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ON SEMI-IMPLICIT NUMERICAL METHOD FOR SURFACE

DIFFUSION EQUATION FOR TRIANGULATED SURFACES

YU.D. EFREMENKO

Abstract. We propose a semi-implicit numerical approach to computa-
tion of solutions to the surface di�usion equation for triangulated surfaces.
In addition, an algorithm of re-triangulation of surfaces was developed
to handle singularities that appear during surface evolution. A number
of numerical solutions for di�erent initial surfaces is presented.

Keywords: surface di�usion equation, triangulated surface, semi-implicit
numerical methods.

1. Introduction

In this paper, we study numerical solutions of surface di�usion equation:

(1)

{
VN = −∆H t > 0

S|t=0 = S0

where H is the mean curvature of the surface S(t), ∆ is the Laplace�Beltrami

operator, VN = ∂ ~X
∂t · ~N is the normal velocity, and ~X : S(t) 3 x 7→ x ∈ R3 is

the embedding of the surface. This equation is invariant with respect to the change
of the orientation of the surface: both the normal and the mean curvature change
their signs simultaneously.

This equation was �rst obtained in work [1] while studying deformation of bodies
under the in�uence of high temperatures. The mechanism of surface di�usion,
described by equation (1), plays an important role in the process of sintering
of di�erent materials, especially during its �rst stage [2, 3]. Later, the equation
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of surface di�usion was generalized and studied from geometrical point of view
in a number of works. The existence of solution and its uniqueness in a small
neighborhood [0, ε] for closed oriented surfaces were shown in [4], there it was also
demonstrated that the surfaces close to a sphere converge to it at an exponential
rate. Also, in work [5] it was shown that the surface di�usion �ow is able to generate
singularities � self-intersections or surface breaks, which are especially important
to be modelled numerically.

Solving the above equation means �nding a family of surfaces {S(t) | t ∈ [0, T ]},
embedded into R3, whose normal velocities satisfy equation (1). It is hard to be
analyzed analytically as it is a non-linear equation of fourth order with an operator
depending on the surface at every point of time. Therefore, in this case numerical
methods of study have particular importance. For such formulation, we search for
a discreet family of surfaces {Sn | n = 0, 1, 2, . . . }, where Sn approximates S(nτ)
for a chosen time step τ > 0.

Every surface Sn is found by the previous steps Si, i ≤ n− 1, using a system of
di�erence equations obtained by approximation of equation (1). Correct approxima-
tion of the equation and construction of a stable numerical scheme is the most
important problem of the process of solving the equation numerically. But for
equation (1), due to its complexity we are not able to prove the convergence and
stability, hence, a special attention is paid to the properties of solution, such as
volume preservation and nonincrease of surface area [6]. We denote the volume,
bounded by the surface S(t), and the area of the surface S(t) by V (t) and A(t).
Then we have:

d

dt
V (t) =

∫
S(t)

VNds = −
∫
S(t)

∆Hds = −
∫
S(t)

div(grad H) = 0;

d

dt
A(t) = −

∫
S(t)

VNHds = −
∫
S(t)

∆HHds = −
∫
S(t)

|∇H|2 ≤ 0.

(2)

The last equality in the �rst line (2) is true by Green's theorem (see [7]) for a
closed oriented surface S(t). The ful�llment of these properties, taking into account
approximation errors, is often required for the constructed numerical schemes.

In [1], an explicit scheme for the case of a surface of revolution was proposed: in
this case, the problem becomes one-dimensional and reduces to a curve, which
is a pro�le of the considered surface. This scheme is unstable for large steps,
which imposes a constraint on the size of the step τ . It is worth mentioning that
this equation is highly sensitive to calculation accuracy, therefore, constructing a
numerical scheme is de�nitely challenging. In paper [6], a completely implicit scheme
for the case of triangulated surface in R3 was proposed. The considered examples
show that it is stable, but the theoretic estimate was not presented. Although this
scheme allows to perform calculations with a large step, compared to the explicit
scheme, its size is still bounded from above for invertibility of the matrix in the
scheme.

Also in work [8], an approach to numerical solution of equation (1) by the ¾level-
set¿ method using semi-implicit scheme was proposed. In this case, the surface is
given as the boundary of the evolving area in a three-dimensional space, split into
standard cubical cells. This approach has some advantages, for example, it admits
processing of topology changes, but due to necessity of discretization of the whole
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three-dimensional space, it involves signi�cant restrictions of the area by size (or
by level of detail).

Therefore, for a triangulated surface there exist only two schemes for solving
the considered equation and both of them have particular disadvantages. In this
paper, a semi-implicit scheme for numerical solution of the surface di�usion equation
for triangulated surfaces is proposed and the results of numerical experiments
performed using the constructed scheme are presented.

2. Construction of the numerical scheme

2.1. Approximation of the equation. The main goal of the work is to construct
a semi-implicit numerical scheme for equation (1) with a su�ciently good invertible
operator. To do that, we will need the following formula [9]:

(3) ∆ ~X = 2H ~N

Note that relation (3) does not depend on the choice of orientation due to the

presence of the product of H and ~N . Using (3), we can express the mean curvature:

H = 1
2∆ ~X · ~N . Therefore, (1) can be rewritten in the form

(4) VN = −1

2
∆(∆ ~X · ~N).

