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ON THE EXISTENCE OF GLOBAL SOLUTION OF THE

SYSTEM OF EQUATIONS OF ONE-DIMENSIONAL MOTION OF

A VISCOUS LIQUID IN A DEFORMABLE VISCOUS POROUS

MEDIUM

M.A. TOKAREVA, A.A. PAPIN

Abstract. The initial-boundary value problem for the system of one-
dimensional motion of a viscous liquid in a deformable viscous porous
medium is considered. Local theorem of existence and uniqueness of
the problem is proved in the case of compressible liquid. In the case of
incompressible liquid the theorem of global solvability in time is proved
in Holder classes.

Keywords:Darcy's law, poroelasticity, �ltration, global solvability, poro-
sity.

1. Introduction

An interest in the mathematical modeling of multiphase �ows arises when consi-
dering the problems of describing such technogenic systems as modeling processes
in oil wells and near-surface formations. In many practical problems, the porosity of
the medium is variable, and the porous medium is deformable. At present, rigorous
mathematical results in the �eld of models of �ltration in deformable porous media
are presented only in a few works and in the case of single-phase �ltration.

Mathematical models of �uid �ltration in a porous medium apply to a broad
range of practical problems. The examples include, but are not limited to �ltration
near river dams, irrigation and drainage of agricultural �elds, dynamics of hydraulic
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fracturing during oil and gas mining, methane extraction from coal and shale
deposits, �ow of magma in the earth's crust, physiological �uids motion in tissues,
tumour growth processes etc. The problems of heat and mass transfer in multiphase
media and the dynamics of multicomponent media are widely represented in natural
processes and human activities. This motivates the mathematical modeling of the
processes of interpenetrating motion of continuous media. The main attention in
the paper is paid to investigation of the problem of heat and mass transfer in porous
and poroelastic media. The mathematical model considered in this paper takes into
account poroelasticity and deformation of the medium, including motion of solid
particles of the medium and variable porosity. The resulting mathematical models
are usually non-classical and require new approaches, both to investigate their
correctness and to numerically simulate them. Mathematical analysis of multiphase
and multicomponent systems provides an opportunity to predict the nature of
complex �ows in various situations that do not have a pre-experimental background.
In addition, such analysis serves as a basis for the construction of numerical algo-
rithms, which plays a key role in the development of speci�c technological processes.
The parameters of these models strongly depend on the properties of �uids as well
as the porous solid medium. Thus, a vast number of models are currently available
(see [1], [2] and references therein). Majority of these models, however, make a
simplifying assumption of a static solid porous skeleton, and treat the porosity
as a given function. In this work, we try to relax this assumption to account the
mobility and poroelastic properties of a solid component. Models with a given
porosity function of a solid component are based on the Muskat-Leverett �ltering
theory. S.N. Antontsev and V.N. Monakhov [3] developed the theory for a special
case of two-phase motion of immiscible incompressible liquids in a non-deformable
porous medium. A large number of papers are devoted to numerical studies (see,
for example, [4]).

The construction of mathematical models of �uid �ltration processes in porous
media is complicated by the fact that �ow is often considered in a mobile inhomoge-
neous medium, which is characterised by the presence of variable porosity. A special
feature of the model in this paper is the consideration of mobility of solid skeleton
and its poroelastic properties. This model is a generalization of the classical Muskat-
Leverett model in which porosity is treated as a given function. The consideration
of the compressibility of the porous medium is fundamental.

Terzaghi [5] was the �rst to develop models of poroelastic media that would
take into account the mobility of the skeleton and its poroelastic properties. He
introduced the principle of e�ective stress, de�ned as the di�erence between the
total stress and the pressure of the liquid phase. This position re�ects the fact
that the liquid carries a part of the load. The relation between the deformation
of the solid matrix skeleton and the �uid �ow is of key importance here. Bio [6]
further developed Terzaghi's theory: he introduced a joint deformation model of a
�uid-saturated porous medium and established the theory of poroelasticity. Almost
simultaneously and independently, Frenkel [7] developed a similar theory. Later,
V.N. Nikolayevsky, P.P. Zolotarev, and Kh.A. Rakhmatullin [8], [9], [10] proposed
analogous models in their studies.

O.B. Bocharov [11], allowed the porosity to depend on the pressure, but no
deformation of the porous skeleton was considered. V.V. Vedernikov and V.N. Niko-
laevskii [12] proposed a two-phase �ltration model in a deformable porous medium
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with a solid skeleton motion being described analogous to the Terzaghi principle
and the modi�ed Hooke linear law. There are no results to validate the model. This
was done later in [13] where particular solutions were derived. O.B. Bocharov et
al. [14] derived the properties of the solutions for a degenerate case. All �ltration
models are very complex both from a theoretical point of view as well as in their
application to speci�c problems. Only a handful of studies on deformable porous
media models published to date included result justi�cation. A mainstream research
is based on the classical theory of �ltration, and model justi�cation is only examined
for a limited number of speci�c cases. Strict mathematical results are only presented
in a few papers exploring the existence and uniqueness of such problems solutions.
For example, A. M. Abourabia et al. in [15], [16], [17] reduced the initial system of
equations to a single equation of higher order by making a number of simplifying
assumptions. M. Simpson et al. [17] proved a local solvability of the Cauchy problem
in S.L. Sobolev spaces. Y. Geng et al. [15], [16], investigated solutions of the "simple
wave"type. Numerical studies of such problems were carried out, for example,
in [18].

2. Problem Statement

The concepts of volumes of the solid skeleton Vs and pores Vp are introduced
for each component of a two-phase medium (the s skeleton and the f liquid phase

contained in it). Then the speci�c pore volume (porosity) can be stated as φ =
Vp
Vt
,

where the total volume is Vt = Vp + Vs.
Darcy �ow, which describes the �uid velocity relative to the solid velocity, is

de�ned as [19]

~qD = φ(~vf − ~vs),
where ~vf , ~vs are the velocities of �uid and porous skeleton respectively.

Mass conservation laws for liquid and solid phases in absence of phase transitions
have the form [20]

∂(ρfφ)

∂t
+5 · (ρfφ~vf ) = 0,

∂(1− φ)ρs
∂t

+5 · ((1− φ)ρs~vs) = 0,

where t is the time, ρf is the density of liquid, ρs is the density of solid phase, 5 =

( ∂
∂x1

, ∂
∂x2

, ∂
∂x3

) is the gradient operator, (x1, x2, x3) are the Eulerian coordinates.
Laws of conservation of mass can be written in terms of material derivative:

( ddt = ∂
∂t + ~vs · 5). Then we obtain

dρfφ

dt
= −5 ·(ρf (~qD + φ~vs)),

∇ · ~vs =
1

1− φ
dφ

dt
.

By motion of �uid in the deformable medium it is assumed that [20], [21]:
1. the deviator of stress tensor in the liquid phase is neglected (Sf = 0), because

the �uid viscosity is much lower than the skeleton shear viscosity.
2. the total stress tensor σ is described via stress tensors of solid phase σs and

liquid phase σf by the rule:

σ = (1− φ)σs + φσf = (1− φ)(Ss − psI)− φpfI,
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and the total pressure is described as ptot = (1 − φ)ps + φpf , where σs, ps are the
stress tensor and the pressure of solid phase, Ss = 2ηε̇D is deviator of stress tensor,

ε̇D = 1
2

(
∂vs
∂~x +

(
∂vs
∂~x

)∗)
is the deviatoric strain rate tensor, η is the skeleton shear

viscosity, σf , pf are the stress tensor and the pressure of liquid phase.
Terzaghi's principle states that deformation of the solid matrix is determined

by an e�ective stress de�ned as [5] σe = σ + pfI. Then, for a fully saturated,
low-porosity media, the e�ective dynamic pressure is pe = ptot − pf [22].

Notice, that

(1) dφ =
dVp
Vt
− Vp

dVt
V 2
t

=
dVp
Vt
− φdVt

Vt
.

If density of the solid phase ρs is constant, then dVs = 0 and dVt = dVp. From
equation (1) we obtain

(2) dφ = (1− φ)
dVt
Vt

.

The assumption that porosity is a function of e�ective pressure was used in work
[23] φ = φ(pe), in particular: φ = φ0 exp{−bpe}. In approach, used in [23], the
bulk compressibility of the two-phase medium βt is de�ned as relativity summary
change of volume, responding on changing applied e�ective dynamic pressure: βt =
− 1
Vt

(∂Vt∂pe
).

Equation (2) in this case can be written as

dφ = −(1− φ)βtdpe.

Volumetric compressibility is also a function of porosity, for example [24]: βt(φ) =
φbβφ, where βφ is the bulk compressibility, b is a positive constant

βφ = −1/Vp(∂Vp/∂pe).

