the pressure and the velocity with a pressure �eld, guaranteeing that the
continuity equation is satis�ed. It results in solving an equation of the Poisson-type
for the pressure [7].
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To formulate the SIMPLE algorithm, we write the equation of conservation of
the momentum of the system (1)�(3) with time discretization by the Euler scheme:

(5)
ρnun+1

i − ρjuji
∆t

+
∂

∂xj

(
ρnun+1

i unj
)

= −∂p
n+1

∂xi
+

∂

∂xj

(
τn+1
ij

)
.

Here n is the solution at the previous iteration and j is the solution at the
previous time step. To solve this equation, the pressure and the velocity are presented
in the form

un+1
i = uni + u∗i ,(6)

pn+1 = pn + αp(p
n+1 − pn) = pn + αpδp

n+1.(7)

Here 0 ≤ αp ≤ 1 is a relaxation parameter. Substitution of the above expression
into (5) yields

(8)
ρnun+1

i − ρjuji
∆t

+
∂

∂xj

(
ρnun+1

i unj
)

= −∂p
n

∂xi
−
∂
(
δpn+1

)
∂xi

+
∂

∂xj

(
τn+1
ij

)
.

Substitution of the �rst expression in (7) into (5) allows us to obtain a preliminary
estimate of the velocity at the next step from the equation

(9)
ρnu∗i
∆t

+
∂

∂xj

(
ρnu∗i u

n
j

)
− ∂

∂xj

(
τ∗ij
)

=
ρjuji
∆t
− ∂pn

∂xi
.

The molecular and turbulent components of the shear stress tensor in (1)�(3),
(5), (7) are calculated using u∗i as well. At the second stage, the total speed is
calculated at iteration n+ 1 using a pressure correction:

(10) un+1
i = u∗i −∆t

∂
(
δpn+1

)
∂xi

.

The pressure correction itself is found from (10) if the continuity condition for
un+1
i is satis�ed. Thus, taking the derivative of both sides of the above equality, we

obtain the following Poisson equation for the pressure:

(11)
∂

∂xi

(
∂
(
δpn+1

)
∂xi

)
=

1

∆t

∂u∗i
∂xi

.

This iterative procedure allows obtaining velocity and pressure �elds that satisfy
the system (1)�(3).

Equation (5) uses a second-order upwind scheme called LUD [19] to discretize the
convective terms, a second-order central-di�erence scheme to discretize the viscous
terms, and the Adams-Bashforth scheme [7, 19] to discretize the time derivative.
The resulting systems of algebraic equations are solved using an algebraic multigrid
solver called AMG [20, 21, 22] (AMG method is implemented in LOGOS [22]).

3. Numerical experiments

To estimate the space and time resolution required to simulate the propagation of
acoustic perturbations in a liquid medium, we consider the propagation of perturba-
tions in a liquid medium from a harmonic source of oscillations. Let us solve the
following problem of propagation of acoustic oscillations of sinusoidal waves along
an in�nite plate: The waves are generated at the left edge of a plate of length
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L = 2 m with a frequency of 20 KHz and propagate to the right edge, where they
attenuate due to the use of a highly sparse mesh.

Let us introduce the following notation: A � acoustic wave amplitude, λ �
wavelength, K = 2π

λ � wavenumber, T � oscillation period calculated by the

formula T = λ
c0
, c0 �� sound speed and v(t) = sin(2πft) � a harmonic function.

The oscillation frequency f must be much less than the wavelength λ = c0/f ,
where c0 is the sound speed generated by the source. For the waves to be considered
acoustic, the mass source amplitude, Aq must be given so that Aq � ρc30/f

2 already
at distances of about a wavelength from the source.

To generate waves on the left boundary, the velocity component Ux is given by
the relation Ux = A·sin(2πft). This boundary condition corresponds to the solution
of a problem of propagation of sinusoidal waves [23], which provides the generation
of a sinusoidal wave packet with the least distortions at the input boundary.

The �uid oscillations are considered in a water medium with the following
parameters: ρ = 1000kg/m3 (density), µ = 0, 001Pa · s (viscosity), c0 = 1400m/s
(sound speed in water). The wavelength in such conditions λ = 0, 07m and the
period T = 5e−5.