In local coordinates, the Laplace�Beltrami operator can be written in the form
∆ =

∑
i,j

1√
g
∂
∂xi

(gij
√
g ∂
∂xj

). We denote arbitrary functions on the surface S with

values in R by ~u,~v and use the formula for the Laplace�Beltrami operator on the
scalar product [9]:

∆(~u · ~v) = (∆~u · ~v) + (~u ·∆~v) + 2gij(
∂~u

∂xi
· ∂~v
∂xj

).

With the help of the above equality, we can transform the equation (4) in the
following way:

VN = −1

2
∆(∆ ~X · ~N) =

= −1

2
∆2( ~X · ~N) +

1

2
∆( ~X ·∆ ~N) + ∆

(
gij(

∂ ~X

∂xi
· ∂

~N

∂xj
)

)
=

= −1

2
∆2( ~X · ~N) +

1

2
∆( ~X ·∆ ~N) + ∆

(
gij

∂

∂xj
(
∂ ~X

∂xi
· ~N)− gij( ∂2 ~X

∂xi∂xj
· ~N)

)
=

= −1

2
∆2( ~X · ~N) +

1

2
∆( ~X ·∆ ~N)−∆(gijbij) =

= −1

2
∆2( ~X · ~N) +

1

2
∆( ~X ·∆ ~N)−∆H

In the penultimate equality, the orthogonality of the tangent vector ∂ ~X
∂xi

and the

normal vector ~N was used, and, moreover, we used the notation bij for the compo-
nents of the second quadratic form. Based on the obtained equation

(5) VN = −1

2
∆2( ~N · ~X) +

1

2
∆( ~X ·∆ ~N)−∆H,

a numerical scheme can be constructed. We will approximate the normal velocity

VN = ~N · ∂ ~X∂t by the �nite di�erence ~Nn · ~X
n+1− ~Xn

τ , where the index n means that
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the corresponding vector belongs to the surface on the n-th time step, that is, to
the moment τ · n.

On the right-hand side, all the values and operators will be substituted by their
discrete analogues. Their approximation is presented in detail in the next section.
The right-hand side of equation (5) will not fully correspond to the n-th step. To
obtain in the numerical scheme a invertible operator with "good" properties, in

the expression − 1
2∆2( ~N · ~X) we will consider the value ~X on the (n+ 1)-the step.

The rest of the summands will remain on the n-th one. Then the equation can be
transformed into a numerical scheme:

~Nn ·
~Xn+1 − ~Xn

τ
= −1

2
∆2( ~Nn · ~Xn+1) +

1

2
∆( ~Xn ·∆ ~Nn)−∆Hn

~Nn · ~Xn+1 − ~Nn · ~Xn = −τ
2

∆2( ~Nn · ~Xn+1) +
τ

2
∆( ~Xn ·∆ ~Nn)− τ∆Hn(

I +
τ

2
∆2
)

( ~Nn · ~Xn+1) = ~Nn · ~Xn +
τ

2
∆( ~Xn ·∆ ~Nn)− τ∆Hn

Thus, a semi-implicit numerical scheme is obtained:

~Nn · ~Xn+1 =
(
I +

τ

2
∆2
)−1 (

~Nn · ~Xn +
τ

2
∆( ~Xn ·∆ ~Nn)− τ∆Hn

)
But if we recall the equality ∆2( ~N · ~X) = ∆( ~X ·∆ ~N), following from the derivation
of equation (5), we can further transform the scheme.

~Nn · ~Xn+1 =
(
I +

τ

2
∆2
)−1 (

~Nn · ~Xn +
τ

2
∆( ~Xn ·∆ ~Nn)− τ∆Hn

)
=

=
(
I +

τ

2
∆2
)−1 (

~Nn · ~Xn +
τ

2
∆2( ~Xn · ~Nn)− τ∆Hn

)
=

=
(
I +

τ

2
∆2
)−1 ((

I +
τ

2
∆2
)
~Xn · ~Nn − τ∆Hn

)
=

= ~Nn · ~Xn − τ
(
I +

τ

2
∆2
)−1

∆Hn.

Finally, the scheme has the form

(6) ~Nn · ~Xn+1 = ~Nn · ~Xn − τ
(
I +

τ

2
∆2
)−1

∆Hn.

It is correctly de�ned, since the operator
(
I + τ

2 ∆2
)
is invertible for every τ > 0.

The discrete analogue of this operator will be invertible given su�ciently regular
triangulation. This issue is described in more detail in Section 2.2.3. The inverse
operator is smoothing one, its application to the explicit scheme allows to increase
its stability for all problems of interest and time steps. A similar scheme was
proposed in [8], but this article considered a classical Laplace operator in R3, and
the surface was de�ned by the level of a function approximated on the standard
cubical lattice of a three-dimensional space. We will say more about the stability
of the constructed scheme, but now we can already make the following

Remark 1. It seems that we can substitute the construction of the scheme by

adding the summand β∆2( ~N · ~X) − β∆2( ~N · ~X) and obtain a more general case
with the parameter β instead of 1

2 . But as the numerical experiments presented in

our paper and in paper [8] show, the value β = 1
2 turns out to be important. It is a
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stability threshold of the numerical scheme: given β < 1
2 it is not stable, and given

β ≥ 1
2 it is stable.

After calculating ~Nn · ~Xn+1, the surface on the step n + 1 is obtained in the
form:

~Xn+1 = ~Xn + τ ~NnVN = ~Xn + ~Nn
(
~Nn · ~Xn+1 − ~Nn · ~Xn

)
.