Thus the temporal variation of the porosity owing to mechanical compaction can
be written as [25]:

1

1− φ
dφ

dt
= −βt(φ)

dpe
dt
.

The constitutive creep law can be written as [26], [27]

1

1− φ
dφ

dt
= −pe

ξ
,

where ξ corresponds to a bulk viscosity. This formulation is analogous to a creep-
controlled viscous compaction law used in studies dealing with magma transport in
the Earth's mantle [28].

The bulk viscosity as rule depends on φ, for example: ξ(φ) = η
φm , where m is a

positive constant [29].
Thus the rheological law combining mechanical and viscous compaction can be

expressed as [24], [26]

1

1− φ
dφ

dt
= −βt(φ)

dpe
dt
− pe
ξ(φ)

.

The conservation of momentum for the �uid can be stated as Darcy's law [19],
[30]

~qD = −K 5
(
Pex
ρfg

)
,
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where K is the hydraulic conductivity, K = (k′ρfg)/µ, k′, µ are the permeability
and the �uid dynamic viscosity, g is the density of the mass forces (~g = (0, 0,−g)),
Pex is the excess �uid pressure, de�ned as the di�erence between the �uid pressure
and the hydrostatic pressure: Pex = pf − ph. In this way, we have

~qD = −k
′

µ
(5pf + ρf~g).

In some cases coe�cients k′, βt, ξ could be determined in experiment another
way. In particular they can be determined as: βt = φbβφ, ξ = η/φm, k′ = kφn,
where k is the permeability, b = 1/2,m ∈ [0, 2], n = 3 [24].

The laws of momentum conservation for each phase can be written as [31]

∇ · (φσf )− ρfφ~g +M = 0,

∇ · ((1− φ)σs)− ρs(1− φ)~g −M = 0,

where M is the interphase pulse exchange.
Adding these equations, we obtain the momentum conservation equation of the

system "solid matrix - pore �uid"[20], [21], [25], namely the equation of incompres-
sible deformation of the solid skeleton matrix, taking into account the e�ect of the
pore �uid pressure:

∇ · σ + ρtot~g = 0,

where ρtot = (1− φ)ρs + φρf is the density of the two-phase medium.
In expanded form, the previous equation can be written as follows [31]

ρtot~g + div

(
(1− φ)η

(
∂~vs
∂~x

+ (
∂~vs
∂~x

)∗
))
−∇ptot = 0.

In some applications, the force balance equation is written as [20], [31]

−∇ptot + ρtot~g = 0.

The equation of energy conservation is taken in the following form [31], [32]

(ρfcfφ+ ρscs(1− φ))
∂θ

∂t
+ (ρfcfφ~vf + ρscs(1− φ)~vs)∇θ = div(λ∇θ),

where θ is the temperature of the medium (the same for each phases), cs and cf
are the heat capacities for at constant volume of phases. The thermal conductivity
coe�cient of the medium λ(φ) is taken in the form λ(φ) = λfφ+ λs(1− φ), where
λf , λs are the thermal conductivity of liquid and solid phase (averaged thermal
conductivity) [31].

Thus, taking into account the dependencies coe�cients of skeleton viscosity and
compactness of porosity and temperature, the equations of model in the absence of
phase transitions have the form [20], [21], [24], [31]:

(3) ∂(1−φ)ρs
∂t + div((1− φ)ρs~vs) = 0,

∂(ρfφ)
∂t + div(ρfφ~vf ) = 0,

(4) φ(~vf − ~vs) = −K(φ)

µ(θ)
(∇pf + ρf~g),

(5) ∇ · ~vs = −a1(φ)ξ1(θ)pe − a2(φ)ξ2(θ)(
∂pe
∂t

+ ~vs · ∇pe),

(6) ∇ · σ + ρtot~g = 0, ρtot = φρf + (1− φ)ρs,
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(7) (ρfcfφ+ ρscs(1− φ))
∂θ

∂t
+ (ρfcfφ~vf + ρscs(1− φ)~vs)∇θ = div(λ∇θ),

(8) ptot = φpf + (1− φ)ps, pe = (1− φ)(ps − pf ).

This quasilinear composite type system describes the spatial unsteady non-
isothermal motion of a compressible �uid in a viscoelastic medium. Here K(φ),
a1(φ), a2(φ), ξ1(θ), ξ2(θ) are the parameters of poroelastic medium.

For the permeability coe�cient K(φ), a well-known dependence of the form is
used K(φ) = K ′φn, where K ′ = const > 0, n = 3, [24]. In what follows, the
notations are used k(φ) = K(φ)/µ(θ), a1(φ) = φm, ξ1(θ) = 1/η(θ), where η(θ) is the
coe�cient of dynamic viscosity of the skeleton, which characterizes the relationship
between the strain rate tensor and the stress tensor and is determined from the
experiment under uniaxial compression [33], [34]. The following dependence is taken
as a model one: η(θ) = ηrexp(Qr(1−θ/θr)/Rθ), ηr, Qr, θr, R are positive constants
(analog of the Arrhenius formula for the dependence of the reaction rate on tempera-
ture) [24].

Numerical studies of various initial-boundary value problems for the system of
equations (2)�(8) were carried out in the works [21], [24], [35]. A numerical analysis
of the initial-boundary value problem for the system (3)�(8) is carried out in [36]:
di�erence schemes are constructed and their convergence is established. Questions
of justi�cation in these papers were not considered. In some particular cases, the
issues of justifying this model are discussed in [37], [38]. The local solvability of the
Cauchy problem in Sobolev spaces was established in [17].

The system of equations describing the one-dimensional unsteady motion of a
compressible �uid in a viscous porous medium (a2(φ) = 0) in the domain (x, t) ∈
QT = Ω× (0, T ),Ω = (0, 1), is as follows [21], [31]:

(9)

∂(1−φ)ρs
∂t + ∂

∂x ((1− φ)ρsvs) = 0,

∂(ρfφ)
∂t + ∂

∂x (ρfφvf ) = 0,

(10) φ(vf − vs) = −k(φ)

µ(θ)
(
∂pf
∂x
− ρfg),

(11)
∂vs
∂x

= −a1(φ)ξ1(θ)pe, pe = ptot − pf , ptot = φpf + (1− φ)ps,

(12) ρtotg +
∂ptot
∂x

= 0,

(13) (ρfcfφ+ ρscs(1− φ))
∂θ

∂t
+ (ρfcfφvf + ρscs(1− φ)vs)

∂θ

∂x
=

∂

∂x
(λ
∂θ

∂x
).

The problem is written in the Eulerian coordinates x, t. The real density of
the solid particles ρs is assumed constant, and Clapeyron dependence is taken as
pf = Rθρf , R = const > 0. At the boundary of the region Ω, the velocities of the
phases vs, vf are set, and at the initial moment of time the density ρ0

f (x) and the

porosity φ0(x) are set.
The following conditions are considered for the system (9)�(13):

(14)

vs|x=0,1 = vf |x=0,1 = 0,
∂θ

∂x
|x=0,x=1= 0, ρf |t=0 = ρ0(x), φ|t=0 = φ0(x), θ |t=0= θ0(x).
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Following [3], [39], [40] we rewrite the system (9)�(13). Suppose that x̄ = x̄(τ, x, t)
is the solution of the Cauchy problem

∂x̄

∂τ
= vs(x̄, τ), x̄ |τ=t= x.

We set x̂ = x̄(0, x, t) and take x̂ and t for the new variables. Then 1 − φ(x̂, t) =

(1 − φ0(x̂))Ĵ(x̂, t), where Ĵ(x̂, t) = ∂x̂
∂x (x̂, t) is the Jacobian of the transformation.

Instead of (9)�(13) we have

∂(1− φ̂)

∂t
+

(1− φ̂)2

1− φ0

∂v̂s
∂x̂

= 0,
∂

∂t
(ρ̂f φ̂)+

(1− φ̂)

1− φ0

∂

∂x̂
(ρ̂f φ̂v̂f ) = v̂s

(1− φ̂)

1− φ0

∂

∂x̂
(ρ̂f φ̂),

φ̂(v̂s − v̂f ) =
k(φ̂)

µ(θ̂)

(1− φ̂)

1− φ0

∂p̂f
∂x̂

,
(1− φ̂)

1− φ0

∂v̂s
∂x̂

= −a1(φ̂)ξ1(θ̂)p̂e.

