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AN OPEN MAPPING THEOREM FOR THE NAVIER-STOKES

TYPE EQUATIONS ASSOCIATED WITH THE DE RHAM

COMPLEX OVER Rn

A.A. SHLAPUNOV, N. TARKHANOV

Abstract. We consider an initial problem for the Navier-Stokes type
equations associated with the de Rham complex over Rn × [0, T ], n ≥ 3,
with a positive time T . We prove that the problem induces an open
injective mappings on the scales of specially constructed function spaces
of Bochner-Sobolev type. In particular, the corresponding statement on
the intersection of these classes gives an open mapping theorem for
smooth solutions to the Navier-Stokes equations.
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1. Introduction

The problem of describing the dynamics of incompressible viscous �uid is of great
importance in applications. The principal problem consists in �nding a su�ciently
regular solution to the equations for which a uniqueness theorem is available, cf.
[19]. Essential contributions has been published in the research articles [23, 24],
[15], [14], as well as surveys and books [18]), [25, 26], [43], [8], etc.

We consider a family of a little bit more general problems associated with the
de Rham complex. More precisely, denote by Λq the bundle of exterior forms of
degree 0 ≤ q ≤ n over Rn. We write Ωq(Rn) for the space of all di�erential forms of
degree q with C∞ coe�cients on Rn. These space constitute the so-called de Rham
complex Ω·(Rn) on Rn whose di�erential is given by the exterior derivative d. To
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display d acting on q -forms one uses the designation du := dqu for u ∈ Ωq(Rn) (see
for instance [6], [41]); it is convenient to set dq = 0 if q < 0 or q ≥ n. As usual,
denote by d∗q the formal adjoint for dq. Then, as it is known, we have

(1.1) dq+1 ◦ dq = 0, d∗qdq + dq−1d
∗
q−1 = −Em(q)∆, 0 ≤ q ≤ n,

where Em is the unit matrix of type (m×m) and ∆ = ∂2x1
+ ∂2x2

+ · · ·+ ∂2xn is the
usual Laplace in the Euclidean space Rn, n ≥ 2.

We also consider the induced vector bundle Λq(t) over Rn × [0,+∞) consisting
of the di�erential forms with coe�cients depending on both the variable x ∈ Rn
and on the real parameter t ∈ [0,+∞).

In the sequel we consider the following Cauchy problem. Given any su�ciently
regular di�erential forms f =

∑
#I=q fI(x, t)dxI and u0 =

∑
#I=q uI,0(x)dxI on

Rn × [0, T ] and Rn, respectively, �nd a pair (u, p) of su�ciently regular di�erential
forms u =

∑
#I=q uI(x, t)dxI and p =

∑
#I=q−1 pI(x, t)dxI on Rn×[0, T ] satisfying

(1.2)


∂tu− µ∆u+Nqu+ dq−1p = f, (x, t) ∈ Rn × (0, T ),

d∗q−1 u = 0, (x, t) ∈ Rn × (0, T ),

u = u0, (x, t) ∈ Rn × {0}

with positive �xed numbers T and µ and a non-linear term Nqu that is speci�ed by
the following assumptions (cf. [27], [31] for more general problems in the context of
elliptic di�erential complexes):

(1.3) Nqu = M
(q)
1 (dqu, u) + dq−1M

(q)
2 (u, u)

with two bilinear di�erential operators with constant coe�cients and of zero order:

(1.4) M
(q)
1 (v, u) : Ωq+1(Rn)×Ωq(Rn)→ Ωq(Rn),

(1.5) M
(q)
2 (v, u) : Ωq(Rn)×Ωq(Rn)→ Ωq−1(Rn).

For n = 1, q = 0 and N0u = u′ u relations (1.2) reduce obviously to the Cauchy
problem for Burgers' equation, [3].

Next, identifying the sections of the bundle Λ0 with functions over Rn and the
sections of the bundle Λ1 with n-vector �elds over Rn, we may write d0 = ∇,
d∗0 = −div where ∇ and div are the gradient operator and the divergence operator,
respectively. In this way, the identi�cation of the sections of the bundle Λ2 with
n(n−1)/2-vector functions over Rn yields d1 = rot, the rotation operator for n = 3.
In particular, if we denote by ? the ?-Hodge operator and by ∧ the exterior product
of di�erential forms then for n = 3, q = 1 and

(1.6) N1u = (u · ∇)u = ?(?d1u ∧ u) + d0|u|2/2,

relations (1.2) are usually referred to as but the Navier-Stokes equations for incom-
pressible �uid with given dynamical viscosity µ of the �uid under the consideration,
density vector of outer forces f , the initial velocity u0 and the search-for velocity
vector �eld u and the pressure p of the �ow, see for instance [22], [43].

Of course, motivated by both the uniqueness theorem and the physical reasons,
one have to assume that the data and the solutions are essentially decreasing
at the in�nity. We do it using proper scale of Bocnher-Sobolev (Banach) spaces
providing reasonable Lebesgue integrability for the coe�cients of the froms and
their derivatives under the consideration.
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For n = 2 the most important results on the Navier-Stokes equations are due
to J. Leray [23, 24] and O.A. Ladyzhenskaya [16]. After Leray [23, 24], a great
attention was paid to weak solutions of the Navier-Stokes equations in cylindrical
domains in R3 × [0,+∞). E. Hopf [14] proved the existence of weak solutions to
the Navier-Stokes equations satisfying reasonable estimates. However, in this full
generality no uniqueness theorem for a weak solution has been known. On the
other hand, under stronger conditions on the solution, it is unique, cf. [18, 19] who
proved the existence of a smooth solution for the two-dimensional version of problem
(1.2). Namely, beginning from the end of 1960-s, it is known that the uniqueness
theorem and improvement of regularity actually follow from the existence of a
weak solution in the Bochner class Ls([0, T ], Lr(Rn)) with Ladyzhenskaya-Prodi-
Serrin numbers s, r, satisfying 2/s + n/r = 1 and r > n, see [34], [38], [18] and
[25, 26] (the limit case n = r = 3 was added to the list in [7]). On the other
hand, the standard energy estimate provides the existence in Ls([0, T ], Lr(Rn)) with
2/s+n/r = n/2, only. Obviously, the uniqueness/regularity class and the existence
class coincide for n = 2, while the cases n ≥ 3 require additional investigation. Thus,
the scienti�c community was convinced that the principal problem is to provide
conditions for local interior regularity of the solutions to the Navier-Stokes equations
or to estimate the set of their singular points, cf., for instance, [4], [35]. Some
attention was paid to the so-called periodic setting, where no questions of boundary
regularity arise, see [38], [44]. Beginning from Leray [23, 24], many attempts were
made to construct a counter-example to the existence of smooth solutions, see for
instance, [45] by T. Tao or [36] by G. Seregin. Some arguments that smooth data
may generate solutions to the Navier-Stokes equations with singularities for n ≥ 5
were indicated in [33].

In the present paper we focus on the so-called stability property discovered by
O. A. Ladyzhenskaya for the Navier-Stokes equations in some Bochner type spaces
(see [18, Ch. 4, � 4, Theorems 10 and 11]). Namely, if for su�ciently regular data
(f, u0) there is a su�ciently regular solution (u, p) to the Navier-Stokes equations,
then there is a neighbourhood of the data in which all elements admit solutions with
the same regularity (cf. also [9] for the problem in the class of in�nitely smooth
vector �elds with zero force). We extend this property to the spaces of su�cient
smoothness, expressing it as an open mapping theorem for (1.2). As the case n = 2
is much more easy to handle proving existence/regularity theorems, we will be
concentrated on n ≥ 3.

Namely, we prove that if n ≥ 3 then for each 0 ≤ q ≤ n − 1 and for each �nite
positive T equations (1.2) induce open injective mappings of each Banach space
of the scale under the consideration (Theorem 3.3). In particular, intersection of
these classes with respect to the smoothness indexes s ∈ N gives an open mapping
theorem for smooth solutions to (1.2) for each T > 0 and smooth data (Corollary
3.3). Finally, we use the standard topological arguments immediately implying that
a nonempty open connected set in a topological vector space coincides with the
space itself if and only if the set is closed.

The remaining case q = n is degenerate in some sense; it can be treated in a
di�erent way, see Example 2.1.