In the numerical simulation of the problem at a �nite grid and time resolution,
the wave amplitude will gradually decrease due to the e�ect of numerical di�usion on
the solution. The amplitude decrease of the waves when they pass a certain distance
shows the magnitude of the numerical di�usion, and, hence, the grid resolution and
the time step.

In the propagation of acoustic oscillations, a major factor is the longitudinal
partition of the grid or a parameter that determines the number of cells per wave-
length λ. This parameter must be considered together with the time step, ∆t.
A large time step generates large numerical di�usion and may be insu�cient for
describing high-frequency oscillations [17]. Therefore, in the calculations it must be
bounded from above by a value at which numerical di�usion is reasonable. Also,
in practical calculations the time step is bounded from above by an additional
criterion which depends on the stability of the numerical method. One of the goals
of this study is to determine which of these criteria for the time step must be used
earlier, as well as estimate the universal character of the criteria for a wide range of
frequencies. In the case of unsteady �ow, a su�ciently converging solution must be
obtained at each iteration step; an important role in this is played by the number of
iterations per step. If the solution does not converge in a given number of iterations,
the error of the numerical method will increase with each iterative procedure.

The method for studying the e�ects of the above parameters on the numerical
di�usion of the computational method is as follows: To determine the e�ect of one
of the parameters on the solution, a series of calculations with various values of this
parameter are carried out. In this case, the other parameters are �xed and small
enough not to make a large contribution to the numerical di�usion that a�ects the
solution. The e�ect on the solution is expressed in the attenuation coe�cient of a
wave when it passes a distance of its wavelengths:

(12) δn = 1− An+1

An
.
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Calculation no. ∆x, m ∆x/λ Nλ Niter ∆t/T
1 0,005 0,07 14 20 0,02
2 0,003 0,04 23 20 0,02
3 0,0023 0,033 30 20 0,02
4 0,0018 0,025 40 20 0,02
5 0,0013 0,0188 60 20 0,02
6 0,00088 0,0125 80 20 0,02

Table 1. Parameters of grid resolution analysis

Here n is the wave number starting from the left edge of the plate. Consider an
average value, δ =< δn >. Obviously, the �ner is the grid and the smaller the time
step, the closer is the attenuation coe�cient δ to zero.

The attenuation coe�cient is considered acceptable if, due to the in�uence of
numerical di�usion, the amplitude of a wave passing a distance of its wavelength
does not decrease by more than 0.5%:

(13) δn ≤ 0, 5%.

This criterion will be used to estimate all four criteria given above.

3.1. In�uence of grid resolution. To estimate the acceptable horizontal cell size,
we will perform a series of calculations with the same wave parameters: A = 0.005m,
λ = 0, 07m. In each of the calculations, the time step and the vertical size of the
cells remain constant, but the horizontal size of the cells changes. Table 1 shows
the parameters of the computational grids and the time step (column Nλ shows the
number of cells per wavelength).

In all of the calculations, the number of internal iterations per step and the time
step remained unchanged; these values are such that for a major parameter, ∆x,
their e�ect on numerical di�usion is negligible. This statement was made on the
basis of a series of preliminary numerical experiments, which showed that these
parameter values have a minimal e�ect on the overall numerical di�usion of the
method. This is true for the time step ∆t, which is taken small with respect to the
wave period. The size of the cells along the horizontal axis varied from 0.00088 m
to 0.005 m, which means 80 and 14 calculation cells per wavelength, respectively.

In the calculations, the plate length L comprises about 20 wavelengths. To obtain
a statistically stable pattern of oscillations, the calculations were made up to time
τ = 30 · T . As a result, the pressure distribution along the horizontal axis of the
plate was obtained.

Let us analyze the calculations for various grid models. Figure 1 shows the
pressure distribution along the plate. There is almost no attenuation in the oscilla-
tions. However, at a coarse grid resolution there is a pronounced shift in the acoustic
waves, which indicates a large error in the oscillation period. The calculated wave
shift coe�cient is (τ(Pmaxn)− τ(Pmaxn−1))/Nw.