Since

v̂s
∂

∂x̂
(ρ̂f φ̂) =

∂

∂x̂
(ρ̂f φ̂v̂s)− ρ̂f φ̂

∂v̂s
∂x̂

,

the continuity equation for the liquid phase can be reduced to the form

1

(1− φ̂)

∂

∂t
(ρ̂f φ̂) +

1

1− φ0

∂

∂x̂
(ρ̂f φ̂(v̂f − v̂s)) +

1

1− φ0
ρ̂f φ̂

∂v̂s
∂x̂

= 0.

Using the continuity equation for the solid phase, we have

∂

∂t
(ρ̂f

φ̂

1− φ̂
) +

1

(1− φ0)

∂

∂x̂
(ρ̂f φ̂(v̂f − v̂s)) = 0.

Finally, passing from (x̂, t) to the mass Lagrangian variables (y, t) by the rule [3]

(1−φ0(x̂))dx̂ = dy, y(x̂) =
x̂∫
0

(1−φ0(η))dη ∈ [0, 1] and formally replacing y by x,

system (9)�(13) can be written in the form

(15)
∂(1− φ)

∂t
+ (1− φ)2 ∂vs

∂x
= 0,

(16)
∂

∂t

(
ρf

φ

1− φ

)
+

∂

∂x
(ρfφ(vf − vs)) = 0,

(17) φ(vs − vf ) =
k(φ)

µ(θ)
((1− φ)

∂pf
∂x
− ρfg),

(18) (1− φ)
∂vs
∂x

= −a1(φ)ξ1(θ)pe, pe = ptot − pf ,

(19) ρtotg + (1− φ)
∂ptot
∂x

= 0,

(20)

(ρfcfφ+ρscs(1−φ))
∂θ

∂t
= (1−φ)

∂

∂x
(λ(1−φ)

∂θ

∂x
)+

k(φ)

µ(θ)
cfρf ((1−φ)

∂pf
∂x
−ρfg)

∂θ

∂x
.

Taking into account equation (19), we obtain the representation for ptot :

ptot = P 0(t)−
∫ x

0

ρtotg

1− φ
dξ.
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We represent the equation (18) as

∂vs
∂x

= −a1(φ)

1− φ
ξ1(θ)(ptot − pf ).

After integrating this equation by x from 0 to 1 and taking into account the
submission for ptot we get

P 0 = (

1∫
0

(
a1(φ)

1− φ
ξ1(θ)(pf +

∫ x

0

ρtotg

1− φ
dξ)

)
dx− vs(1, t) + vs(0, t))·

·

 1∫
0

a1(φ)

1− φ
ξ1(θ)dx

−1

.

Converting the original system of equations we get a system for �nding porosity,
pressure of �uid and temperature (20) (using equation (16), taking into account
equation (17) and using equation (15), taking into account equation (18)):

(21)
∂

∂t
(
pf
Rθ

φ

1− φ
) =

∂

∂x
(
k(φ)

µ(θ)

pf
Rθ

((1− φ)
∂pf
∂x
− g

Rθ
pf )),

(22)
∂G

∂t
= ξ1(θ)(pf − ptot),

(23)

(ρfcfφ+ρscs(1−φ))
∂θ

∂t
= (1−φ)

∂

∂x
(λ(1−φ)

∂θ

∂x
)+

k(φ)

µ(θ)
cfρf ((1−φ)

∂pf
∂x
−ρfg)

∂θ

∂x
,

where

ptot =

1∫
0

(
a1(φ)

1− φ
ξ1(θ)(pf (ρf ) +

∫ x

0

ρtotg

1− φ
dξ)

)
dx

 1∫
0

a1(φ)

1− φ
ξ1(θ)dx

−1

−

−
∫ x

0

ρtotg

1− φ
dξ,

and the function G is de�ned as follows:

∂G

∂φ
=

1

(1− φ)a1(φ)
.

3. Compressible Fluid

For system (21)�(23) conditions (14) could be written as

(24)
((1− φ)

∂pf (ρf )
∂x − ρfg) |x=0,x=1= 0, ∂θ

∂x |x=0,x=1= 0,

pf |t=0= p0(x), φ |t=0= φ0(x), θ |t=0= θ0(x),

here

p0(x) = Rθ0ρ0.

In the notation of function spaces we follow [41]: Ck+α,m+β(QT ) � Hölder's space,
where k,m are natural numbers, (α, β) ∈ (0, 1], with the norm ||f ||Ck+α,m+β(QT ).
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De�nition 1. The solution of problem (21)�(24) is the set of functions φ, ρf , θ ∈
C2+α,1+β(QT ), such that 0 < φ < 1, ρf > 0, θ > 0. These functions satisfy the
equations (21)�(23) and the initial and boundary conditions (24) and are regarded
as continuous functions in QT .

Theorem 1. Suppose that the data of problem (21)�(24) satisfy the following
conditions:
1. the functions k(φ), ξ1(θ), λ(φ), µ(θ), a1(φ) and their derivatives up to the second
order are continuous for φ ∈ (0, 1), pf > 0, θ > 0, and satisfy the conditions

k−1
0 φq1(1−φ)q2 ≤ k(φ) ≤ k0φ

q3(1−φ)q4 , k−1
0 φq5(1−φ)q6 ≤ λ(φ) ≤ k0φ

q7(1−φ)q8 ,

0 < ξ0
1 ≤ ξ1(θ) ≤ ξ1

1 <∞, 0 < µ0 ≤ µ(θ) ≤ µ1 <∞,
a1(φ) = a0(φ)φα1(1− φ)α2−1, 0 < R1 ≤ a0(φ) ≤ R2,

where k0, ξ
0
1 , ξ

1
1 , µ0, µ1αi, Ri, i = 1, 2 are positive constants, q1, ..., q8 are �xed real

parameters,
2. the initial functions φ0, p0, θ0 and function g satisfy the following smoothness
conditions: φ0 ∈ C2+α(Ω), p0 ∈ C2+α(Ω), θ0 ∈ C2+α(Ω), g ∈ C1+α,1+α/2(Q̄T ), and
the matching conditions

((1− φ0)
dp0

dx
− ρ(p0, θ0)g(x, 0)) |x=0,x=1= 0,

as well as satisfy the inequalities

0 < m0 ≤ φ0(x) ≤M0 < 1, 0 < m1 ≤ p0(x) ≤M1 <∞, 0 < m2 ≤ θ0(x) ≤M2 <∞,

0 < g(x, t) ≤ g0 <∞, x ∈ Ω,

where m0,M0,m1,M1, g0 are given positive constants.
Then problem (21)�(24) has a local solution, i.e., there exists a value of t0 ∈ (0, T )
such that

(φ(x, t), pf (x, t), θ(x, t)) ∈ C2+α,1+α/2(Qt0).

Moreover, 0 < φ(x, t) < 1, pf (x, t) > 0, θ(x, t) > 0 â Qt0 .

Proof. The solvability of problem (21)�(24) is established by using the Tikhonov-
Schauder Fixed-Point Theorem [3].

Since the function ψ = G(φ) is strictly monotone, at φ ∈ (0, 1), then the inverse
function exists: φ = G−1(ψ). Assuming that p(x, t) = pf (x, t) − p0(x), ω(x, t) =
G(φ)−G(φ0), θ1 = θ − θ0. We represent the equations (21)�(23) in the form

(25)

∂
∂t (

p+p0

R(θ1+θ0)
φ(ω)

1−φ(ω) ) =

= ∂
∂x

(
k(φ(ω))
µ(θ1+θ0)

p+p0

R(θ1+θ0) ((1− φ(ω))∂p+p
0

∂x − g(p+p0)
R(θ1+θ0)

)
,

(26)

∂ω
∂t = ξ1(θ1 + θ0)((p+ p0)

−
1∫

0

(
a1(φ(ω))

1− φ(ω)
ξ1(θ1 + θ0)((p+ p0) +

∫ x

0

ρtot(ω)g

1− φ
dξ)

)
dx·

·

 1∫
0

a1(φ(ω))

1− φ(ω)
ξ1(θ1 + θ0)dx

−1

+

∫ x

0

(
p+ p0

R(θ1 + θ0)

φ(ω)

1− φ(ω)
+ ρs)gdξ),
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(27)

(
cf (p+p0)
R(θ1+θ0)

φ
1−φ + csρs)

∂θ1
∂t = ∂

∂x (λ(1− φ)∂(θ1+θ0)
∂x )+

+ k(φ)
µ(θ1+θ0)

cf (p+p0)
R(θ1+θ0) ((1− φ)∂(p+p0)

∂x − g(p+p0)
R(θ1+θ0) )∂(θ1+θ0)

∂x .