We emphasize that we do not need any existence theorem for non-linear equations
(1.2) in order to achieve the open mapping theorem in the Bochner-Sobolev type
spaces. On the other hand, the open mapping theorem changes somehow the accents
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for investigations of existence theorems related to smooth solutions to (1.2). For
instance, it implies that dealing with the problem in the the Bochner-Sobolev type
spaces using apriori estimates, one should prove them for the elements of the pre-
image of precompact sets, only (see Corollary 3.2). This echoes the idea of using the
properness property to study nonlinear operator equations, see for instance [40].

2. Preliminaries

As usual, we denote by Z+ the set of all nonnegative integers including zero, and
by Rn the Euclidean space of dimension n ≥ 2 with coordinates x = (x1, . . . , xn).

In the sequel we use systematically the Gronwall type lemma in the integral form
for continuous functions.

Lemma 2.1. Let 0 < γ ≤ 1 and A ≥ 0 be constants and let B, C and Y be
nonnegative continuous functions de�ned on a segment [a, b]. If moreover Y satis�es
the integral inequality

Y (t) ≤ A+

∫ t

a

(B(s)Y (s) + C(s)(Y (s))1−γ)ds

for all t ∈ [a, b], then

Y (t) ≤
(
Aγ exp

(
γ

∫ t

a

B(s)ds
)

+ γ

∫ t

a

C(s) exp
(
γ

∫ t

s

B(t′)dt′
)
ds

)1/γ

for all t ∈ [a, b].

Proof. See for instance [11] or [28, p. 353] for γ = 1 and [32] or [28, p. 360] for
0 < γ < 1. �

Also the (discrete) Young inequality will be of frequent use in this paper. To wit,
given any N = 1, 2, . . ., it follows that

(2.1)

N∏
j=1

aj ≤
N∑
j=1

a
pj
j

pj

for all positive numbers aj and all numbers pj ≥ 1 satisfying

N∑
j=1

1/pj = 1.

We continue with introducing proper function spaces. For p ∈ [1,+∞), we denote
by Lp(Rn) the usual Lebesgue space of functions on Rn with the standard norm.
Of course, for p = 2 the norm is generated by the standard inner product and so
L2(Rn) is a Hilbert space. As usual, the scale Lp(Rn) continues to include the case
p =∞, too.

The integral H�older inequality is one of the frequently used tools for us, to wit,

(2.2) ‖
N∏
j=1

aj‖Lq(Rn) ≤
N∏
j=1

‖aj‖Lqj (Rn)

for all aj ∈ Lqj (Rn), provided that q ≥ 1, qj ≥ 1 and

N∑
j=1

1/qj = 1/q, see for

instance [1, Corollary 2.6].
For a domain X in Rn, we denote by C∞0 (X ) the set of all C∞ functions with

compact support in X . If s = 1, 2, . . ., we write W s,p(X ) for the Sobolev space
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of all functions u ∈ Lp(X ) whose generalised partial derivatives up to order s

belong to Lp(X ), equipping it with the standard norm. Then W̊ s,p(X ) denotes
the closure of the subspace C∞0 (X ) in W s,p(X ). The space W s,p

loc (X ) consists of
functions belonging to W s,p(U) for each relatively compact domain U ⊂ X .

We will fairly often use the fact that C∞0 (Rn) is dense in the normed space
W s,p(Rn) if p ∈ [1,+∞). Let also D′(Rn) stand for the space of distributions
over Rn. The space W s,p

loc (Rn) consists of functions belonging to W s,p(X ) for each
relatively compact domain X ⊂ Rn.

As usual, in the case p = 2 we simply write Hs(X ) instead ofW s,2(X ) equipping
it with the standard inner product. It is convenient to identify H0(Rn) and L2(Rn).

The scale of Sobolev spaces continues to include the case of negative s, too. We
will use only the space H−s(Rn) de�ned as the completion of C∞0 (Rn) with respect
to the norm

‖u‖H−s(Rn) = sup
v∈C∞0 (Rn)

v 6=0

|(u, v)L2(Rn)|
‖v‖Hs(Rn)

.

It may be easily identi�ed with the dual of Hs(Rn), see for instance [1, Theorem
3.12]. The the pairing 〈·, ·〉s on H−s(Rn)×Hs(Rn) is given by

〈f, v〉s = lim
m→+∞

(fm, v)L2(Rn)

where v ∈ Hs(Rn), f ∈ H−s(Rn) and the sequence {fm} ⊂ C∞0 (Rn) approximates
f in H−s(Rn).

The Lebesgue and the Sobolev spaces give us an important tool for obtaining
apriori estimates for solutions the Cauchy problem: this is the family of the Gagliar-
do-Nirenberg inequalities, see [30]. More precisely, let us set for 1 ≤ p ≤ ∞

‖Djv‖Lp(Rn) = max
|α|=j

‖∂αv‖Lp(Rn).

Then for all v ∈ Lq0(Rn)∩Ls0(Rn) such that Dj0v ∈ Lp0(Rn) and Dm0v ∈ Lr0(Rn)
we have

(2.3) ‖Dj0v‖Lp0 (Rn) ≤ c ‖Dm0v‖aLr0 (Rn)‖v‖
1−a
Lq0 (Rn)

with a positive constants c = c
(n)
j0,m0,s0

(p0, q0, r0) independent on v where

(2.4)
1

p0
=
j0
n

+ a

(
1

r0
− m0

n

)
+

(1− a)

q0
and

j0
m0
≤ a ≤ 1

with the following exceptional cases:
1) if j0 = 0, m0r0 < n and q0 = +∞ then it is necessary to assume additionally

that either u tends to zero at in�nity or u ∈ Lq̃(Rn) for some �nite q̃ > 0;
2) If 1 < r0 < +∞ and m0 − j0 − n/r0 is a non-negative integer then the

inequality is valid only for j0
m0
≤ a < 1.

Next, for s = 0, 1, . . . and 0 ≤ λ < 1, we denote by Cs,λb (Rn) the space of all s
times continuously di�erentiable functions on Rn with �nite norm

‖u‖Cs,λb (Rn) = ‖u‖Cs,0b (Rn) + λ
∑
|α|≤s

[∂αu]λ,Rn ,
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where

‖u‖Cs,0b (Rn) =
∑
|α|≤s

sup
x∈Rn

|∂αu(x)|,

[u]λ,Rn = sup
x,y∈Rn
x 6=y

|u(x)− u(y)|
|x− y|λ

.

If 0 < λ < 1, these are the so-called H�older spaces, see for instance [21, Ch. 1, � 1],

[18, Ch. 1, � 1]. The normed spaces Cs,λb (Rn) with s ∈ Z+ and λ ∈ [0, 1) are known
to be Banach spaces which admit the standard embedding theorems. As usual,
C∞b (Rn) = ∩∞s=0C

s,0
b (Rn) stands for the Fr�echet space of C∞-smooth functions

endowed with the topology, induced by the family of seminorms {‖u‖Cs,0b (Rn)}s∈Z+ .

We will use the symbol LpΛq for the space of the di�erential forms u of degree q
on Rn with components uI in L

p(Rn). The space is endowed with the norm

‖u‖Lp
Λq

=
( ∑

#I=q

∫
Rn
|uI(x)|pdx

)1/p
.

In a similar way we designate the spaces of forms on Rn whose components are of

Sobolev or H�older class. We thus get W s,p
Λq , H

s
Λq and Cs,λb,Λq , respectively. By C

∞
b,Λq

and D′Λq are meant the spaces q-forms with coe�cients of C∞ or distribution class
on Rn.

In order to avoid fractional powers of the Laplace operator, for j ∈ N and a form
u of degree q we set

∆j/2u =

{
∆j/2u, j is even,
(dq ⊕ d∗q−1)∆(j−1)/2u, j is odd.

Then the integration by parts and (1.1) yield∑
|α|=j

‖∂αu‖2L2
Λq

=

{
‖∆j/2u‖2

L2
Λq
, j is even,

‖∆j/2u‖2
L2
Λq+1⊕Λq−1

, j is odd.

for each u ∈ Hj
Λq , j ∈ Z+.