Now, it only remains to calculate all the values and operators belonging to the
scheme.

2.2. Computation of the auxiliary values. The scheme is implemented on the
closed triangulated surface Sn in R3 with a given orientation. In this case, that
means that every vertex v ∈ Sn has a given set of vertices {vi}m−1

i=0 , connected to
it by the edges. Moreover, for this set the forward direction, consistent across all

vertices of triangulation, is given. It is necessary so that the normals ~Nv constructed
at every vertex v have the same direction with respect to the surface Sn.

For simplicity, we introduce some auxiliary notations. We denote by ei the edge
vvi, the angle ∠vivv(i+1)mod m by αi, the angles by the side viv(i+1)mod m in the
triangle vivv(i+1)mod m by βi and γi respectively. We will refer to the set of vertices

{vi}m−1
i=0 , connected by edges with the given vertex v as a star of the vertex v and

denote it by St(v).

Fig. 1. The notations on the star of the vertex

To implement the numerical scheme, it is necessary to be able to compute the
following values:

• The unit normal vector ~N ;
• The mean curvature H;
• The Laplace�Beltrami operator ∆.

All these values have a local character, hence, to compute them in some vertex of
triangulation it su�ces to use only adjacent vertices. It is also necessary to be able
to construct a correct triangulation that will de�ne the orientation of the surface.
The following section will be dedicated to this issue.

2.2.1. Computation of the normal vector. There exists a signi�cant amount of
methods for calculating the normal vector in the vertex of a triangulated surface,
but they all use the same idea � averaging of the normals to triangles of the star
of the given vertex with some coe�cients. The normals to the triangles of the star
are calculated as vector products:

~Nv
i =

[~ei × ~e(i+1)mod m]∥∥[~ei × ~e(i+1)mod m]
∥∥ .



1372 YU.D. EFREMENKO

Then the unit normal vector to the surface at the point v is found in the form

(7) ~N ′v =

m−1∑
i=0

avi ~N
v
i ; ~Nv =

~N ′v∥∥ ~N ′v∥∥ ,
with some coe�cients avi , depending on the vertex and the triangle considered. In
our work, we chose the variant

avi =
sinαi∥∥~ei∥∥∥∥~e(i+1)mod m

∥∥ ,
since the result turns out to be more accurate compared to other methods in
the cases when the exact normal vector is known (see [10]). Also with the given
coe�cients, the normal is calculated using a simple formula:

(8) ~N ′v =
m−1∑
i=0

[~ei × ~e(i+1)mod m]∥∥~ei∥∥2∥∥~e(i+1)mod m

∥∥2 ; ~Nv =
~N ′v∥∥ ~N ′v∥∥ .

It is worth mentioning that in the majority of cases it turns out that averaging with
equal coe�cients � avi = 1

m is su�cient, but for our case we should not neglect
accuracy.

Thus, taking into account the given numbering of vertices in St(v), the normals
pointing in the same direction with respect to the surface are calculated at every
point. Hence, the orientation of the surface is considered to be given.

2.2.2. Computation of the mean curvature. The sign of the mean curvature depends
on the choice of surface orientation, therefore, for its computation we will use the
normal vectors obtained above. To calculate the mean curvature, we have chosen
the method proposed in work [11], which is based on the formula:

(9)

∫ 2π

0

κn(ϕ)dϕ = 2πH.

Here κn(ϕ) is a normal curvature in the vertex v, depending on the rotation angle ϕ

of the normal plane around ~Nv. This integral in the vertex v can be approximately
found in the form of a sum by all vertices adjacent to it:

H =
1

2π

m−1∑
i=0

κin

(
α(i−1)mod m + αi

2

)
,

where κin = 2 ~Nv·~ei∥∥~ei∥∥2 is an approximate value of the normal curvature in the direction

of the edge ei, and
α(i−1)mod m+αi

2 ≈ dϕ(vi). The value of the normal curvature κin
is calculated with the help of decomposition of the normal section into the Taylor
series (the detailed derivation can be found in [11]).

Apart from the simplicity of calculation, this method has one more advantage,
which is its accuracy. In paper [12], an analysis of di�erent methods for calculation
of mean and Gaussian curvatures was performed. For surfaces with a given mean
curvature, this method turned out to be more accurate in average in comparison

with other known methods. Also, to compute H, the unit normal vector ~Nv is
explicitly used, which ensures that the obtained value corresponds to the chosen
orientation.
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Fig. 2. Normal section of a triangulated surface

2.2.3. Discrete Laplace�Beltrami operator. For the Laplace�Beltrami operator, its
approximation by a modi�ed cotangent method was chosen:

(10) ∆f(v) =
1

2A

m−1∑
i=0

ωi(f(vi)− f(v)),

where

ωi =

{
ctgβi + ctgγ(i−1)mod m, for inner vertices;

ctgβi, for the vertices on the boundary.

Here βi and γ(i−1)mod m are the angles opposite to the edge ei in the star of the
vertex v. A is the area of the neighbourhood of the vertex v. By the neighbourhood
of the vertex we mean the Voronoi region � the set of points of a triangulated
area, which are located closer to this vertex than to the rest of the vertices of
triangulation.