For the Banach space, we choose the space C2+β,1+β/2(Qt0), where β is any
number from the interval (0, α), α ∈ [0, 1). Let

V = {p̄(x, t), ω̄(x, t), θ̄ ∈ C2+α,1+α/2(Qt0)|

p̄ |t=0= ω̄ |t=0= θ̄ |t=0=
∂θ̄

∂x
|x=0,x=1= ((1−φ(ω̄))

∂(ρ̄+ ρ0)

∂x
−(ρ̄+ρ0)g) |x=0,x=1= 0,

m∗1 − p0(x) ≤ p̄(x, t) ≤M∗1 − p0(x) <∞,

m∗1 =
m1

2
(1 +

g0

Rm2(1−M0)
)−1,

M∗1 = 2M1(1 +
g0

Rm2(1−M0)
)−1,

m2 − θ0 ≤ θ̄ ≤M2 − θ0,

G(
m0

2
)−G(φ0) ≤ ω̄(x, t) ≤ G(

M0 + 1

2
)−G(φ0) <∞, (x, t) ∈ Qt0 ,

(|ω̄|1+α,(1+α)/2,Qt0
, |p̄|1+α,(1+α)/2,Qt0

, |θ̄|1+α,(1+α)/2,Qt0
) ≤ K1,

(|ω̄|2+α,(2+α)/2,Qt0
, |p̄|2+α,(2+α)/2,Qt0

, |θ̄|2+α,(2+α)/2,Qt0
) ≤ K1 +K2},

where K1 is an arbitrary positive constant, while the positive constant K2 will be
given later. We note that on the set V following inequalities hold: 0 < m0/2 ≤
φ(ω̄) ≤ (M0 + 1)/2 < 1.

Let us construct an operator Λ mapping V in V . Suppose that ω̄, p̄, θ̄ ∈ V . Using
(26), we de�ne the function ω by the equality

(28)

ω =

t∫
0

ξ1(θ̄ + θ0)((p̄(x, τ) + p0(x))−
1∫

0

(
a1(φ(ω̄))

1− φ(ω̄)
ξ1(θ̄ + θ0)((p̄+ p0)+

+

∫ x

0

(
p̄+ p0

R(θ̄ + θ0)

φ(ω̄)

1− φ(ω̄)
+ ρs)g)dξ))dx(

1∫
0

a1(φ(ω))

1− φ(ω)
ξ1(θ1 + θ0)dx)−1+

+

x∫
0

g(ρs +
p̄+ p0(ξ)

R(θ̄ + θ0)

φ(ω̄)

1− φ(ω̄)
)dξ)dτ.

From the representation (28) it follows that smoothness ω is determined by
the smoothness of functions p̄, ω̄, θ̄, θ̄0, p0, P 0 and g. Therefore there exists a value
t1 = t1(m0,M0,m1,M1,m2,M2), such that for all t0 ≤ t1 the following inequality
holds

(29) 0 <
m0

2
≤ φ(x, t) ≤ M0 + 1

2
, (x, t) ∈ Qt0 .

In particular, we have an estimate

|ω|2+α,1+α/2,Qt0
≤ C0(m0,M0,m1,M1,K1,m2,M2, T, |g|1+α,Ω, |p0|2+α,Ω,

|θ0|2+α,Ω, |φ0|2+α,Ω|P 0|α/2,[0,T ])(1 + t0(|ρ̄xx|α,α/2,Ω + |θ̄xx|α,α/2,Ω)).
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Taking into account (29) we also have the estimate for function ω(x, t):

G(
m0

2
) ≤ ω(x, t) +G(φ0) ≤ G(

M0 + 1

2
).

Using (25), p̄, θ̄ and ω̄, we �nd the function p(x, t) as a solution of the problem
(here and elsewhere, we assume that the initial and boundary conditions are matched):
(30)
∂

∂t
(
p+ p0

R(θ̄ + θ0)

φ(ω̄)

1− φ(ω̄)
) =

∂

∂x
(
k(φ(ω̄))

µ(θ̄ + θ0)

p̄+ p0

R(θ̄ + θ0)
((1−φ(ω̄))

∂p+ p0

∂x
− g(p+ p0)

R(θ̄ + θ0)
),

p |t=0= 0, ((1− φ(ω̄))
∂(p+ p0)

∂x
− g(p+ p0)

R(θ̄ + θ0)
) |x=0,x=1= 0.

The equation for p(x, t) is uniformly parabolic. In view of the properties of

ω̄(x, t), θ̄(x, t)

and p0(x), θ0(x) the problem (30) has a classical solution [41]. In addition, we have
the following estimate:

| 1

a(ω̄)

∂a(ω̄)

∂t
| ≤ C1(m0,M0,m1,M1,m2,M2, max

0≤t≤T
|p0(t)|, max

0≤t≤T
|θ0(t)|).

Under the additional condition smallness for the value of the time interval the
following statement holds.

Lemma 1. There exists such a t2, that when t0 ≤ min(t1, t2), the classical solution
of problem (25) satis�es the following inequality in Qt0 :

0 < m̂1 ≤ ρ(x, t) + ρ0(x) ≤ M̂1 <∞.

Proof. Further, setting U(x, t) = p(x, t) + p0(x), we can express problem (30) in
the form

(31)

∂
∂t (a(ω̄, θ̄)U) = ∂

∂x

(
K(ω̄)b(p̄, θ̄)∂U∂x − k(ω̄)c(p̄, θ̄)U

)
,

(∂U∂x − d̃U) |x=0,x=1= 0, U |t=0= p0.

Here a(ω, θ) = φ(ω)
1−φ(ω)

1
R(θ+θ0) , b(p, θ) = p+p0

µ(θ+θ0)R(θ+θ0) , c(p, θ) = g(p+p0)
µ(θ+θ0)R2(θ+θ0)2 ,

d̃(ω, θ) = g
(1−φ(ω))(θ+θ0)R ,K(ω) = k(φ(ω))(1− φ(ω)), φ(ω) = G−1(ω +G(φ0)).

First, we show that U(x, t) ≥ 0, (x, t) ∈ Qt0 . In equation (31), let us make the
change U(x, t) = −z(x, t). Then

z
∂a

∂t
+ a

∂z

∂t
=

∂

∂x
(Kb

∂z

∂x
− kcz).

Let

z(0)(x, t) = max{z, 0}, z(0)(x, t) |t=0= max{−ρ0, 0} = 0,

σε(x, t) = z(0)(x, t)(|z(0)(x, t)|2 + ε)−1/2, ε > 0.
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Let us multiply the equation for the function z by σε and then integrate over Ω.
We obtain the equality

(32)

d
dt

1∫
0

a(|z(0)|2 + ε)1/2dx+

1∫
0

∂a

∂t
(zσε − (|z(0)|2 + ε)1/2)dx+

+ε

1∫
0

(Kb
∂z

∂x

∂z(0)

∂x
(|z(0)|2 + ε)−3/2 − kcz ∂z

(0)

∂x
(|z(0)|2 + ε)−3/2)dx = 0.

Let
A+(t) = {x ∈ Ω| z(x, t) > 0}, A−(t) = {x ∈ Ω| z(x, t) ≤ 0}.

Following [42], we get an estimates for each term:

1∫
0

∂a

∂t
(zσε − (|z(0)|2 + ε)1/2)dx = −ε

∫
A+(t)

∂a

∂t
(|z|2 + ε)−1/2dx− ε1/2

∫
A−(t)

∂a

∂t
dx,

1∫
0

a(|z(0)|2 + ε)1/2dx =

∫
A+(t)

a(|z|2 + ε)1/2dx+ ε1/2

∫
A−(t)

adx,

1∫
0

a(|z(0)|2 + ε)1/2 |t=0 dx = ε1/2

1∫
0

a |t=0 dx,

∫
A+(t)

a(|z|2 + ε)1/2dx ≥
∫

A+(t)

a|z|dx =

1∫
0

az(0)dx.

Last term can be estimated as following:

1∫
0

εkcz
∂z(0)

∂x
(|z(0)|2 + ε)−3/2dx ≤ ε

2

∫
A+(t)

(
∂z(0)

∂x
)2(|z(0)|2 + ε)−3/2Kbdx+

+
ε

2

∫
A+(t)

(
(kcz)2

Kb
)2(|z(0)|2 + ε)−3/2Kbdx

We have

εz2(|z(0)|2 + ε)−3/2 ≤ ε(|z(0)|2 + ε)−3/2 ≤
√
ε −→ 0, if ε→ 0.