Remark 2.1. As all the norms on a �nite dimensional space are equivalent, we
see that there are positive constants c1, c2 such that

c1‖∆j/2v‖2L2
Λq
≤ ‖Djv‖L2

Λq
≤ c2‖∆j/2v‖2L2

Λq

for all v ∈ Hj
Λq . Thus, in the special case p = 2 we may always replace the norm

‖Dju‖Lp
Λq

with the norm

‖(−∆)j/2u‖L2
Λq

:= ‖∇ju‖L2
Λq
.

Let us begin to comment problem (1.2) for di�erent q.

Example 2.1. For q = 0 identifying the sections of the bundle Λ0 with functions
over Rn and the sections of the bundle Λ1 with n-vector �elds over Rn, we may write
d0 = ∇, d∗0 = −div. As d−1 = 0, d∗−1 = 0 then relations (1.2) reduce obviously to
the Cauchy problem

(2.5)

{
∂tu− µ∆u+N0u = f, (x, t) ∈ Rn × (0, T ),

u = u0, (x, t) ∈ Rn × {0}
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Taking in account that the non-linearity is of type (1.3) we see that

N0u = u
∑
j=1

cj∂ju

with some constants cj. Thus, for n = 1 we arrive to the Burgers' equation, [3] with
N0u = u′ u. As it is known, it can be reduced to the heat equation by the Hopf-Cole
transformation, see [13] and [5] and then it can be treated within the frame of linear
theory.

Example 2.2. For q = n identifying the sections of the bundle Λn with functions
over Rn and the sections of the bundle Λn−1 with n-vector �elds over Rn, we may
write dn−1 = div, d∗n−1 = −∇. As dn = 0, d∗n = 0 then relations (1.2) reduce to the
following:  ∂tu− µ∆u+ div p+N0u = f, (x, t) ∈ Rn × (0, T ),

∇u = 0, (x, t) ∈ Rn × (0, T ),
u = u0, (x, t) ∈ Rn × {0}

Taking in account that the solutions of the gradient operator do not depend on the
space variables x we arrive at the following linear problem:

(2.6)

{
du(t)
dt + div p(x, t) = f(x, t), (x, t) ∈ Rn × (0, T ),

u(0) = u0, u0 ∈ R.
If we assume that u is vanishing at the in�nity with respect to the space variables
then immediately u ≡ 0 and then u0 = 0 and the remaining equation

div p(x, t) = f(x, t) in Rn × (0, T )

is always uniquely solvable in reasonable function spaces under reasonable additional
assumptions, cf. Proposition 2.2 below. However, without this assumption we can
not achieve uniqueness even for n = 1.

Indeed, if n = 1 and u0 = 0, f = 0 then

p(x, t) = −xdu(t)

dt
+ a(t)

with an arbitrary function a(t) and an arbitrary function u(t) satisfying u(0) = 0.

As the case n = 2 is much more easy to handle proving existence/regularity
theorems, we will be concentrated on n ≥ 3. Thus, according Examples 2.1, 2.2 we
can limit ourselves to the cases where n ≥ 3 and 0 ≤ q < n.

Let us introduce the function spaces directly related to Navier-Stokes type equati-
ons (1.2). With this purpose we denote by VΛq the subspace of C∞0,Λq , consisting of

all di�erential form with the coe�cients from C∞0 (Rn) satisfying d∗q−1u = 0 in Rn.
In particular, VΛ0 = C∞0 (Rn), VΛn = {0} and VΛ1 can be easily identi�ed with the
space V of all divergence-free n-vector �elds with components from C∞0 (Rn).

Fix a non-zero function h0 ∈ C∞0 (Rn) such that

(2.7)

∫
Rn
h0(x) dx = 1.

The following two proposition are well known.

Proposition 2.1. Let n ≥ 2 and F ∈ D′Λ1 . The following conditions are equivalent:

(1) there is a function p ∈ D′(Rn) with

(2.8) ∇p = F in Rn;
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(2) F satis�es rotF = 0 in the sense of distributions in Rn;
(3) F satis�es 〈F, v〉Λ1 = 0 for all v ∈ V.

If F ∈ Hs−1
Λ1 , s ∈ Z, then p ∈ Hs(Rn) for s < 0 and p ∈ Hs

loc(Rn) for s ≥ 0. Under
assumption (2) equation (2.8) has the unique solution satisfying

(2.9) 〈p, h0〉 = 0.

Proof. Follows from [6, Theorem 17′]. because Rn is a star-like domain. �

In the case where 1 < q ≤ n we need some additional information on the
behaviour of solutions to d-equations at the in�nity.

Proposition 2.2. Let n ≥ 2, 1 ≤ q ≤ n and F ∈ D′Λq . The following conditions
are equivalent:

(1) there is a form p ∈ D′Λq−1 with

(2.10) dq−1p = F in Rn;

(2) F satis�es dq F = 0 in the sense of distributions in Rn;
(3) F satis�es 〈F, v〉Λq = 0 for all v ∈ VΛq .

Under assumption (2) equation (2.10) has a solution p̃ ∈ D′Λq−1 satisfying

(2.11) dq−2d
∗
q−2p̃ = 0 in Rn;

if F ∈ Hs−1
Λq , s ∈ Z, then p̃ ∈ Hs

Λq−1 for s < 0 and p̃ ∈ Hs
loc,Λq−1 for s ≥ 0.

Moreover, if n ≥ 3 and F ∈ Hs−1
Λq , s > n/2, then under assumption (2) equation

(2.10) has the unique solution p(0) ∈ Hs
loc,Λq−1 satisfying

(2.12) d∗q−2p
(0) = 0 in Rn;

(2.13) 〈p(0)I , h0〉 = 0 for all #I = q − 1,

(2.14) ‖p(0)‖Cb,Λq−1 < +∞.

Proof. We may follow the same scheme as the proof of Proposition 2.1. The equiva-
lence of (1) and (3) follows from [6, Theorem 17′]. The equivalence of (1) and (2)
is true because Rn is a star-like domain.

Moreover, as there is a distribution G ∈ D′Λq−2 with

∆G = d∗q−2p in Rn

we see that the form p̃ = p− dq−2G satis�es

dq−1p̃ = F, dq−2d
∗
q−2p̃ = 0

in the sense of distributions in Rn. In this case, if F ∈ Hs−1
Λq then

∆p̃ = d∗q−1F ∈ Hs−2
Λq−1

and hence p̃ ∈ Hs
loc,Λq−1 by the elliptic regularity, and even p̃ ∈ Hs

Λq−1 for s < 0.

Let ϕn(x) the standard two-sided fundamental solution of the convolution type
to the Laplace operator in Rn, n ≥ 3,

ϕn(x) =
1

σn

|x|2−n

2− n
,



AN OPEN MAPPING THEOREM FOR THE NAVIER-STOKES TYPE EQUATIONS 1441

where σn the area of the unit sphere in Rn. As usual, we de�ne the kernels

ϕ(q)
n (x, y) =

∑
#I=q

ϕn(x− y)(?dyI)dxI .

For n ≥ 3 we consider the potentials

p(1)q (x) =
∑

#I=q−1

∫
Rn
F (y) ∧ d∗n−q(y)ϕ(q−1)

n (x, y).