Fig. 3. Voronoi region of the vertex v

This method was proposed in [13], where it was analytically shown that such
neighbourhood choice helps to achieve the best approximation of the operator. It is
a more accurate version of a well-known cotangent method that was �rst proposed
in [14].

Consider the issue of invertibility of the operator
(
I + τ

2 ∆2
)
. Let λ be an eigenvalue

of the operator ∆2, and f be an eigenfunction corresponding to λ. Then:

0 ≤
∫
S

(∆f)(∆f)ds =

∫
S

(∆2f)fds =

∫
S

λf2ds = λ

∫
S

f2ds.
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Therefore, the eigenvalues of the operator ∆2 are non-negative, and hence, the
operator

(
I + τ

2 ∆2
)
is invertible when τ > 0. As for the discrete analogue by formula

(10), its matrix would be symmetrical given equality of the areas of neighbourhoods
of every vertex. For a symmetrical matrix, it is possible to prove a similar property
using the scalar product in R3. In practice, the matrix will no be symmetrical, but
given su�ciently regular triangulation, the areas will be close to each other, which
allows to expect the discrete operator to be invertible. For our computations in
Section 4, the operator has always been invertible.

In the form (10), the Laplace�Beltrami operator can be represented as a sparse
(N × N)-matrix where N is the amount of triangulation vertices. In the i−th
row of this matrix, only |St(vi)| of N elements are nonzero. The function f can be
represented as a vector of its values on the vertices. Then for the surface Sn, we
obtain:

∆Sn 7−→ ∆n ∈MN (R); f 7−→ fn =

 f1

...
fN

 ∈ RN .

Therefore, the vector ~Nn · ~Xn+1 can be found from (6) as a solution of the system
of linear equations. The solution was found by the method of QR-decomposition
for sparse matrices.

2.2.4. Computation of the area, volume, and mean curvature value. To control the
ful�llment of properties (2) of the �ow, it is necessary to compute the area and
volume of the triangulated surface. The surface area was calculated in a trivial way
� as the sum of areas of all triangles of triangulation.

Computation of the volume can be reduced to computation of the integral over
the surface. To do that, we used the Stokes formula:∫

Ω

dω =

∫
∂Ω

ω

We put ω = xdy ∧ dz, then

V (Sn) =

∫
Ωn

dx ∧ dy ∧ dz =

∫
Sn

xdy ∧ dz =

M∑
j=1

∫
∆j

xdy ∧ dz.

Here ∆j are the triangles of triangulation. For an arbitrary triangle, the integral of
the form ω is calculated explicitly and depends on the coordinates of its vertices.
Therefore, the whole integral can be computed in one cycle by the triangles of
triangulation.

In order to detect the emergence of surfaces of constant mean curvature � the
stationary surfaces of the �ow, it is necessary to watch for the behaviour of deviation
of the curvature from its average value. The average value H̃ was calculated in the
following way:

H̃ =
1

A(Sn)

∫
Sn

Hds ≈ 1

A(Sn)

N∑
i=1

HiA(Ui)

The deviation of the curvature from its average value was calculated in the L1−norm:

Hdev =
1

A(Sn)

∫
Sn

|H − H̃|ds ≈ 1

A(Sn)

N∑
i=1

|Hi − H̃|A(Ui).
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For clarity, on the graphs we displayed not the Hdev itself, but the percentage that
it amounts from |H̃|. In both integrals, A(Ui) is the area of Voronoi neighbourhood
of the vertex vi.

3. Program implementation

The program for implementation of the described scheme was written in Ñ++
language with the use of a number of libraries. For the work with vectors and
matrices, and to solve systems of linear equations with sparse matrices of a large
size, the Eigen library was used.

To construct triangulations and reconstruct a surface, we used the library of
computational geometry CGAL. The package 3D Surface Mesh Generation provides
a possibility to construct triangulation for an arbitrary surface given by some
function. Moreover, for smooth functions the algorithm ensures homeomorphism
of the triangulated surface and the initial one, and Hausdor� distance constraint.

For reconstruction of the surface, the Polygon Mesh Processing (PMP) and
Scale-space Surface Reconstruction (SSSR) packages were employed. The �rst one
constitutes a set of functions for processing of polygonal surfaces, including the
triangulated ones. The second one serves for restoration of surface triangulation by
a set of points in space. It turned out to be more convenient compared to the other
ones, since it allows to restore triangulation for the surfaces with boundary. The
detailed description will be provided below.

The computations of normals during the reconstruction of triangulation (but not
during the step of the scheme) and their subsequent orientation were made using
functions from the Point Set Processing (PSP) package. Note that the normals
obtained by formula (8) turn out to be more accurate than the normals calculated
by the functions of the PSP package. The reason is that in the �rst case it is known
exactly which vertices are adjacent to the given one.

3.1. Construction of triangulation. We input in the algorithm a smooth functi-
on that de�nes a closed smooth surface and the three parameters: ab, rb, db. Here ab
is the lowest boundary of angle in triangulation triangles, rb is the upper boundary
of radii of Delaunay balls, and db is the upper boundary of distance between the
centre of the circumscribed circle of a triangle and the centre of its Delaunay ball. A
Delaunay ball is a ball that passes through the vertices of a triangulation triangle,
whose centre belongs to the surface. The algorithm is guaranteed to terminate
if ab 6 30◦, but for the work with a discrete Laplace�Beltrami operator obtuse
triangles are undesirable, hence, ab is taken equal to 30◦. The rest of the parameters
are selected in a way that the triangulation is su�ciently small and the theoretical
guarantees from [15] are ful�lled.