Integrating relation (32) with respect to time, we obtain∫
A+(t)

a(|z|2 + ε)1/2dx+ ε1/2

∫
A−(t)

adx+
ε

2

t∫
0

∫
A+(τ)

Kb|∂z
∂x
|2(z2 + ε)−3/2dxdτ =

= ε

t∫
0

∫
A+(τ)

∂a

∂τ
(|z|2 + ε)−1/2dxdτ + ε1/2

t∫
0

∫
A−(τ)

∂a

∂τ
dxdτ + ε1/2

1∫
0

a |t=0 dx+

+

√
ε

2

t∫
0

∫
A+(τ)

(kc)2

Kb
dx.
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Following [42], we get an estimate passing to the limit as ε → 0, we �nd that
z(0) = 0, i.e. U ≥ 0.

We can express problem (31) in the form:

(33) Ut − ã11Uxx + ã1Ux + ãU = 0, (Ux − d̃U)|x=0,1 = 0, U |t=0= p0,

where

ã11 =
Kb

a
, ã1 =

d− (Kb)x
a

, ã =
at + (kc)x

a
.

Following [41], we move from function U(x, t) to a new function w(x, t) related
to it by an equality w(x, t) = e−λtϕ(x)U(x, t), where

ϕ = −mx2 +mx+ 1 > 0,m ≡ 2 max
Qt
|d̃| = 4g0

(1−M0)Rm2
,

and number λ will be indicated later.
Because of (33) the function w is the solution of the equation

wt − ã11wxx + (ã1 +
2ã11ϕx
ϕ

)wx + (−2ã11
ϕ2
x

ϕ2
+ ã11

ϕxx
ϕ
− ã1

ϕx
ϕ

+ ã+ λ)w = 0,

wx|x=0,1 = ((
ϕx
ϕ

+ d̃)w)|x=0,1, w|t=0 = ϕ(x)p0,

where wx|x=0 ≥ 0, wx|x=1 ≤ 0, because ϕ|x=0,1 = 1, ϕx|x=0 = m > 0, ϕx|x=1 =

−m ≡ −2 max d̃ < 0. Choosing

λ > max
Qt

[2ã11
ϕ2
x

ϕ2
− ã11

ϕxx
ϕ

+ ã1
ϕx
ϕ
− ã],

the function w reaches a positive maximum at t = 0, such

U(x, t)e−λtϕ(x) ≤ max
Qt

(U(x, t)e−λtϕ(x)) = max
Qt

w(x, t) ≤

≤ max
x

w|t=0 = max
x

(U(x, t)e−λtϕ(x))|t=0.

Therefore, we obtain an upper bound for U :

U ≤ eλtM1(1 +
g0

(1−M0)Rm2
).

Then there is such a value t̃2 = ln 21/λ, that for all t ≤ t̃2 we have the estimate
for ρ from above from Lemma 1.

To obtain a lower estimate we represent equation (31) in the form (z(x, t) =
1/U(x, t))

zt − ã11zxx +
2ã11

z
(z2
x) + ã1zx − ãz = 0.

We move from function z(x, t) to a new function w1(x, t) related to it by an
equality w1(x, t) = e−λ1tϕ(x)z(x, t), where ϕ de�ned as before for the upper estimate
and number λ1 will be indicated later.

The function w1 is the solution of the problem

w1t − ã11w1xx + (ã1 +
2ã11ϕx
ϕ

− 4ã11
ϕx
ϕ2

)w1x + (−2ã11
ϕ2
x

ϕ2
+ ã11

ϕxx
ϕ
− ã1

ϕx
ϕ

+

+2ã11
ϕ2
x

ϕ3
− ã+ λ1)w1 + 2ã11

w2
1x

ϕ2w
= 0,

w1x|x=0,1 = ((
ϕx
ϕ
− d̃)w1)|x=0,1, w1|t=0 = ϕ(x)

1

p0
,
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where w1x|x=0 ≥ 0, w1x|x=1 ≤ 0, because

ϕ|x=0,1 = 1, ϕx|x=0 = m > 0, ϕx|x=1 = −m ≡ −2 max d̃ < 0.

Choosing

λ1 > max
Qt

[2ã11
ϕ2
x

ϕ2
− ã11

ϕxx
ϕ

+ ã1
ϕx
ϕ
− 2ã11

ϕ2
x

ϕ3
+ ã],

the function w1 reaches a positive maximum at t = 0, such

max
Qt

(
1

U(x, t)
e−λ1tϕ(x)) = max

Qt
w1(x, t) ≤ max

x
w1|t=0 = max

x
(

1

U(x, t)
e−λ1tϕ(x))|t=0.

Accordingly, we obtain

1

U(x, t)
≤ 1

m1
eλ1t(1 +

g0

R(1−M0)m2
).

Therefore
U(x, t) ≥ m1e

−λ1t(1 +
g0

R(1−M0)m2
)−1.

Then there exists such a value t̃3 = ln 21/λ1 , that for all t ≤ t̃3 we have the
estimate for ρ from Lemma 1. �

Choosing t ≤ t2 = min{t̃2, t̃3}, we proof Lemma1.
Using (27), p̄, θ̄ and ω̄, we �nd the function θ1(x, t) as a solution of the problem

(here and elsewhere, we assume that the initial and boundary conditions are mat-
ched):

(34)

(
cf (p̄+p0)

R(θ̄+θ0)

φ(ω̄)
1−φ(ω̄) + csρs)

∂θ1
∂t = ∂

∂x (λ(1− φ(ω̄))∂(θ1+θ0)
∂x )+

+k(φ(ω̄))
cf (p̄+p0)

R(θ̄+θ0)
((1− φ(ω̄))∂(p̄+p0)

∂x − g(p̄+p0)

R(θ̄+θ0)
)∂(θ1+θ0)

∂x ,

θ1|t=0 = 0,
∂θ1

∂x
|x=0,x=1 = 0.

Further, setting Ũ = θ1 + θ0 in (34), we have a classical maximum principle for

function Ũ : [41]m2 = minx∈[0,1] θ
0 ≤ Ũ ≤ maxx∈[0,1] θ

0 = M2. Thereforem2−θ0 ≤
θ1 ≤M2 − θ0, and we have the following estimates for the function θ1 :

|θ1|α,α/2,Qt0 ≤ C2(m0,M0,m1,M1,m2,M2,K1),

|θ1|2+α,1+α/2,Qt0
≤ C3(m0,M0,m1,M1,m2,M2,K1, |θ0|2+α,ω,|φ0|2+α,ω,|ρ0|2+α,ω )·

·(1 + |θ1x|α,α/2,Qt0 ).

Using compact attachments C2+α,1+α/2(Qt0) in C1+α,α/2(Qt0), we get

|θ1x|α,α/2,Qt0 ≤ ε|θ1|2+α,1+α/2,Qt0
+ Cε|θ1|α,α/2,Qt0 ,

where Cε = Cε(ε) is the positive constant depending on ε. Then

|θ1|2+α,1+α/2,Qt0
≤ C3(1 + ε|θ1|2+α,1+α/2,Qt0

+ CεC5).

By choosing ε we get

|θ1|2+α,1+α/2,Qt0
≤ C4(m0,M0,m1,M1,m2,M2,K1).

In view of Lemma 1 and the properties of ω̄, we have the following estimates
[41]:

|ρ|α,α/2,Qt0 ≤ C5,
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|ρ|2+α,1+α/2,Qt0
≤ C6

(
1 + |ρ0|2+α,Ω + |ρ̄x|α,α/2,Qt0 + |ω̄t|α,α/2,Qt0 + |ω̄x|α,α/2,Qt0

)
,

in which the constants C5, C6 depend on K1, m0, m1,m2, M0, M1,M2. Therefore

|ρ|2+α,1+α/2,Qt0
≤ C7(K1,m0,m1,m2,M0,M1,M2).

Let C8 = max{C0, C4, C7}. Choose K2 so that C8 ≤ (K1 + K2)/2. Then, for
t0 < min(t1, t2, (K1 +K2)−1) we obtain

|ρ|2+α,1+α/2,Qt0
≤ K1 +K2, |ω|2+α,1+α/2,Qt0

≤ K1 +K2.

It remains to verify conditions

|ρ|1+α,(1+α)/2,Qt0
≤ K1, |ω|1+α,(1+α)/2,Qt0

≤ K1, |θ|1+α,(1+α)/2,Qt0
≤ K1.

Integrating equation (30), (33) with respect to time, we obtain

|ρ|0,Qt0 ≤ C6t0, |θ|0,Qt0 ≤ C6t0.

From the equation (28) we obtain |ω|0,Qt0 ≤ C7t0. Further, using for ρ, ω, θ an

inequality of the form [3]

|u|1+α,(1+α)/2,Qt0
≤ C|u|c2+α,1+α/2,Qt0

|u|1−c0,Qt0
, c = (1 + α)(2 + α)−1,

we �nd that there exists a su�ciently small value of t0, depending on K1 and K2,
such that the required estimates hold: |ρ|1+α,(1+α)/2,Qt0

≤ K1, |ω|1+α,(1+α)/2,Qt0
≤

K1, |θ|1+α,(1+α)/2,Qt0
≤ K1.