First, we see that

(2.15) ∂α|ϕn(x− y)| ≤ cα |x− y|2−n−|α|

with a constant cα > 0 independent on x, y if α ∈ Z+ and then we have∑
#I=q−1

∣∣∣ ∫
|y−x|≥1

F (y) ∧ d∗n−q(y)ϕn(x− y)(?dyI)dxI

∣∣∣ ≤
(2.16) C‖F‖L2

Λq
(Rn\B(x,1))‖|x− y|1−n‖L2(Rn\B(x,1)) ≤ c‖F‖L2

Λq

with a constant c independent on x, y because n ≥ 3 (here B(x, 1) is the unit ball in
Rn with the center ar x). Besides, as s > n/2, the Gagliardo-Nirenberg inequality
(2.3) implies that the space Hs−1(Rn) is embedded continuously into Lp with some
p > n (for example, p = 2n

n−2s+2 if s < (n+ 1)/2). Hence the dual number p′ = p
p−1

is less than n
n−1 and hence∑

#I=q−1

∫
|y−x|≤1

∣∣∣F (y) ∧ d∗n−q(y)ϕn(x− y)(?dyI)dxI

∣∣∣ ≤
(2.17) c̃‖F‖Lp

Λq
(B(x,1))‖|x− y|1−n‖Lp′ (B(x,1)) ≤ c‖F‖L2

Λq

with a constant c independent on x, y because p′(n− 1) < n.
Thus, the potential p(1)(x) converges for each x absolutely and it de�nes a

di�erential form with bounded coe�cients over Rn such that

(2.18) ‖p(1)‖Cb,Λq−1 ≤ cq‖F‖Hs−1
Λq

with a constant cq > 0 independent on F .
Next, as ϕn is the fundamental solution of the convolution type to the Laplace

operator in Rn, (1.1) implies that the distribution p(1) ∈ D′Λq−1 satis�es

∆p(1) = d∗q−1F in Rn

in the sense of distributions. Hence, by the elliptic regularity, p(1) ∈ Hs
loc,Λq−1 if

F ∈ Hs−1
Λq , s > n/2. In particular, by the Sobolev Embedding theorem, we may

consider the coe�cients of the form p(1) as continuous functions over Rn.
Next, the Norguet integral formula for the de Rham complex, see, for instance,

[41, Corollary 2.5.6] suggests that p(1) satis�es (2.10) and (2.12) for closed forms
F with su�cient decay at the in�nity. Let us show that it is the case if F ∈ Hs−1

Λq ,
s > n/2.

Indeed, by (1.1),
dq∆ = ∆dq, d

∗
q∆ = ∆d∗q

and then

(2.19) dqϕ
(q)
n = ϕ(q+1)

n dq, d
∗
qϕ

(q)
n = ϕ(q−1)

n d∗q ,
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on the forms having the coe�cients with compact supports in Rn.
Fix an arbitrary di�erential form h ∈ DΛq−2 . Then, by (1.1) and (2.19),

〈p(1), dq−2h〉Λq−1 =

∫
Rn
F (y) ∧ d∗n−q(y)(y)

∫
Rn
ϕ(n−q+1)
n (x, y) ∧ ?dq−2(x)h(x) =∫

Rn
F (y) ∧ d∗n−q(y)d∗n−q+1(y)

∫
Rn
ϕ(n−q+2)
n (x, y) ∧ ?h(x) = 0,

i.e. p(1) satis�es (2.12).
Next, for an arbitrary di�erential form h ∈ DΛq we have

〈p(1), d∗q−1h〉Λq−1 =

∫
Rn
F (y) ∧ d∗n−q(y)

∫
Rn
ϕ(n−q+1)
n (x, y) ∧ ?d∗q−1(x)h(x) =∫

Rn
F (y) ∧ d∗n−q(y)dn−q(y)

∫
Rn
ϕ(n−q)
n (x, y) ∧ ?h(x) =

〈F, h〉Λq −
∫
Rn
F ∧ dn−q−1d∗n−q−1ϕ(n−q)

n (?h)

because ϕn is the fundamental solution to the Laplacian ∆.
However, dqF = 0 and then, integrating by part we arrive at the following:∫
Rn
F ∧ dn−q−1d∗n−q−1ϕ(n−q)

n (?h) = (−1)q lim
R→+∞

∫
|y|=R

F ∧ d∗n−q−1ϕ(n−q)
n (?h).

If the last limit does not equal to zero then there is the positive limit

lim
R→+∞

∫
|y|=R

|F ∧ d∗n−q−1ϕ(n−q)
n (?h)|

and therefore the integral∫ ∞
0

∫
|y|=R

|F ∧ d∗n−q−1ϕ(n−q)
n (?h)|dR =

∫
Rn
|F ∧ d∗n−q−1ϕ(n−q)

n (?h)|dx

diverges. On the other hand, as h ∈ DΛq , using (2.15) we see that

|d∗n−q−1ϕ(n−q)
n (?h)(x)| ≤ C(h)|x|1−n

with a positive constant C(h) independent on x. Then arguing as at the beginning
of the proof we conclude (see formulae (2.16), (2.17)) that this integral is convergent
if F ∈ Hs−1

Λq , s > n/2. Thus p(1) satis�es (2.10).
Finally, if p and p̃ are bounded solutions to (2.10) satisfying (2.10) and (2.12)

then the di�erence (p− p̃) is harmonic over Rn, and therefore it is a constant in Rn
by the Liouville Theorem. If in addition p and p̃ satisfy (2.13) then, according to
(2.7),

0 = 〈pI , h0〉 − 〈p̃I , h0〉 = 〈pI − p̃I , h0〉 = (pI − p̃I)
∫
Rn
h0(x) dx = pI − p̃I ,

for all I with #I = q− 1, i.e. p and p̃ coincide. Moreover, as p(1) satis�es to (2.10),
(2.12) and (2.18) then the form

p(0) = p(1) −
∑

#I=q−1

〈p(1)I , h0〉 dxI

is solution to (2.10), (2.12) satisfying (2.13), (2.14) because 〈p(1)I , h0〉 are constants.
�
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Next, for s ∈ Z+, the closure of VΛq in the space Hs
Λq will be denoted by Hs,Λq .

As usual, the duals H′s,Λq of Hs,Λq can be identi�ed with the completion of C∞0,Λq
with respect to the norm

(2.20) ‖w‖H′
s,Λq

= sup
v∈VΛq
v 6=0

|(w, v)L2
Λq

(Rn)|
‖v‖Hs

Λq

.

The characterization of the space H1 = H1,Λ1 may be found in many books and
papers, see for instance, [20, Lemma 3.1] or [43, �1.4] for n = 3.

Proposition 2.3. Let s ∈ Z+, 0 ≤ q ≤ n. The space Hs,Λq coincides with the

subspace H̃s,Λq of the space H
s
Λq , consisting of all the di�erential forms w satisfying

d∗q−1 w = 0 in Rn in the sense of distributions theory.

Proof. For q = 0 we have d∗q−1 = 0, VΛ0 = C∞0 (Rn) and then the statement holds
because C∞0 (Rn) is dense in Hs(Rn). As we mentioned above, for q = n we have
VΛn = {0} and the operator d∗n−1 can be identi�ed with the gradient operator.

Hence Hs,Λq = H̃s,Λq = {0} because there are no constants in the space Hs(Rn)
for s ≥ 0. As we have mentioned above, for q = 1 the statement is known to be
true.

Thus, it is left to consider n ≥ 3 and q with 2 ≤ q ≤ n− 1.
By the de�nition, the space Hs ⊂ H̃s is a (closed) subspace Hs

Λq . Next, the
di�erential operator d∗q−1 induces bounded linear operator in the Hilbert spaces:

d∗q−1 : Hs
Λq → Hs−1

Λq−1 , s ∈ Z+.

Thus the space H̃s is a (closed) subspace of Hs
Λq , representing the null spaces of

the continuous operator d∗q−1.

Let w ∈ H̃s,Λq , such that for all v ∈ VΛq we have
(2.21) 0 = (w, v)Hs

Λq
= 〈Lsw, v〉s,Λq

where Lsw =
∑
|α|≤s(−1)|α|∂2αw ∈ H−sΛq is form with the coe�cients being distri-

butions in Rn. Besides, by the de�nition of the di�erential operator Ls we have

(2.22) 〈Lsw,w〉s,Λq = ‖w‖2Hs
Λq
.

If we treat the distribution Lsw as a current over Rn, using Propositions 2.1 and
2.2 we conclude that there is a di�erential form p ∈ D′Λq−1 such that

dq−1p̃ = Lsw, dq−2d
∗
q−2p̃ = 0

in the sense of distributions in Rn; p̃ ∈ H1−s
Λq−1 for s ≥ 2 and p̃ ∈ H1−s

loc,Λq−1 for
0 ≤ s ≤ 1.

On the other hand, as the scalar operators with constant coe�cients commute,
we see that

d∗q−1 Lsw =

n∑
j=1

∂j
∑
|α|≤s

(−1)|α|∂2αwj =
∑
|α|≤s

∂2αd∗q−1 w = 0 in Rn

in the sense of distributions and then, by (1.1),

∆p̃ = d∗q−1dq−1p̃ = d∗q−1dq−1 Lsw = 0 in Rn

in the sense of distributions. In particular, as ∆ and Ls are elliptic di�erential
operators with constant coe�cients, we conclude that p̃ ∈ C∞Λq−1 , w ∈ C∞Λq , see [10].
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Next, we note that for each h ∈ C∞0,Λq we have

h(x) = dq−1h1(x) + (h(x)− dq−1h1(x)) for all x ∈ Rn

where

h1(x) = d∗q−1

∫
Rn
ϕ(q)
n (x, y) ∧ h(y).