As a result of work of the algorithm by the given surface S, a triangulation close
in its properties to a regular one is constructed. An example is shown on Figure 4.
This example demonstrates that the obtained triangles are close to each other in
size, and the triangulation is regular on some domains.

However, as the algorithm runs, the triangles change their size and position in
space: in some places they stretched, in others they shrank. Therefore, for correct
approximation it is necessary to reconstruct the triangulation.

Separately note that the constructed surface is oriented � in every triangle, the
direction of passing by the vertices is de�ned, moreover, the orientations of adjacent
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triangles are consistent. Hence, knowing the orientation of every triangle it is easy
to restore the direction of passing by in the star of the vertex.

Fig. 4. Examples of triangulation

3.2. Reconstruction of triangulation. Reconstruction of triangulation is neces-
sary not only to make it close to a regular one, but also to process the changes in the
topology of the surface. As it was theoretically shown in [5], the surface di�usion
�ow can lead to self-intersection or break of the surface. The algorithm presented
below allows to handle both of these kinds of singularities.

3.2.1. The algorithm. The main idea of the algorithm contains three steps: correcti-
on of triangulation, �nding self-intersections of the surface and removing the corres-
ponding triangles, restoration of the triangulation by points. Since both breaks into
two components and self-intersections are reduced to processing of intersections of
triangles, this algorithm allows to process both of these kinds of singularities.

The algorithm itself consists of the following items:

(1) The input is a triangulated surface after passing through several number of
steps of the scheme. Most often the work of the scheme leads to appearance
of triangles that are too narrow or too large. Hence, �rst of all, the function
isotropic_remeshing from the PMP package is applied, that makes the
triangulation close to regular by reconstructing some edges and vertices
with maximal preservation of geometry. This function is a program realizati-
on of the algorithm proposed in [17]. It takes only two arguments: the
number of iterations and the length of the edge, to which the algorithm
will approximate the lengths of the edges of triangulation.

(2) Further, with the help of function self_intersections from the PMP package,
all pairs of intersecting triangles of triangulation are detected and removed.
After the removal of triangles, it is necessary to remove the points that
correspond to self-intersections.

(3) To do that, in every vertex, a normal by k nearest vertices is calculated with
the help of function jet_estimate_normals from the PSP package. Further,
by function mst_orient_normals, the normals by all points are oriented in
the way that the direction of the normals in the point is consistent with
the directions of normals of its neighbours. This function uses the method
proposed in work [16]. Vertices for which it was not successful are removed.
These points exactly correspond to the places of self-intersection of surface.

(4) The next stage is the construction of triangulation by a given set of points.
To do this, function reconstruct_surface from the SSSR package was used.
Note that despite the absence of guarantees for preservation of the topology
(if the points belong to the surface S, then the surface constructed by
them may appear to be not homeomorphic to S), for su�ciently smooth
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surfaces and regular triangulation the initial surface is restored accurately.
We should mention that due to step 1, the points lie almost regularly, hence,
the obtained triangulation only locally di�ers from the initial one.

(5') (Optional) Unless the surface is su�ciently smooth and the formation of
holes di�ering from the initial boundary is possible, one more step can be
performed. The PMP package provides a possibility to triangulate holes in
the surface, satisfying a particular condition. For example, the length of a
boundary cycle should not exceed a given number (the length of the initial
boundary). To do this, function re�ne_and_fair_hole is used.

Remark 2. The algorithm that seals the holes in the surface only works provided
that the boundary cycle is found. If after removal of intersecting triangles, the
boundary has a more complex shape (for example, a �gure eight on Figure 5), then
such boundary will not be sealed. Therefore, stage 5′ cannot be used instead of 4.

Fig. 5. An example of a boundary cycle after removal of triangles

This algorithm starts after passing through a particular number of steps of the
numerical scheme. In order to adapt to the changes of topology, the moments for
its application are chosen manually. But it can also be applied after some �xed
but su�ciently small number of steps. Its only limitation is that in the break
neighbourhood the calculations have to be performed with a small interval to
process the rupture in time. For the calculations in Chapter 4, the algorithm was
applied after each step of the scheme.

3.2.2. Examples. An example of a break is the evolution of the left surface from
Figure 4. It is obtained by rotation of two semicircles of radius 6, connected by a
parabolic isthmus that has a width 1 in the most narrow place. After some amount
of steps, the isthmus becomes so thin that its triangles intersect. Then they are
removed, and the surface gets triangulated again. As a result, it breaks into two
connected components, each of which evolves separately from the other one. The
rupture process is presented on Figure 6.

The situation is similar when the surface self-intersects. Here, an example is the
evolution of a two-dimensional torus with radii 6 and 3, presented in Section 4.1.
The length of the larger radius of the torus gradually decreases while the one of
the smaller radius increases, until a self-intersection happens. After the intersecting
triangles are removed, the hole in the torus is sealed. Further evolution transforms
it into a sphere.

4. Numerical experiments

4.1. A two-dimensional torus. The �rst example of work of the algorithm is
modeling of evolution of a two-dimensional torus with radii 3 and 6. Its initial
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Fig. 6. An example of surface break

triangulation consists of 15250 vertices and 30500 triangles. A step of the scheme
has changed over time from 0.01 to 0.1, its change is described in detail in Table 1.