Thus, the operator Λ maps the set V into itself for su�ciently small values of
t0. Using the estimates obtained above, we can easily show the continuity of the
operator Λ in the norm of the space C2+β,1+β/2(Qt0). By the Tikhonov-Schauder
theorem, there exists a �xed point (ρ, ω) ∈ V of the operator Λ.

Uniqueness is established in the standard way [43].
Theorem 1 is proved. �

4. The Case of Incompressible Medium

De�nition 2. By a solution of problem (9)�(14) we mean the set of functions
φ, φt, θ, vs, vf ∈ C2+α,1+β(QT ), pf , ps ∈ C1+α,1+β(QT ), such that 0 < φ < 1, 0 <
θ <∞. These functions satisfy the equations (9)�(13) and the initial and boundary
conditions (14) and are regarded as continuous functions in QT .

Theorem 2. Suppose that ρf = const > 0 and the data of problem (9)�(14)
satis�es the following conditions: 1) the functions k(φ), a1(φ), λ(φ), ξ1(θ) and their
derivatives up to the second order are continuous for φ ∈ (0, 1), θ ∈ (0,∞) and
satisfy the conditions

k−1
0 φq1(1− φ)q2 ≤ k(φ) ≤ k0φ

q3(1− φ)q4 ,

k−1
0 φq5(1− φ)q6 ≤ λ(φ) ≤ k0φ

q7(1− φ)q8 , ξ1(θ) > 0, θ ∈ (0,∞),

a1(φ) = a0(φ)φα1(1− φ)α2−1, 0 < R1 ≤ a0(φ) ≤ R2 <∞,
where k0, αi, Ri, i = 1, 2 are positive constants, q1, ..., q8 are �xed real numbers,
µ(θ) = const. 2) the function g, the initial functions φ0 and θ0 satisfy the following
smoothness conditions:

g ∈ C1+α,1+β(Q̄T ), θ0, φ0 ∈ C2+α(Ω̄),

and the inequalities

0 < m0 ≤ φ0(x) ≤M0 < 1, 0 < m ≤ θ0(x) ≤M <∞, |g(x, t)| ≤ g0 <∞,
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x ∈ Ω̄, t ∈ (0, T ),

where m0,M0,m,M, g0 are given positive constants. Then problem (9)�(14) has a
local solution, i.e., there exists a value of t0 such that

φ(x, t), φt(x, t), θ(x, t) ∈ C2+α,1+β(Q̄t0), (vs(x, t), vf (x, t)) ∈ C2+α,β(Q̄t0),

(pf (x, t), ps(x, t)) ∈ C1+α,β(Q̄t0).

Moreover, 0 < φ(x, t) < 1, 0 < θ(x, t) <∞ in Q̄t0 .

Theorem 3. Let, in addition to the conditions of Theorem 2, the functions

k(φ), ξ(φ, θ)

satisfy the conditions

k(φ) =
K

µ
φ, a1(φ) = φ4,

where K,µ are positive constants. Then for all t ∈ [0, T ], T <∞ uniqueness solution
of problem (9)�(14) exists, and there are numbers 0 < m1 < M1 < 1, 0 < m2 < M2

such that m1 ≤ φ(x, t) ≤M1, m2 ≤ θ(x, t) ≤M2, (x, t) ∈ QT .

2. Local solvability

We �rst prove the local theorem.

Proof. When proving Theorems 2 and 3, it is convenient to use the Lagrange
variables [39]. Suppose that x̄ = x̄(τ, x, t) is a solution of the Cauchy problem

∂x̄

∂τ
= vs(x̄, τ), x̄ |τ=t= x.

We set x̂ = x̄(0, x, t) and take x̂ and t for the new variables. Then Ĵ(x̂, t) =
∂x̂
∂x (x, t) = (1−φ(x̂, t))/(1−φ0(x̂)) is the Jacobian of the transformation. Following
[43], we rewrite the system (9)�(13):

(35)
∂

∂t

(
φ

1− φ

)
=

∂

∂x

(
k(φ)(1− φ)

∂

∂x

(
1

ξ1(θ)

∂G(φ)

∂t

)
− k(φ)g(ρtot + ρf )

)
,

(36)

(
(1− φ)

∂

∂x

(
1

ξ1(θ)

∂G

∂t

)
− g(ρtot + ρf )

)
|x=0,x=1= 0, φ |t=0= φ0(x),

(37)

(
csρs + cfρf

φ

1− φ

)
∂θ

∂t
+ cfρfφ(vf − vs)

∂θ

∂x
=

∂

∂x

(
λ(1− φ)

∂θ

∂x

)
,

(38)
∂θ

∂x
|x=0,x=1= 0, θ |t=0= θ0(x),

(39)
∂G(φ)

∂t
= ξ1(θ)pe,

dG

dφ
=

1

a1(φ)(1− φ)
.

In the system (35) - (39), the basic equations are (35) and (37) for the required
functions φ and θ.

We substitute in the coe�cients of the equation (35) and the boundary condition
(36) instead of θ(x, t) an arbitrary smooth function θ0(x, t) ∈ C2+α1,1+β1(QT ),
which satis�es the inequalities 0 < m ≤ θ0(x) ≤ M < ∞. We retain the previous
notation φ for solving the arising problem and the latter is called Problem I.
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Lemma 2. Let the data of problem I satisfy the conditions of the theorem. Then
problem I has a unique local solution, i.e., there exists a value of t0 such that

(φ, φt) ∈ C2+α,1+β(Qt0), φ ∈ (0, 1).

Proof. Suppose that z = 1
ξ1(θ0)

∂G
∂t , we arrive at the following problem for G, z :

(40) z =
1

ξ1(θ0)

∂G

∂t
, G |t=0= G(φ0) = G0(x),

(41)
z

d(G, θ0)
− ∂

∂x

(
a(G)

∂z

∂x
− b(G)

)
= 0,

(
a(G)

∂z

∂x
− b(G)

)
|x=0,x=1= 0,

where

d(G, θ0))) =
1− φ(G)

a1(φ(G))ξ1(θ0)
,

a(G) = k(φ(G))(1− φ(G)), b(G) = k(φ(G))g(ρtot + ρf ).

Since 0 < m0 ≤ φ0(x) ≤ M0 < 1 and the function G(φ) is monotone, then
G(m0) ≤ G0(x) ≤ G(M0). From (40) when the inequality max(x,t) |ξ1(θ)z(x, t)| ≤
c0 take place we have that there is a value t0, such that for all t ≤ t0 the estimates
take place

G1(m0) = G(m0)− c0t0 ≤ G(x, t) ≤ G(M0) + c0t0 = G2(M0),

0 ≤ G−1(G1(m0)) ≤ φ(x, t) ≤ G−1(G2(M0)) < 1.

(42)

Let G0(x, t) be a function continuous in x and t, satisfying inequalities (42) and
having a continuous derivative ∂G0/∂x with respect to x, t. Substituting G0(x, t)
instead of G(x, t) into the coe�cients of equation (41) and the boundary conditions,
we arrive at a linear problem for z, in which a > 0, b > 0 and d > 0. The solution to
this problem is unique. The existence follows, for example, from Hilbert's theorem
[44] for ordinary linear equations of the second order. The t variable plays the role
of a parameter. Thus, (z, zx, zxx) ∈ C(Qt0). After �nding z(x, t), we can �nd a new
value G(x, t) from the equation (40). This value will satisfy the condition (42).

To prove the solvability of problem I, we use the method of successive approxima-
tions. Let zi(x, t) and Gi(x, t) be a solution to the problem

∂Gi+1

∂t
= ξ1(θ0)zi+1, Gi+1(x, 0) = G0(x),

zi+1

d(Gi)
− ∂

∂x

(
a(Gi)

∂zi+1

∂x
− b(Gi)

)
= 0,(

a(Gi)
∂zi+1

∂x
− b(Gi)

)
|x=0,x=1= 0,

where i = 0, 1, 2, .... Substituting G0(x) into the equation for z at the �rst step,
we �nd z1(x, t). After that, from the equation for G we �nd G1(x, t), etc. There is
a unique solution zi(x, t) and Gi(x, t), satisfying (42) for each i. It is checked in a
standard way that for a small value of t0 the solutions zi(x, t), Gi(x, t) and their
derivatives up to the second order inclusive are bounded uniformly in i.