One can see that at the coarsest grid resolution the �rst wave shift is about
0.5%, and already for the tenth wave it is about 5%. At a grid resolution of 40 or
more cells per wavelength, the shift in the acoustic waves has an acceptable error
of about 0.2% percent of the initial wavelength.
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Fig. 1. Pressure oscillations along the plate for di�erent numbers

Calculation no. ∆x/λ Nλ ∆τ , %
1 0,005 0,07 14 0,47
2 0,003 0,04 23 0,28
3 0,0023 0,033 30 0,26
4 0,0018 0,025 40 0,21
5 0,0013 0,0188 60 0,20
6 0,00088 0,0125 80 0,19

Table 2. Results of grid resolution analysis

The shift for one wave in cases 4, 5, 6 remains at the same level and practically
does not change when the number of cells per wavelength is doubled (see Table 2.

The results show that as ∆x increases and, correspondingly, Nλ decreases, the
shift increases to ∆τ = 0, 21% for one wave, which means an increase in numerical
di�usion. The calculation result with the largest value of ∆x after which ∆τ does
not increase is shown by gray color in the table.

3.2. E�ect of the number of iterations for the nonlinear terms. The accep-
table number of internal iterations per time step in a non-stationary calculation is
estimated by the same method. The frequencies of acoustic waves are assumed to
be the same as in the previous case. The allowable number of internal iterations is
estimated in the same way as in the study of the grid resolution for acoustic waves.
In all calculations, the number of cells per wavelength and time step remained
unchanged, and these values are such that, compared with the main parameter
Niter, their e�ect on numerical di�usion is insigni�cant.

The results presented in Table 3 show that the number of iterations per step
greatly a�ects the pattern of acoustic perturbations: for instance, if the number of
iterations per step is 5, the attenuation coe�cient is 2.5%, which indicates a high
level of numerical di�usion and insu�cient convergence of the solution at the time
step.

The results show that as ∆x increases (and, hence, Nλ decreases) the shift
increases to ∆τ = 0, 21% for one wave, which means an increase in numerical
di�usion. The calculation result with the largest value of ∆x after which ∆τ does
not increase is shown by gray color in the table. Figure ?? shows pressure along the
plate versus the number of internal iterations.

This series of calculations has shown that when choosing the grid size ∆yw the
criterion associated with numerical di�usion is insigni�cant.
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Calculation no. Nλ ∆t/T Niter δ, % Comments
1 80 0,02 5 2,5 delay, with change in A
2 80 0,02 7 1 delay, with change in A
3 80 0,02 10 0,3 delay, with change in A
4 80 0,02 15 0,1 delay
5 80 0,02 20 0,05
6 80 0,02 40 0,05

Table 3. Results of analysis of the number of internal iterations

Fig. 2. Pressure oscillations along the plate and the envelope σ(x)
for di�erent numbers of iterations per step: -5 (left), -20 (right)

Calculation no. Nλ Niter (%)T δ, %
1 80 20 10 30
2 80 20 5 5
3 80 20 3,4 1,5
4 80 20 2 0,5
5 80 20 1 0,05
6 80 20 0,2 0,05

Table 4. Parameters of the fourth-step calculations

3.3. E�ect of time step size. Taking into account the previous results obtained
on a computational grid with the maximum number of cells per wavelength and an
acceptable number of iterations per step, we estimate in a series of calculations the
e�ect of the time step ∆t on numerical di�usion by changing its value. Table 4 shows
the calculation parameters and the obtained values of the attenuation coe�cient δ.

The results show that the attenuation coe�cient δ strongly depends on the time
step ∆t. According to (8), acceptable results are obtained only with time steps
of 5e − 7s, which corresponds to one percent of the oscillation period. Figure 3
shows pressure �uctuations along the plate for three values of the calculation step,
illustrating that the damping of oscillations strongly depends on its values.