Fig. 7. A two-dimensional torus

A torus is a closed surface, hence, its evolution should result into a closed surface
of constant mean curvature surface � a two-dimensional sphere. Indeed, over time
the hole in the torus starts to decrease, until at the point of time 83.2 it gets sealed.
At this moment, a self-intersection of the surface happens, which is then processed
by the algorithm. But in order for this processing to be correct it is necessary to
perform calculations with a su�ciently small step. After that, the obtained surface
evolves into a sphere. The process of sealing the hole and the whole evolution of
the torus are presented on Figure 8.

Step number 0− 50 51− 100 101− 150

Step τ 0.01 0.02 0.05

Step number 151− 1000 1001− 1100 1101− 1200 1201− 1600

Step τ 0.1 0.2 0.5 1

Table 1. The value of the step of the scheme depending of its number

As it has been theoretically shown, the surface area decreases monotonously. By
the end of calculations, it constitutes 70% from its initial size. As for the volume,
it does not change, but up to computational error � its change is only 1%. Also on
every step, the average value of curvature and the deviation of the curvature from
that value was calculated. Both graphs are presented on Figure 9. The peak on the
deviation graph corresponds to the moment of singularity emergence, further, the
deviation monotonously tends to zero. On the last step, it constitutes 1%.
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(a)

(b)

Fig. 8. Hole sealing (à) and torus evolution (b) at points of time
t = 49, t = 88 è t = 559

(a) (b)

Fig. 9. A graph showing the deviation of the curvature from its
average value as a percentage (à) and the change of the surface
area and the volume bounded by the surface (b)

4.2. Sphere sintering. Here, 8 spheres touching each other is the initial surface.
All the spheres have radii 3 and are located in the points of the form (±3,±3,±3).

The touch points are approximated by cylindrical regions of radius
√

59/10. Such
number was selected for convenience in searching for the points of intersection with
the spheres. The initial triangulation is constructed by 51311 points, it contains
102638 triangles. During the starting stages, due to insu�cient smoothness the
algorithm was applied without the re-triangulation stage, only correction of triangu-
lation was performed. The calculations were initially conducted with a step τ =
0.001, which was gradually increased to 0.1. The detailed process of change of the
step of the scheme is presented in the table below. The total number of steps during
the calculation was 840. The evolution process before emergence of singularities is
presented on Figure 11. At this time, surface irregularities gradually get smoothed
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Fig. 10. The surface at the point of time t = 0

Step number 0− 30 31− 60 61− 100

Step τ 0.001 0.002 0.005

Step number 101− 150 151− 200 201− 300 301− 840

Step τ 0.01 0.02 0.05 0.1

Table 2. The value of the step of the scheme depending of its number

and the holes narrow down. After that, all 6 holes start closing until the initial

Fig. 11. The surface at points of time t = 0.025, t = 1.79 and t = 16.79

surface breaks into two connected components: the outer surface that resembles a
cube, and the inner one with its shape close to a sphere. All breaks happen similarly
to the ones presented in Section 3.2.2. Since the initial surface is su�ciently large,
the step τ = 0.1 was suitable for correct processing of the singularities. In what
follows, the algorithm is applied without step 5′. Moreover, due to the smoothness
of the surface and regular location of the points, no extra holes appear, the surface
remains being closed. When the last hole is sealed, the surface breaks into two parts.
At this moment, the triangulation consists of 37310 points and 75012 triangles. The
shape of the outer surface resembles a cube. After the rupture, both of the obtained
surfaces independently evolve into spheres. The curvature of a two-dimensional
sphere is constant, hence, a sphere is a stationary point in the given �ow. At the end
of calculations, the outer sphere consists of 28334 vertices and 56664 triangles, and
the inner one has 5185 vertices and 10366 triangles. During each step, the surface
area and the volume bounded by it were calculated. The corresponding graph is
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Fig. 12. Sealing of holes in the surface

Fig. 13. The form of the outer surface

Fig. 14. Surface rupture, inside view

provided on Figure 16. The area monotonously decreases as it has been predicted
theoretically. Due to computational error, the volume cannot be preserved, but its
change over the whole calculation time constitutes only 0.6% from the initial one.

Fig. 15. The surface at the point of time 31.8 and the surface
obtained as a result

Figure 16 also presents a graph of the curvature deviation from its average value
as a percentage. One peak can be observed on the graph, which corresponds to
the moments of breaking of the surface into two connected components. After this
rupture, the curvature gradually approaches the constant one.

4.3. Three spheres and a plane. The third example of calculations is the evolution
of three spheres of radius 3, touching each other, and a plane z = −3. This surface is
presented on Figure 17. Touch points of the spheres and the plane are approximated
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(a) (b)

Fig. 16. A graph showing the deviation of the curvature from its
average value as a percentage (à) and the change of the surface
area and the volume bounded by the surface (b)

by cylinders of radius 1, and the points there the spheres touch each other by
cylinders of radius 1

2 . The plane which we consider is, of course, bounded, it is
a circular domain of radius 24. It has to be su�ciently large so that the surface
disturbances during the evolution would not reach the boundary of the plane.