Hence (1.1) imply

dq dq−1h1 = 0, d∗q−1 dq−1h1 = d∗q−1h, d
∗
q−1 (h− dq−1h1) = 0 in Rn.

Keeping in the mind that h ∈ C∞0,Λq we see that h1 ∈ Hs′

Λq , s
′ ∈ Z+ because n ≥ 3

and (2.15). Hence, h1 can be approximated in Hs
Λq , by a sequence {h1,j} from

C∞0,Λq−1 . As p̃ ∈ C∞loc,Λq−1 ,

〈dq−1p̃, h〉s,Λq = (dq−1p̃, h)L2
Λq

=

lim
j→+∞

(dq−1p̃, dq−1h1,j + (h− dq−1h1,j)L2
Λq

=

lim
j→+∞

(d∗q−1dq−1p̃, h1,j)L2
Λq−1

+ 〈Lsw, h− dq−1h1〉s,Λq = (w, h− dq−1h1)Hs
Λq−1

because d∗q−1dq−1 p̃ = 0 in Rn and the de�nition of the operator Ls.
But, according to (1.1),

h− dq−1h1 = h− dq−1d∗q−1ϕ(q)
n h = d∗qdqϕ

(q)
n h.

Again, as h ∈ C∞0,Λq , by (2.15), dqϕ
(q)
n h ∈ Hs′

Λq+1 , s′ ∈ Z+ if n ≥ 3. Then dqϕ
(q)
n h

can by approximated in Hs+1
Λq+1 by a sequence of forms {gj} from C∞0,Λq+1 and hence

h − dq−1h1 can by approximated in Hs
Λq by the sequence {d∗qgj} from V0,Λq . In

particular, this means that

〈dq−1p̃, h〉s,Λq = (w, h− dq−1h1)Hs
Λq−1

= lim
j→+∞

(w, d∗qgj)Hs
Λq−1

= 0

because w ∈ H̃s,Λq satis�es (2.21). Therefore

‖dq−1p̃‖H−s
Λq

= sup
h∈C∞

0,Λq

h6=0

|〈dq−1p̃, h〉s,Λq |
‖h‖Hs

Λq

= 0.

and dq−1p̃ = Lsw = 0 and (2.22) implies that w = 0; in particular, H̃s,Λq = Hs,Λq ,
s ∈ Z+. �

We will also use the so-called Bochner spaces of functions of (x, t) in the strip
Rn × I, where I = [0, T ]. Namely, if B is a Banach space (possibly, a space
of functions on Rn) and p ≥ 1, we denote by Lp(I,B) the Banach space of all
measurable mappings u : I → B with the �nite norm

‖u‖Lp(I,B) := ‖‖u(·, t)‖B‖Lp(I),

see for instance [43, Ch. III, � 1]. In the same line stays the space C(I,B), i.e., it is
the Banach space of all mappings u : I → B with �nite norm

‖u‖C(I,B) := sup
t∈I
‖u(·, t)‖B.

Let Pq be the Helmholtz-Leray type projection

(2.23) Pq : L2
Λq → H0,Λq .
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Lemma 2.2. For each p > 1 there is positive constant D(p) such that

(2.24) ‖Pqv‖Lp
Λq
≤ D(p)‖v‖Lp

Λq
for all v ∈ LpΛq .

Besides, if v ∈ H1
Λq then

∂j(Pqv) = PΛq (∂jv) for each 1 ≤ j ≤ n.

Moreover Pq maps C(I,Hs
Λq ), L

2(I,Hs
Λq ), L

2(I,H′1,Λq ), C(I, LpΛq ) continuously to

themselves if s ∈ Z, p ∈ (1,+∞).

Proof. As before, let ϕn stand for the standard fundamental solution of the Laplace
operator in Rn. By (1.1) we have

v = ϕ(q)
n (d∗qdq + dq−1d

∗
q−1)v

for q-form v with the entries from the Schwartz space S(Rn). Moreover, (1.1) implies
that

Pqv = ϕ(q)
n d∗qdq for all v ∈ SΛq

From the viewpoint of the theory of pseudo-di�erential operators, it is a matrix
Fourier multiplier (see, for instance, [42, Ch. I, and Ch. X1]) given by

(2.25) Pqv = F−1 (aq(ζ)F(v)) , v ∈ L2
Λq ,

where F(v) stands for the Fourier transform of the vector v, F−1(w) stands for the
Fourier transform of the vector w, and aq(ζ) can be identi�ed with (m(q)×m(q))-
matrix

aq(ζ) = In −
(σ(d∗qdq)(ζ)

|ζ|2
)
, ζ ∈ Rn \ {0}

where σ(B)(ζ) is the principal symbol of the di�erential operator B. As the projec-
tion Pq is a matrix Fourier multiplier in theory of pseudo-di�erential operators,
then applying [42, Ch. X1, �1, Theorem 1.1]), we conclude that Pq maps LpΛq
continuously to itself for all p > 1. In particular, for each p > 1 there is positive
constant D(p) such that (2.24) is ful�lled.

Fix v ∈ H1
Λq and j ∈ N, 1 ≤ j ≤ n. By the properties of the Fourier transform

(see, for instance, [42, Ch. I], we conclude that

‖F(v)‖L2
Λq

= ‖v‖L2
Λq
, ‖F(∂jv)‖L2

Λq
= ‖∂jv‖L2

Λq
,

F(∂jv)(ζ) = (
√
−1ζ)F(v)(ζ),

then both (
√
−1ζ)F(v) and (

√
−1ζ)a(ζ)F(v)(ζ) belong to L2

Λq because entries of
the matrix aq belong to L∞(Rn). Hence, according to (2.25),

Pq(∂jv) = F−1(aq(ζ)
√
−1ζF(v)(ζ)) = ∂jF

−1(aq(ζ)F(v)(ζ)) = ∂jPq(v).

This proves that Pq maps C(I,Hs
Λq ), L

2(I,Hs
Λq ) continuously to itself for s ∈ Z+.

For negative s this fact follows from the de�nition of the duality between Hs
Λq and

H−sΛq , which was to be proved. �

After Leray [23, 24], a great attention was paid to weak solutions to the Navier-
Stokes equations in cylinder domains in R3 × [0,∞). Considering them in the
Bochner spaces yields the classical existence theorem for the weak solutions. To
formulate it we set Hs = Hs,Λ1 .
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Theorem 2.1. Let k ∈ N and 2k ≤ n ≤ 2(k+1). Given a pair (f, u0) ∈ L2(I,H′1)×
H0, there exists a vector �eld u ∈ L∞(I,H0) ∩ L2(I,H1) satisfying

(2.26)


d

dt
(u, v)L2

Λ1
+ µ

∑
|α|=1

(∂αu, ∂αv)L2
Λ1

= 〈f − u · ∇u, v〉Λq ,

u(·, 0) = u0

for all v ∈ Hk. Moreover, ∂tu ∈ L
4

n+2−2k (I,H′k).

Proof. See, for instance, [26, Ch. II, Theorem 6.1] or [43, Ch. III, Theorems 3.1,
3.3, 4.1], cf. the proof of Theorem 3.1 below). �

The key property of the non-linear term N1u = u · ∇u used in the proof of
Theorem 2.1 is that

(2.27) (N1u, u)L2
Λ1

= 0

if u satis�es div u = 0 in Rn and decreases su�ciently at the in�nity. For q 6= 1
and general non-linearity of type (1.3) property (2.27) is not necessarily true. For
instance, if n = 3 and

N2u = ?d2u ∧ u = udiv u

we easily have

(N1u, u)L2
Λ2

=

∫
Rn

(divu) |u|2dx.

Thus, the standard arguments fail and we can not guarantee the Leray-Hopf weak
solutions to (1.2) as in Theorem 2.1 in general (see, however, [33] for non-linearities
including the last non-linearity as a summand, where Navier-Stokes type equations
admit Leray-Hopf type weak solutions).