The results show that as the time step increases by more than 2% of the oscillation
period, a signi�cant attenuation of sound wave oscillations takes place, and the most
acceptable time step value is 1% of the oscillation period. However, if multivariate
calculations are needed, this parameter can be increased to 2%.
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Fig. 3. Pressure �uctuations along the plate and shell for time
steps: 0.2%T (left), 2%T (center), 5%T (right)

Fig. 4. Pressure oscillations along the plate and the envelope for
20 KHz (left), 10 KHz (right)

The purpose of this study is to assess the parameters of the numerical simulation
of acoustic oscillations and the universal character of the above-proposed criteria.
To con�rm this fact, we will perform a numerical simulation of this problem using
the most optimal of the criteria for two oscillation frequencies, 20 KHz and 10 KHz.

Figure 4 presents the results of the numerical simulation of acoustic oscillations
of the di�erent frequencies. The estimation measure will be the attenuation rate of
an acoustic wave and its delay.

On the �gure 4, the pressure distribution along the plate with the limit values
of the parameters is shown by a dotted line, and the pressure distribution with
the optimal parameters based on the above study is shown by a straight line. The
time step was chosen so as to provide 1% of the oscillation period, the number
of cells of the calculated area per wavelength was 40, and the number of internal
iterations per step was 20. It can be seen that the use of optimal parameters does not
introduce any numerical di�usion into the calculation method. It is also shown that
the parameters are universal and can be used for di�erent values of the frequency
of the audio signal. The curves obtained using optimal parameters almost coincide
with the curves with the limiting parameters of the problem.

3.4. Simulation of perturbations from a point source. To test the above
method for calculating acoustic waves, consider a problem of propagation of acoustic
oscillations with a frequency of 20 KHz from a point source.

In practice, it is di�cult to numerically implement a point source, and in this
problem the point source is given by the problem geometry. The radius of the
source is taken equal to 0.1m, and the radius of the entire area is 7 m. The source
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Fig. 5. Pressure oscillations along the domain and the envelope

amplitude is given as Aq � ρc30/f
2, so that the waves can be considered acoustic at

distances of the order of the wavelength from the source. The waves are generated
at a frequency of 20 kHz and propagate to the right border, where they attenuate
due to the use of a highly sparse grid. The wave generation is given by a radial
velocity relation Ur = A · sin(2πft). This boundary condition corresponds to the
solution of a problem of propagation of sinusoidal waves [23], which provides the
generation of a packet of sinusoidal waves in the radial direction.

The �uid oscillations are considered in a water medium with the following
parameters: ρ = 1000kg/m3 (density), µ = 0, 001Pa · s (viscosity), c0 = 1400m/s
(sound speed in water). Under these conditions the wavelength λ = 0, 07m and the
period T = 5e−5.

We consider a compressible �uid with a compressibility coe�cient calculated
from a relationship between the pressure and density perturbations.

Figure 5 shows pressure oscillations along the calculation domain and the envelope.
The calculation parameters are based on the above considerations

The oscillations from a point source must attenuate as
√

1
R . Figure 5 shows

that the oscillations have the shape of the envelope and the attenuation takes place

according to the law of
√

1
R .

4. Conclusions

In this study, estimates of the e�ects of various factors on the accuracy of
numerical simulation of acoustic wave propagation have been obtained. It has been
found that the number of cells per wavelength, ∆x/λ, and the ratio of the time
step to the acoustic wave period, ∆t/T , have the largest e�ects. The number of
internal iterations per time step has also an e�ect. The thus obtained quantitative
criteria are as follows: the horizontal partitionNλ ≥ 40; the number of iterations per
time step Niter ≥ 20; the time step ∆t/T = 0, 01. Compliance with these criteria
guarantees that the attenuation coe�cient does not exceed a value of δ = 0, 05.
This means that after passing a distance of 10 wavelengths the wave amplitude,
due to the in�uence of numerical di�usion, decreases by no more than 0.5%. The
results have been tested for various frequencies of acoustic oscillations on a problem
with a harmonic oscillation source on a plate and a problem with a point source
of oscillations. In future work we will compare the nonlinear e�ects of applying the
direct problem solution based on the Navier-Stokes equations with linear hyperbolic
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system in application to acoustic tomography [33, 34, 36] and consider the e�ect of
nonlinear e�ects on the data of the inverse problem.
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