To calculate the values on the boundary, some modi�cations were performed:

• If the boundary vertex only has two vertices in the star, then the normal
is calculated as a vector product of the corresponding edges. If it has more
than two vertices, then the normal was calculated by formula (7) with the
coe�cients avi = 1

m ;
• Mean curvature at boundary vertices is assumed to be zero;
• For the Laplace�Beltrami operator, formula (10) was used, since it takes
boundary vertices into account.

The initial triangulation consisted of 95657 vertices and 190322 triangles. First,
step τ due to a large curvature at touch points was equal 0.001, later it gradually
increased to 0.2. After all the emerging singularities were processed, the step of
the scheme increased up to τ = 2. Such great value results from the fact that the
surface was close to a plane � the mean curvature was almost constant and close
to zero. But the moments of singularity processing were passed by with small steps.
Detailed change of the step is presented in Table 3. During the �rst ten steps, the
triangulation algorithm was applied only in the form of stage 1.

First, the hole between the spheres at the point of time t = 0.84 is sealed. This
process is presented on Figure 18. Further, the holes between the spheres and the
plane expand until the holes between the pairs of spheres and the plane are sealed.
Seen from below, this process looks as an expansion of circles, by which the spheres
and the plane were intersecting. At the point of time t = 9.1, the holes between the

1At this moment the intersection of two surfaces happens, hence, the region of high curvature
emerges.

2The closer the surface is to a plane, the closer the mean curvature is to zero. Hence, the step
of the scheme was getting larger and larger.
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Step number 1− 30 31− 60 61− 100 101− 200

Step τ 0.001 0.002 0.005 0.01

Step number 201− 300 301− 400 401− 500 501− 601

Step τ 0.02 0.05 0.1 0.2

Step number 601− 850 851− 9351 936− 950 951− 980 1001− 1030

Step τ 0.5 1 0.0005 0.001 0.005

Step number 1031− 1060 1061− 1100 1101− 1140 1141− 1170 981− 1000

Step τ 0.01 0.02 0.05 0.1 0.002

Step number 1171− 1200 1201− 12502 1251− 1350 1351− 1450 1451− 1600

Step τ 0.2 0.5 1 1.5 2
Table 3. The value of the step of the scheme depending on its number

Fig. 17. The surface at points of time t = 0, t = 0.07 and t = 0.8.

spheres and the plane start sealing. The isthmus breaks on Figure 20 correspond
to those.

After these holes are sealed, the surface breaks into two parts: a closed surface
homeomorphic to the sphere, and a surface with a boundary homeomorphic to a
region of the plane. The mean curvature of the plane equals zero, hence, it is a
stationary point of the �ow of surface di�usion. It is to the plane that the large
surface tends. But the general con�guration here is such that these two surfaces
necessarily intersect when evolution happens. An intersection of a ball with a larger

Fig. 18. Sealing of the �rst hole when t = 0.84

surface (see Appendix B) happens at the point of time t = 187.3. At this moment,
the step of the scheme decreases again to 0.0005, since the touch point has a high
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curvature. When the surface smooths, the step of the scheme gradually increases
to 0.1. Further, due to a signi�cant slowdown in the evolution speed, the step of
the scheme was increasing more often and on the last steps its value achieved 2.

Fig. 19. The view on the surface from below at the moments
t = 0.29, t = 5.79, and t = 8.29

Fig. 20. Surface break for t ∈ [9.1, 9.5]

As a result, at the point of time t = 774.627, the process stops, since the surface
turns into a plane, which is a stationary point of the �ow. The intermediate stages
of the surface evolution are presented on Figures 19, 20, and 21. For clarity, the
rupture moments are presented separately.

After every step of the scheme, the surface area and the deviation of the curvature
from the average value were calculated. In this case, not as a percentage, since
the average value of the curvature tends to zero. The corresponding graphs are
presented on Figure 22. Although the decrease of the area is guaranteed only for a
closed surface, for the considered surface it also takes place, moreover, it happens
monotonously. The graph showing deviations of the curvature from the average
value, as it was seen before, has peaks, which represent the moments of division of
the surface and gluing of two components.

4.4. Accuracy of the obtained solutions. At the moment, we have not found
exact nontrivial solutions of the equation of surface di�usion. Only the constant
mean curvature surfaces are known. Since the theoretical estimates of accuracy for
the discrete analogue of the Laplace�Beltrami operator, mean curvature, and the
normal vector could not be found, there is no theoretical accuracy estimate for any
of the existing numerical schemes for solving the equation (1).
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Fig. 21. The surface evolution from the moment t = 13.3 until
the end of calculations

(a) (b)

Fig. 22. A graph showing the deviation of the curvature from its
average value as a percentage (à) and change of the surface area
(b)

Therefore, accuracy of the obtained approximated solutions can be estimated
only by indirect evidence: the behaviour of area, volume, and mean curvature. We
can also make a comparison with a trivial solution. A unit sphere was taken as
the initial surface S(0). Therefore, it will be the solution at every moment of time.
But due to the error in the initial triangulation, not all of the points belong to
the surface of the sphere, but some of them are located inside or outside of it. To
estimate this error, after each step of the scheme, two values were calculated.

The �rst value D1 = 1
A(Sn)

∑N
i=1 ||~vi| − 1|A(Ui) � the average deviation of the

length of the radius vector of the vertex from unit� characterizes the closeness of the

surface to a unit sphere. The second one � D2 = 1
A(Sn)

∑N
i=1 |||~vi| − 1| −D1|A(Ui)

� characterizes the di�erence between the vertices in deviations of the lengths of
their radii vectors from unit. The equality D2 = 0 means that all deviations are
similar and equal D1, that is, the surface is a sphere with a radius other than unit.
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Fig. 23. The change D1 (on the left) and D2 (on the right) during
the evolution given a di�erent number of vertices of initial
triangulation.