We put yi+1 = zi+1 − zi, ωi+1 = Gi+1 −Gi. We have
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∂ωi+1

∂t
= ξ1(θ0)yi+1, ωi+1 |t=0= 0,

yi+1

d(Gi)
+A1ω

i − ∂

∂x

(
ayi+1
x +A2ω

i
)

= 0,

(ayi+1
x +A2ω

i)|x=0,x=1 = 0,

where the coe�cientsA1, A2 are easily recoverable and are limited. We have following
inequalities ∫ 1

0

(|yi+1|2 + |yi+1
x |2)dx ≤ c1

∫ 1

0

|ωi|2dx ≤ c1 max
x
|ωi|2,

max
x
|ωi+1| ≤ c1

∫ t

0

max
x
|yi+1|dτ,

where the constant c1 does not depend on i. Taking into account the last inequality

for the function vi(t) = maxx |yi(x, t)|2 we get vi+1(t) ≤ c2
∫ t

0

vi(τ)dτ and therefore

[41], vi(t) ≤ (c2T )iv0/i! → 0 for i → ∞. After that it is easy to establish that the
sequences zi, Gi are fundamental in C(Qt0) and have limits z(x, t) ∈ C(Qt0) and
G(x, t) ∈ C(Qt0). The sequences zix, z

i
xx, G

i
t are also fundamental. Passing to the

limit as i → ∞, we obtain that the limit functions satisfy the problem (40), (41).
The uniqueness of the solution is proved similarly to [45]. Increasing the smoothness
of the initial data to those speci�ed in the conditions of Theorem 2 allows us to
obtain that φ(x, t), φt(x, t) ∈ C2+α,1+β(Q̄t0).

Lemma 2 is proved. �

Substituting θ0(x, t) and the solution to Problem I into the coe�cients of equation
(37), we arrive at a linear problem for θ(x, t) of the form

Q
∂θ

∂t
+ V

∂θ

∂x
=

∂

∂x

(
λ(1− φ)

∂θ

∂x

)
,

∂θ

∂x
|x=0,x=1= 0, θ |t=0= θ0(x),

where

Q = ρscs+ρfcf
φ

1− φ
, V = cfρfφ(vf−vs) = ρfcfk(φ)

(
(1− φ)

∂z

∂x
+ g(ρtot + ρf )

)
.

The unique solvability of this problem in Holder classes follows from [41], and
the solution satis�es the estimate

0 < θ = min
x
θ0(x) ≤ θ(x, t) ≤ max

x
θ0(x) = θ̄ <∞.

After these remarks, the local solvability of the problem (35) - (38) can easily be
obtained using the Schauder theorem according to the scheme used in [45].

After �nding φ, θ, the remaining functions from the system (9)�(13) can be
de�ned as follows. We �nd the phase velocities from (9)

vf (x, t) = − 1

φ

x∫
0

∂φ

∂t
dξ ∈ C2+α,β(Qt0),
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vs(x, t) = − 1

1− φ

∫ x

0

∂(1− φ)

∂t
dξ ∈ C2+α,β(Qt0).

From (12) we �nd ptot(x, t) = p0(t)−
x∫
0

ρtotgdξ ∈ C3+α,1+β(Qt0).

From (11) we have pe(x, t) = −∂vs∂x ξ(φ, θ) ∈ C
1+α,β(Qt0), then

pf (x, t) = ptot − pe ∈ C1+α,β(Qt0), ps(x, t) =
ptot

1− φ
− φ

1− φ
pf ∈ C1+α,β(Qt0).

Theorem 2 is proved.
�

3. Global Solvability

Now we will prove the Theorem 3.

Proof. By Theorem 2, we will assume that on the interval [0, t0] there exists a
solution to the problem (9)�(14), and 0 < φ(x, t) < 1, 0 < θ(x, t) < ∞, x ∈ Ω,
t ∈ [0, t0]. After obtaining the necessary a priori estimates that do not depend on
the value of t0, the local solution can be continued to the entire segment [0, T ].

Lemma 3. Under the conditions of Theorem 3, for all t ∈ [0, T ] the following
relations hold:

(43)

∫ 1

0

s(x, t)dx =

∫ 1

0

s0(x)dx, s =
φ

1− φ
, s0 = s(x, 0),

(44) 0 < θ ≡ min
x∈[0,1]

θ0(x) ≤ θ(x, t) ≤ max
x∈[0,1]

θ0(x) ≡ θ <∞,

∫ 1

0

1

ξ1(θ)

a1

1− φ

(
∂G

∂t

)2

dx+
1

2

∫ 1

0

k(φ)(1− φ)

∣∣∣∣ ∂∂x
(

1

ξ1(θ)

∂G

∂t

)∣∣∣∣2 dx ≤
≤ 1

2

∫ 1

0

k(φ)

1− φ
g2(ρtot + ρf )2dx ≤ N.(45)

Hereinafter, N denotes a constant that depends only on the data of the problem
(9)�(14) and does not depend on t0.

Proof. Let us integrate the equation (35) over x from 0 to 1 and take into account
the boundary condition (36). After integrating over time from 0 to the current value
of t, we arrive at the equality (43).

The equation (37) is written in a divergent form:

∂

∂t

(
θ(csρs + cfρf

φ

1− φ
)

)
+

∂

∂x

(
θcfρfφ(vf − vs)− λ(1− φ)

∂θ

∂x

)
=

= θ

[
∂

∂t

(
csρs + cfρf

φ

1− φ

)
+

∂

∂x
(cfρfφ(vf − vs))

]
.(46)

The right-hand side of this equation is equal to zero, since the second equation
from (9) in Lagrange variables becomes [43]

∂

∂t

(
φ

1− φ

)
+

∂

∂x
(φ(vf − vs)) = 0.
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In particular, from (46) we have∫ 1

0

(
cfρf

φ

1− φ
+ csρs

)
θdx =

∫ 1

0

(
cfρf

φ0

1− φ0
+ csρs

)
θ0dx,

and therefore θ(x, t) ∈ L1[0, 1] for all t ∈ [0, T ].
Let the smooth function κ(θ) satisfy the condition κ′′(θ) = d2κ/dθ2 ≥ 0.Multiply-

ing the equation (37) by κ′(θ) ≡ dκ/dθ, and following the equality (46) we reduce
the resulting equality to the form

∂

∂t

((
csρs + cfρf

φ

1− φ

)
κ(θ)

)
+

∂

∂x
(cfρfφ(vf − vs)κ(θ)) =

=
∂

∂x

(
λ(1− φ)

∂κ(θ)

∂x

)
− κ′′(θ)

(
∂θ

∂x

)2

λ(1− φ).(47)

In the case κ(θ) = θp, p > 1, from (47) we deduce∫ 1

0

θp(x, t)dx ≤ max
x∈[0,1]

(
cfρf
csρs

φ0(x)

1− φ0(x)
+ 1

)∫ 1

0

|θ0(x)|pdx.

Whence, in the standard way, we get that θ(x, t) ≤ maxx∈[0,1] θ
0(x) for all t ∈

[0, T ], x ∈ [0, 1]. Put θ1 = 1/θ and the equation (35) can be represented as(
csρs + cfρf

φ

1− φ

)
∂θ1

∂t
+ cfρf (vf − vs)

∂θ1

∂x
=

=
∂

∂x

(
λ(1− φ)

∂θ1

∂x

)
− 2λ(1− φ)

(
∂θ1

∂x

)2

θ.

Multiplying (37) by κ′1(θ1) = dκ1/dθ1, κ1 = θp1 , and integrating it over x, we arrive
at the relation of the form (43) for θ1(x, t). Therefore θ(x, t) ≥ minx∈[0,1] θ

0(x) for
all t ∈ [0, T ], x ∈ [0, 1].

Multiplying the equation (35) by 1
ξ1(θ)

∂G
∂t and integrating it over x we arrive at

the relation∫ 1

0

1

ξ1(θ)

a1(φ)

1− φ

(
∂G

∂t

)2

dx+

∫ 1

0

k(φ)(1− φ)

∣∣∣∣ ∂∂x
(

1

ξ1(θ)

∂G

∂t

)∣∣∣∣2 dx =

=

∫ 1

0

k(φ)g(ρtot + ρf )
∂

∂x

(
1

ξ1(θ)

∂G

∂t

)
dx ≤

≤ 1

2

∫ 1

0

k(φ)(1− φ)

∣∣∣∣ ∂∂x
(

1

ξ1(θ)

∂G

∂t

)∣∣∣∣2 dx+
1

2

∫ 1

0

k(φ)

1− φ
g2(ρtot + ρf )2dx.

The last term on the right-hand side is bounded uniformly in t0, since φ < 1 and,
therefore, ρtot ≤ max(ρf , ρs). Finally, due to (43) we have

(48)

∫ 1

0

dx

1− φ
= 1 +

∫ 1

0

s0(x)dx.