However we may achieve a Uniqueness Theorem for (1.2). For n ≥ 3 the space
L∞(I,H0) ∩ L2(I,H1) is, perhaps, too large in order to achieve a uniqueness
theorem even for the usual Navier-Stokes equations. The spaces Ls(I, Lr(Rn)) with

2

s
+
n

r
= 1, 2 ≤ s <∞, 2 ≤ n < r ≤ ∞

are well known to be uniqueness and regularity classes for the Navier-Stokes equa-
tions, see [34], [17], [38]. The limit case s = ∞, n = r = 3 was added to the list in
[7] but we will not discuss it here. As the non-linearity (1.3) is more general than
the standard one related to the Navier-Stokes equations, the assumptions appear
to be stronger.

Theorem 2.2. Let n ≥ 3, 0 ≤ q < n. Then for each data (f, u0) ∈ L2(I,H′1,Λq )×
H0,Λq , there is at most one form u in the space L∞(I,H0,Λq ) ∩ L2(I,H1,Λq ) ∩
L2(I, L∞Λq ) ∩ L∞(I, LnΛq ) satisfying the nonlinear Navier-Stokes type equations

(2.28)


d

dt
(u, v)L2

Λq
(Rn) + µ

∑
|α|=1

(∂αu, ∂αv)L2
Λq

(Rn) = 〈f −Nqu, v〉Λq ,

u(·, 0) = u0

for all v ∈ Hk,Λq where Nqu is given by (1.3).

Proof. It is almost literally the same as the proof of [18, Ch. 6, � 2, Theorem 1],
[26, Theorem 6.9] or Theorem 3.4 and Remark 3.6 in [43] or Lemma 3.3 below. �

We now proceed with an Open Mapping Theorem for 1.2.
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3. An open mapping theorem

This section is devoted to the so-called stability property for solutions to the
Navier-Stokes type equations. One of the �rst statements of this kind was obtained
by Ladyzhenskaya [18, Ch. 4, � 4, Theorem 11] in the case of the Navier-Stokes
equations for �ows in bounded domains in R3 with C2 smooth boundaries.

In order to extend the property to the spaces of high smoothness, we consider a
linearisation of problem (1.2). To formulate it we set

Bq(w, u) = M
(q)
1 (dqw, u) + dq−1M

(q)
2 (w, u) +M

(q)
1 (dqu,w) + dq−1M

(q)
2 (u,w)

for q-forms u and w.
Namely, given di�erential q-forms f and w with su�ciently regular coe�cients on

Rn× [0, T ] and q-form u0 on Rn, �nd su�ciently regular q-form u and (q− 1)-form
p in the strip Rn × [0, T ] which satisfy

(3.1)


∂tu− µ∆u+ Bq(w, u) + dq−1p = f, (x, t) ∈ Rn × (0, T ),

d∗q−1 u = 0, (x, t) ∈ Rn × (0, T ),

d∗q−2 p = 0, (x, t) ∈ Rn × (0, T ),

u = u0, (x, t) ∈ Rn × {0}.
Here the third equation is introduced because of Proposition 2.2; for q = 1 it
obviously disappears. Again, motivated by both the uniqueness theorem and the
physical reasons related to the Navier-Stokes equations, one have to assume that the
data and the solutions are essentially decreasing at the in�nity. As the case n = 2
is much more easy to handle proving an existence theorem, we will be concentrated
on n ≥ 3.

Considering this problem in the Bochner spaces yields an existence theorem for
the weak solutions to (3.1).

Theorem 3.1. Let n ≥ 3, 0 ≤ q < n, and suppose w ∈ C(I,H0,Λq )∩L2(I,H1,Λq )∩
L2(I, L∞Λq ) ∩ L∞(I, LnΛq ). Given any pair (f, u0) ∈ L2(I,H′1,Λq ) ×H0,Λq , there is

a unique di�erential form u ∈ C(I,H0,Λq ) ∩ L2(I,H1,Λq ) with ∂tu ∈ L2(I,H′1,Λq ),
satisfying

(3.2)


d

dt
(u, v)L2

Λq
+ µ

∑
|α|=1

(∂αu, ∂αv)L2
Λq

= 〈f −Bq(w, u), v〉Λq ,

u(·, 0) = u0

for all v ∈ H1,Λq .

Proof. It is similar to the proof of the uniqueness and existence theorem for the
Stokes problem and the Navier-Stokes problem, see [44, � 2.3, � 2.4] (or [26, Ch. II,
Theorem 6.1 and Theorem 6.9] or [43, Ch. III, Theorem 1.1, Theorem 3.1 and
Theorem 3.4] for domains in R3). We shortly recall the arguments in the part we
will use in order to obtain existence theorems related to (3.2) for more regular data
and solutions. First we note that H1,Λq is separable because it is a subspace of a
separable space. According to Proposition 2.3, the space VΛq is everywhere dense
in H1,Λq . Pick a linearly independent countable system {bj}j∈N ⊂ VΛq such that
its linear span L({bj}j∈N) is everywhere dense in H1,Λq . As VΛq ⊂ H1,Λq ⊂ H0,Λq

L({bj}j∈N) is everywhere dense in both H0,Λq and H1,Λq , too. Then, keeping in the
mind the Gram-Schmidt orthogonalization process, without loss of generality, we
may assume that the system {bj}j∈N is a L2

Λq (Rn)-orthogonal basis H0,Λq .
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Next, one de�nes the Faedo-Galerkin approximations in the usual way,

um =

m∑
i=1

g
(m)
i (t)bi(x)

where the functions g
(m)
i satisfy the following relations

(3.3) (∂τum, bj)L2
Λq

+ µ
∑
|α|=1

(∂αum, ∂
αbj)L2

Λq
+ (B(w, um), bj)L2

Λq
= 〈f, bj〉Λq ,

um(x, 0) = u0,m(x)

for all 0 ≤ j ≤ m with the initial datum u0,m from the linear span L({bj}mj=1) such
that the sequence {u0,m} converges to u0 in H0,Λq . For instance, as {u0,m} we may
take the orthogonal projection onto the linear span L({bj}mj=1).

In this way (3.3) reduces to an initial problem for a (m×m)-system of of ordinary
di�erential equations with respect to the variable t with respect to the unknown

coe�cients g
(m)
j on the interval [0, T ]:

(3.4)

{
d
dtg

(m)
j (t) +

∑m
i=1 C

(m)
i,j (t)g

(m)
i (t) = Fj(t),

g
(m)
j (0) = (u0,m, bj)L2

Λq
= a

(m)
j ,

where the scalar functions Fj(t) = 〈f(·, t), bj〉Λq belong to L2(0, T ), and

(3.5) C
(m)
i,j (t) = µ

∑
|α|=1

(∂αbi, ∂
αbj)L2

Λq
+ (Bq(w(·, t), bi), bj)L2

Λq
.

Integrating by parts, we see that

(3.6) (dq−1M
(q)
2 (w, u), v)L2

Λq
= (M

(q)
2 (w, u), d∗q−1v)L2

Λq
= 0,

(M
(q)
1 (dqw, u), v)L2

Λq
= (w, M̃

(q)
1 (u, v))L2

Λq

for all v ∈ VΛq , where M̃ (q)
1 is a �rst order bilinear di�erential operator with constant

coe�cients. Therefore

(3.7) (Bq(w, u), v)L2
Λq

= (M
(q)
1 (dqu,w), v)L2

Λq
+ (w, M̃

(q)
1 (u, v))L2

Λq

for q-fors u, v, w with su�ciently regular coe�cients, approximable by elements
of VΛq (see, for instance, [43, Ch.3, �3.1, formula (3.2)] for the Navier-Stokes
equations). Thus, the components of the matrix C(m)(t) belong to L∞(0, T ) because
bj , bi ∈ VΛq and w ∈ C(I,H0,Λq ) ∩ L2(I,H1,Λq ) ∩ L2(I, L∞Λq ).