Three cases were considered: 895, 3550, and 22669 vertices of triangulation. For
them, calculations were conducted with a step 0.00005, with the total number of 50
steps. The results are presented on Figure 23. As it can be seen on the graph, over
time and as the triangulation gets smaller, both values tend to zero. That means
that the surface tends to a sphere, and the radius of this sphere tends to unit.

4.5. Computational stability. In Section 2.1, a remark has been made about the
choice of the parameter β for construction of a numerical scheme. In this section,
the reasoning on the choice of the value β = 1

2 is provided. As we have already
mentioned, a similar construction was encountered in [8] for a square of Laplace
operator, and a similar value was chosen on the basis of experiments and some
reasoning, although that was not strict. No experiments with various parameters
were provided there.

Numerical experiments with the scheme (6) constructed here show a similar
result: for β < 1

2 , the scheme is not stable, and for β ≥ 1
2 it is computationally

stable. The experiments, on whose basis the conclusion was made, are provided on
Figures 24 and 25. The initial surface is an ellipsoid with semi-axis 5, 4, and 3. The
calculations were performed with a step τ = 0.5, and the initial number of points
in the four cases was di�erent, all around 3500. It can be seen that the explicit
scheme corresponding to β = 0, for the considered step is absolutely unstable �
the surface "exploads" in the majority of its points after three steps of the explicit
scheme (Figure 24). The �rst two shots were made on the same scale, and the third
one shows the obtained surface entirely.

t = 0 t = 1.5

Fig. 24. Computations with using of the explicit scheme
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The scheme with a parameter β = 1
4 computes steadily for some time, but

at some point waves appear on the surface, which do not stop even as the surface
approximates the sphere. We can conclude that this scheme is not stable. Moreover,
its instability is not caused by triangulation, since it is reconstructed on every step.

t = 0 t = 9 t = 15

Fig. 25. Computational stability for di�erent parameters; The
�rst line � β = 1

4 , the second one � β = 1
2 , the third one �

β = 3
4 .

As for the scheme with the parameter β = 1
2 , it turns out to be computationally

stable on each of the considered steps and triangulations. For β > 1
2 , the scheme

also shows stability, but does not di�er in its properties from β = 1
2 . No signi�cant

di�erences were found by the speed of convergence to a sphere and the change of
area and volume.

Appendix A. Detection of connected components

As it was seen from the numerical experiments, during the evolution the surface
can break into several connected components. But when �nding the next position of
~Xn+1
i of some vertex vi, scheme (6) uses all the other vertices of the surface. Hence,

before computing the matrices, it is necessary to divide the surface into connected
components, so that they evolve independently from each other. Also when the
surface is re-triangulated, at the break points some points that lie separately can
emerge, which are not connected to other edges. It is necessary to be able to �nd
and remove them. We will consider this separately.

To detect the connected components, the PMP package provides function
split_connected_components, which breaks a given (disjoint) triangulated surface
T into an array of its connected components T [i]. This function starts after the
re-triangulation stage in the algorithm from Section 3.2.1. If there are several
connected components, then the algorithm outputs an array of surfaces, and further
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the calculations are performed on each of the components separately from the other
ones.

In the case of emergence of isolated points, there is also a possibility to remove
them. To do that, function keep_large_connected_components was applied, that
removes connected components whose size is smaller than the given one. Here, by
size we mean the number of triangles in the connected component. This parameter
is selected depending on the number of triangles of the initial triangulation. In
the case when the exact number of connected components is known, function
keep_largest_connected_components can be used, which only preserves a given
number of the largest connected components.

Appendix B. Processing of intersection of two surfaces

All ruptures and self-intersections of the surfaces considered above happened
smoothly, hence, for their processing the algorithm 3.2.1 was su�cient. The situation
when two separate surfaces intersect is di�erent. That is much harder to process,
since the triangulation was not prepared to that in advance. If we just remove the
intersecting triangles, there is a chance that we do not obtain a required surface as
a result of re-triangulation. Therefore, to process the intersection in Section 4.3, a
di�erent approach was used.

At the moment when two surfaces intersect (that can be tracked by combining
surfaces pairwise into one and calling function does_self_intersect), it is necessary
to change the triangulations of both surfaces such that the intersection line was
a subset of the edges of both triangulations. That can be achieved using function
core�ne_and_compute_union, which �nds a closed surface generated by an intersec-
tion of the given surfaces.

Fig. 26. Intersection of surfaces and further subdivision of the intersection.

Further, all three surfaces are combined into one and, as it was done before,
all intersecting triangles are removed. The obtained surface has a hole in the
area of intersection, since exactly the surface by which they intersect is removed.
Geometrically everything is �nished, but data issues remain � vertices and edges on
the line of intersection are duplicated for both surfaces. To remove the duplicating
vertices and edges and for orientation of the obtained surface (if the initial ones
were oriented in a di�erent way), function repair_polygon_soup was used. Without
this step, both surfaces will not be glued by the intersection line. After that, the
computational process starts again.
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Fig. 27. Removal of intersection, �xing of the triangulation, and
evolution of the surface
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