Lemma 3 is proved. �
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Lemma 4. Under the conditions of Theorem 3, for all t ∈ [0, T ], x ∈ [0, 1] the
estimate takes place

(49) 0 < m ≤ φ(x, t) ≤M < 1.

Proof. Under the conditions of Theorem 3, the function G has the form

G = ln|φ| − ln|φ− 1| − 1

φ
− 1

2φ2
− 1

3φ3
.

It is monotonically increasing. Therefore, if we prove the boundedness of G, we
come to the estimates of (49). To prove the boundedness of the function G, we �rst
establish an embedding of the form

1

φ
∈ L1(0, 1).

By virtue of the properties of the function ξ1(θ) and (45) we have∫ 1

0

a1(φ)

1− φ

(
∂G

∂t

)2

dx =

∫ 1

0

1

φ4(1− φ)3

(
∂φ

∂t

)2

dx ≤ N max
x,t

ξ1(θ) ≡ N1.

From the last inequality and (48) we have∫ 1

0

1

φ2(1− φ)2

∣∣∣∣∂φ∂t
∣∣∣∣ dx ≤ (∫ 1

0

dx

1− φ

)1/2
(∫ 1

0

1

φ4(1− φ)3

∣∣∣∣∂φ∂t
∣∣∣∣2 dx

)1/2

≤

≤ (1 +

∫ 1

0

s0(x)dx)1/2N
1/2
1 ≡ N2.

Therefore ∣∣∣∣ ddt
∫ 1

0

r(φ)dx

∣∣∣∣ ≤ ∫ 1

0

1

φ2(1− φ)2

∣∣∣∣∂φ∂t
∣∣∣∣ dx ≤ N2,

where

r(φ) = − 1

φ
+

1

1− φ
+ 2ln

φ

1− φ
.

By integrating the last inequality over t from 0 to the current value, we obtain

−N2t+

∫ 1

0

r(φ0)dx ≤
∫ 1

0

r(φ)dx ≤ N2t+

∫ 1

0

r(φ0)dx.

From which it follows

−N2t

3
− 1

3

∫ 1

0

r(φ0)dx+
1

3

∫ 1

0

s0(x)dx+
4

3
≤
∫ 1

0

1

φ
dx

≤ −1 + 3

∫ 1

0

s0(x)dx+N2t−
∫ 1

0

r(φ0)dx,

and ∣∣∣∣∫ 1

0

1

φ
dx

∣∣∣∣ ≤ N3,

where

N3 = max
{N2T

3
+

1

3

∫ 1

0

r(φ0)dx− 1

3

∫ 1

0

s0(x)dx− 4

3
,

−1 + 3

∫ 1

0

s0(x)dx+N2T −
∫ 1

0

r(φ0)dx
}
.
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Finally, returning to (45), we have∫ 1

0

∣∣∣∣ ∂∂x
(

1

ξ1(θ)

∂G

∂t

)∣∣∣∣ dx
≤

(∫ 1

0

k(φ)(1− φ)

∣∣∣∣ ∂∂x
(

1

ξ1(θ)

∂G

∂t

)∣∣∣∣2 dx
)1/2(∫ 1

0

1

k(φ)(1− φ)
dx

)1/2

≤ (2N
µ

K
)1/2

(∫ 1

0

1

φ(1− φ)
dx

)1/2

≤ (2N
µ

K
)1/2

(
N

1/2
3 + (1 +

∫ 1

0

s0(x)dx)1/2

)
≡ N4,

and there is a point x0(t) at which ∂G
∂t (x0(t), t) = 0, therefore

min
x∈(0,1)

∣∣∣∣ 1

ξ1(θ)

∣∣∣∣ ∣∣∣∣∂G∂t
∣∣∣∣ ≤ ∣∣∣∣ 1

ξ1(θ)

∂G

∂t

∣∣∣∣ ≤ ∫ 1

0

∣∣∣∣ ∂∂x
(

1

ξ1(θ)

∂G

∂t

)∣∣∣∣ dx ≤ N4.

Taking into account (44) and the conditions of Theorem 3, from the last inequality
we have

|lns− 1 + s

s
− 1

2

(1 + s)2

s2
− 1

3

(1 + s)3

s3
| = |G(x, t)| ≤ |G0(x)|+TN4 max

x,t
ξ1(θ) ≡ N5.

The constants m and M are restored from here as follows. If s > 1, then from the
last inequality follows

lns ≤ N5 +
1

s
+ 1 +

1

2

(
1

s2
+

2

s
+ 1

)
+

1

3

(
1

s3
+

3

s
+

3

s2
+ 1

)
≤ N5 + 7.

Then we have

1 < s ≤ eN5+7.

If 0 < s < 1, then ln 1
s ≤ N5 and we have the estimate e−N5 ≤ s. Therefore

m =
1

1 + eN5
, M =

1

1 + e−N5−7
.

Thus we arrive at (49). �

Let z = 1
ξ1(θ)

∂G
∂t . The problem (35), (36) takes the form

a1(φ)ξ1(θ)z

(1− φ)
=

∂

∂x

(
k(φ)(1− φ)

∂z

∂x
− k(φ)g(ρtot + ρf )

)
,

(
k(φ)(1− φ)

∂z

∂x
− k(φ)g(ρtot + ρf )

)
|x=0,x=1= 0.

By Lemmas 3 and 4, we have∫ t

0

∫ 1

0

θ2
xdxdτ +

∫ 1

0

(z2 + z2
x)dx ≤ N6,

where N6 is a positive constant depending on the initial data, parameters and
problem constants, but does not depend on t0.

Using the representation

G(φ) =

∫ t

0

ξ1(θ)zdτ +G(φ0),
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we get

G′(φ)φx =

∫ t

0

(zxξ1(θ) + zξ′1θx)dτ +Gx(φ0).

Therefore ∫ 1

0

φ2
xdx ≤ N7.

The equation for the function z(x, t) takes form

a0(φ, θ)z = a1(φ)zxx + a′1(φ)φxzx + a′2(φ)φx.

The coe�cients a0(φ, θ) > 0, a1(φ) > 0, a2(φ) are limited and easy to calculate.
We have ∫ 1

0

z2
xxdx ≤ C1

(∫ 1

0

(z2 + φ2
x)dx+

∫ 1

0

|zxxzxφx|dx
)
,

where

I1 =

∫ 1

0

|zxx||zxφx|dx ≤ max |zx|
(∫ 1

0

z2
xxdx

)1/2(∫ 1

0

φ2
xdx

)1/2

≤

≤ C1

((∫ 1

0

z2
xxdx

)1/2(∫ 1

0

φxdx

)1/2

+

(∫ 1

0

z2
xxdx

)3/4(∫ 1

0

φxdx

)1/2
)
.

The constant C1 does not depend on t0.
Therefore

max
x
|zx|+

∫ 1

0

z2
xxdx ≤ N8.

The equation for the function θ(x, t) is given by

θt + a3(φ, zx)θx = a4(φ)θxx + a5(φ)φxθx,

where the coe�cients a4(φ) > 0, a3(φ, zx), a5(φ) are limited and easy to calculate.
Since ∫ 1

0

|θxθxxφx|dx ≤ max
x
|θx|

(∫ 1

0

θ2
xxdx

)1/2(∫ 1

0

φ2
xdx

)1/2

≤

≤ c
(∫ 1

0

θ2
xxdx

)3/4(∫ 1

0

φ2
xdx

)1/2(∫ 1

0

θ2
xdx

)1/4

,

then from the equation for θ we have∫ 1

0

θ2
xdx+

∫ t

0

∫ 1

0

(θ2
t + θ2

xx)dxdτ ≤ N9.

To complete the proof of Theorem 3, it is necessary to obtain the Holder continu-
ity in x, t of the functions φx and zx included in the coe�cients of the equations for
z and θ. From the embedding zxx ∈ L2[0, 1] and the representation for φ we have
φxx ∈ L2[0, 1]. Then for w = θx we get∫ 1

0

(θ2
t + w2

x)dx+

∫ t

0

∫ 1

0

(w2
t + w2

xx)dxdτ ≤ N10.
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After that we deduce that |φxt| ≤ N11. Finally, following [45] for the function σ = zt
we get σx ∈ L2[0, 1].

Theorem 3 is proved. �

Conclusion

The local solvability in Holder classes of the initial - boundary value problem of
one-dimensional �uid motion in a nonisothermal viscous porous medium is proved.
An example of decidability is given at any �nite time interval for the physical
characteristics of the �ltration coe�cients and the viscosity of a liquid of a special
type.
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