Let us denote by g(m), F (m) and a(m) the m-vectors constructed with the use of

the components g
(m)
j , Fj and a

(m)
j , respectively, and by C(m)(t) the corresponding

functional matrix constructed with the use of the components C
(m)
i,j (t). Then (3.4)

transforms to {
d
dtg

(m)(t) + C(m)(t)g(m)(t) = F (m)(t),
g(m)(0) = a(m).

and hence for each m ∈ N the system (3.3) admits a unique vector-solution g(m)

on the interval (0, T ) given by

g(m)(t) = exp
(∫ t

0

C(m)(τ)dτ
)∫ t

0

exp
(
−
∫ τ

0

C(m)(τ ′)dτ ′
)
F (m)(τ)dτ,
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where

exp
(∫ t

0

C(m)(τ)dτ
)

=

∞∑
k=0

1

k!

(∫ t

0

C(m)(τ)dτ
)k
.

Since w ∈ C(I,H0,Λq )∩L2(I,H1,Λq )∩L2(I, L∞Λq ), formula (3.5) means that the
entries of the matrix

exp
(∫ t

0

C(m)(τ)dτ
)

belong actually to C0,1[0, T ] and then the components of the vector g(m) belong to
C1/2[0, T ]. In particular,

um ∈ L2(I,Hs,Λq ) ∩ C(I,Hs−1,Λq ), u
′
m ∈ L2(I,H′1,Λq )

for each s ∈ N.
In order to obtain a solution to (3.1) one usually appeals to a priori estimates.

To obtain them, we invoke the following useful lemma by J.-L. Lions.

Lemma 3.1. Let V , H and V ′ be Hilbert spaces such that V ′ is the dual to V and
the embeddings V ⊂ H ⊂ V ′ are continuous and everywhere dense. If u ∈ L2(I, V )
and ∂tu ∈ L2(I, V ′) then

(3.8)
d

dt
‖u(·, t)‖2H = 2 〈∂tu, u〉Λq

and u is equal almost everywhere to a continuous mapping from [0, T ] to H.

Proof. See [43, Ch. III, � 1, Lemma 1.2]. �

Thus, if we multiply the equation corresponding to index j in (3.3) by g
(m)
j then,

after the summation with respect to j, we obtain for all τ ∈ [0, T ]:

(3.9)
1

2

d

dτ
‖um‖2L2

Λq
+ µ|∇um‖2L2

Λq
=

〈f, um〉Λq + (M
(q)
1 (dqum, w), um)L2

Λq
+ (w, M̃

(q)
1 (um, um))L2

Λq

because of (3.8) and (3.7).
The following standard statement, where

‖(f, u0)‖0,q,T =
(
‖u0‖2L2

Λq
+

2

µ
‖f‖2L2(I,H′

1Λq
) + ‖f‖2L1(I,H′

1,Λq
)

)1/2
,

‖u‖0,q,T =
(
‖u‖2C(I,L2

Λq
) + µ‖∇u‖2L2(I,L2

Λq
)

)1/2
,

gives a basic a priori estimate for solutions to (3.2).

Lemma 3.2. Let n ≥ 3 and w ∈ C(I,H0,Λq ) ∩ L2(I,H1,Λq ) ∩ L2(I, L∞Λq ). If u ∈
C(I,H0,Λq ) ∩ L2(I,H1,Λq ) and (f, u0) ∈ L2(I,H′1,Λq )×H0,Λq satisfy

(3.10)

{
1

2

d

dτ
‖u(·, τ)‖2L2

Λq
+ µ ‖∇u‖2L2

Λq
= 〈f, u〉Λq + (Bq(w, u), u))L2

Λq

u(·, 0) = u0

for all t ∈ [0, T ], then there is a constant Cq > 0 independent on u,w, t, µ such that

(3.11)
‖u‖20,q,T ≤ ‖(f, u0)‖20,q,T

(
1 + 2

√
2 exp

(Cq
µ

∫ T

0

‖w(·, t)‖2L∞
Λq
dt
)

+
4

µ

(∫ T

0

‖w(·, t)‖2L∞
Λq
dt
)

exp
(Cq
µ

∫ T

0

‖w(·, t)‖2L∞
Λq
dt
))
,
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Besides, if

(3.12)
2

s
+
n

r
=
n

2
with 2 < r ≤ 2n

n− 2
, 2 ≤ s < +∞,

then there is a positive constant c
(µ)
r,s (w) independent on u and T such that

‖u‖Ls(I,Lr
Λq

) ≤ c(µ)r,s (w)‖(f, u0)‖0,µ,T .

Proof. It is similar to the proof of energy estimates for solutions to the Navier-
Stokes equations, see [18, Ch. IV, � 3] or [43, Ch. III, Theorem 3.1].

The H�older inequality, (2.1) and (3.7) imply∣∣∣∣∫ t

0

(Bq(w, u), u))L2
Λq
ds

∣∣∣∣ ≤ cq

∫ t

0

‖∇u‖L2
Λq
‖w‖L∞

Λq
‖u‖L2

Λq
ds

≤ µ

4

∫ t

0

‖∇u‖2L2
Λq
ds+

c2q
µ

∫ t

0

‖w‖2L∞
Λq
‖u‖2L2

Λq
ds

(3.13)

with a positive constant cq independent on u, v, t and µ.
On the other hand, by (2.20), we get

2

∣∣∣∣∫ t

0

〈f(·, s), u(·, s)〉Λqds
∣∣∣∣

≤ 2

∫ t

0

‖f(·, s)‖H′
1,Λq
‖u(·, s)‖H1

Λq
ds

≤ 2

∫ t

0

‖f(·, s)‖H′
1,Λq

(
‖∇u(·, s)‖L2

Λq
+ ‖u(·, s)‖L2

Λq

)
ds

≤
∫ t

0

( 2

µ
‖f‖2H′

1,Λq
+
µ

2
‖∇u‖2L2

Λq
+ 2‖f‖H′

1,Λq
‖u(·, s)‖L2

Λq

)
ds

(3.14)

for all t ∈ [0, T ]. Integrating (3.10) with respect to τ over [0, t] and taking both
(3.13) and (3.14) into account yields

(3.15) ‖u(·, t)‖2L2
Λq

+ µ

∫ t

0

‖∇u(·, s)‖2L2
Λq
ds ≤ ‖u0‖2L2

Λq
+

∫ t

0

( 2

µ
‖f‖2H′

1,Λq
+ 2‖f‖H′

1,Λq
‖u‖L2

Λq
+
c2q
µ
‖w‖2L∞

Λq
(Rn)‖u‖

2
L2
Λq

)
ds.

Finally, on applying Lemma 2.1 with γ = 1/2 and Y (t) = ‖u(·, t)‖2
L2
Λq

we readily

obtain

‖u(·, t)‖2L2
Λq
≤

((
‖u0‖2L2

Λq
(Rn) +

2

µ
‖f‖2L2([0,t],H′

1,Λq
)

)1/2
exp

(c2q
µ

∫ t

0

‖w‖2L∞
Λq
ds
)

+

∫ t

0

‖f(·, s)‖H′
1,Λq

exp
( 1

µ

∫ t

s

‖w(‖2L∞
Λq
ds′
)
ds
)2

≤ 2 ‖(f, u0)‖20,q,T exp
(2c2q
µ

∫ T

0

‖w‖2L∞
Λq
ds
)

for all t ∈ [0, T ]. Estimate (3.11) follows from the latter inequality.
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It is easy to see that

(3.16) ‖u‖Lp(I,L2
Λq

) ≤ T 1/p ‖u‖L∞(I,L2
Λq

)

holds for any p ≥ 1, which accomplishes the energy estimate (3.11).
Finally, the last statement follows from Gagliardo-Nirenberg inequality (2.3) for

q0 = r0 = 2, j0 = 0, m0 = 1, p0 = 1
r , a = n(r−2)

2 r with the exceptional case where
n = 2, r = +∞ and a = 1. �

Lemma 3.2 and (3.9) imply that the sequence {um} is bounded in the space
C(I,H0,Λq ) ∩ L2(I,H1,Λq ). So, it bounded in L∞(I,H0,Λq ) ∩ L2(I,H1,Λq ) and we
can extract a subsequence that converges weakly-∗ in L∞(I,H0,Λq ) and converges
weakly in L2(I,H1,Λq ) to an element u ∈ L∞(I,H0,Λq ) ∩ L2(I,H1,Λq ). For abuse
of notation, we use the same designation {um} for such a subsequence.

At this point, rather delicate arguments involving compact embedding theorems
for the Bochner-Sobolev spaces on bounded domains show that the sequence {um}
may be considered as convergent in the space L2(I, L2

Λq (Rn)), see [26, Ch. II,
Theorem 6.1] or [43, Ch. III, Theorem 3.1]. This allows us to pass to the limit
with respect to m→∞ in (3.3) and to conclude that the element u satis�es (3.2).
We proceed with the uniqueness.

Lemma 3.3. Let n ≥ 3, 0 ≤ q < n, and w ∈ L2(I,H1,Λq ) ∩ L∞(I,H0,Λq ) ∩
L2(I, L∞Λq )∩L∞(I, LnΛq ). For each pair (f, u0) ∈ L2(I,H′1,Λq )×H0,Λq the linearised

Navier-Stokes equations (3.2) have at most one solution in the space L2(I,H1,Λq )∩
L∞(I,H0,Λq ).

Proof. First, we note that (3.6), (3.7) and the H�older inequality yield

|(Bq(w, u), v)L2
Λq
| ≤

cq

(
‖w‖Ln

Λq
‖∇u‖L2

Λq
‖v‖

L
2n
n−2
Λq

+ ‖w‖L∞
Λq
‖u‖L2

Λq
‖∇v‖L2

Λq

)
for all u ∈ H1,Λq , v ∈ VΛq with a constant cq indepenent on u,w, v.

As n ≥ 3, then by (2.3)

(3.17) ‖u‖
L

2n
n−2
Λq

≤ C1‖∇u‖L2
Λq

with the Gagliardo-Nirenberg constant C1, because

n− 2

2n
=
(1

2
− 1

n

)
α+

1− α
2

, for α = 1 and 1− 0− n/2 < 0.

On applying the H�older inequality and (3.17), we readily conclude that for any
u ∈ L2(I,H1,Λq ) ∩ L∞(I,H0,Λq ), w ∈ L2(I,H1,Λq ) ∩ L∞(I,H0,Λq ) ∩ L2(I, L∞Λq ) ∩
L∞(I, LnΛq ), we have

‖(Bq(w, u)‖2L2(H′
1,Λq

) ≤
∫ T

0

(
‖w‖2L∞

Λq
‖u‖2L2

Λq
+ C1‖w‖2Ln

Λq
‖∇u‖2L2

Λq

)
dt ≤

‖w‖2L2(I,L∞
Λq

)‖u‖
2
L∞(I,L2

Λq
) + C1‖w‖2L∞(I,Ln

Λq
)‖∇u‖

2
L2(I,L2

Λq
),

i.e., Bq(w, u) ∈ L2(I,H′1,Λq ) and ∂tu ∈ L2(I,H′1,Λq ), if u is a solution to problem

(3.2).
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Let now u′ and u′′ be any two solutions to (3.2) from the declared function space.
Then the di�erence u = u′−u′′ is a solution to (3.2) with zero data (f, u0) = (0, 0).
Hence it follows that

〈∂tu, u〉Λq + µ ‖∇u‖2L2
Λq

= 〈Bq(w, u), u〉Λq .

Next, as u ∈ L2(I,H1,Λq ) and ∂tu ∈ L2(I,H′1,Λq ), integrating the above equality
with respect to t and using Lemma 3.1, we get

‖u(·, t)‖2L2
Λq

+ 2µ

∫ t

0

‖∇u(·, s)‖2L2
Λq
ds = 2

∫ t

0

〈Bq(w, u), u〉Λq ds

becauseBq(w, u) ∈ L2(I,H′q,Λq ) (and form w is assumed to belong to L2(I,H1,Λq )∩
L∞(I,H0,Λq ) ∩ L2(I, L∞Λq ) ∩ L∞(I, LnΛq ), using (3.6) and (3.15) gives

‖u(·, t)‖2L2
Λq
≤
c2q
µ

∫ t

0

‖w(·, s)‖2L∞
Λq
‖u(·, s)‖2L2

Λq
ds.

Applying Gronwall's Lemma 2.1 to this inequality yields

0 ≤ ‖u(·, t)‖2L2
Λq
≤ 0

for all t ∈ [0, T ], and so u ≡ 0, as desired. �

Finally, the form u belongs to C(I,H0,Λq ), because ∂tu ∈ L2(I,H′1,Λq ), u ∈
L2(I,H1,Λq ) and the embeddings H1,Λq ⊂ H0,Λq ⊂ H′1,Λq are continuous and
everywhere dense, i.e., the assumptions of Lemma 3.1 are ful�lled. �

Of course, similarly to the Navier-Stokes equations, Propositions 2.1 and 2.2
allow us to recover the "pressure" p as a form with distribution coe�cients but we
will do it for in the case of more regular solutions, only.

We are now in a position to introduce appropriate function spaces for solutions
and for the data in order to obtain an open mapping theorem for regular solutions to
the Navier-Stokes type equations. More precisely, as the principal di�erential part
of the Navier-Stokes type equations is parabolic, we prefer to follow the dilation
principle when introducing function spaces for the unknown "velocity" and given

"exterior forces". Namely, for s, k ∈ Z+, we denote by B
k,2s,s
vel,Λq the set of all q-forms

u in C(I,Hk+2s,Λq ) ∩ L2(I,Hk+1+2s,Λq ) such that

∂αx ∂
j
t u ∈ C(I,Hk+2s−|α|−2j,Λq ) ∩ L2(I,Hk+1+2s−|α|−2j,Λq )

provided |α|+ 2j ≤ 2s.

We endow the spaces Bk,2s,svel,Λq with the natural norms

‖u‖Bk,2s,s
vel,Λq

:=
( k∑
i=0

∑
|α|+2j≤2s

‖∂αx ∂
j
t u‖2i,q,T

)1/2
,

where ‖u‖i,q,T =
(
‖∇iu‖2C(I,L2

Λq
) + µ‖∇i+1u‖2L2

Λq
(I,L2)

)1/2
.

Similarly, for s, k ∈ Z+, we de�ne the space B
k,2s,s
for,Λq to consist of all q-forms f in

C(I,H2s+k
Λq ) ∩ L2(I,H2s+k+1

Λq ) with the property that

∂αx ∂
j
t f ∈ C(I,Hk

Λq ) ∩ L2(I,Hk+1
Λq )

provided |α|+ 2j ≤ 2s.
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If f ∈ Bk,2s,sfor,Λq , then actually

∂αx ∂
j
t f ∈ C(I,H

k+2(s−j)−|α|
Λq ) ∩ L2(I,H

k+1+2(s−j)−|α|
Λq )

for all α and j satisfying |α| + 2j ≤ 2s. We endow the spaces Bk,2s,sfor,Λq with the
natural norms

‖f‖Bk,2s,s
for,Λq

=
( ∑
|α|+2j≤2s

0≤i≤k

‖∇i∂αx ∂
j
t f‖2C(I,L2

Λq
) + ‖∇i+1∂αx ∂

j
t f‖2L2(I,L2

Λq
)

)1/2
.

Finally, Proposition 2.2 suggests us de�ning the spaces Bk+1,2s,s
pre,Λq−1 for the "pressu-

re" p to consist of all (q−1)-forms from the space C(I,H2s+k+1
loc,Λq−1)∩L2(I,H2s+k+2

loc,Λq−1)

satisfying (2.13) for each t ∈ [0, T ],

(3.18) d∗q−2p = 0 in Rn × [0, T ],

(3.19) ‖p‖L2(I,Cb,Λq−1 ) < +∞ for 2s+ k > n/2,

(3.20) ‖p‖L2(I,Cb,Λq−1 ) + ‖p‖C(I,Cb,Λq−1 ) < +∞ for 2s+ k > n/2 + 1,

and such that dq−1p ∈ Bk,2s,sfor,Λq−1 . Obviously, Proposition 2.2 allows us to equip the

spaces with the norms ‖p‖Bk+1,2s,s

pre,Λq−1
=

‖dq−1p‖Bk,2s,s
for,Λq

, 2s+ k ≤ n/2,
‖dq−1p‖Bk,2s,s

for,Λq
+ ‖p‖L2(I,Cb,Λq−1 ), n/2 < 2s+ k ≤ n/2 + 1,

‖dq−1p‖Bk,2s,s
for,Λq

+ ‖p‖L2(I,Cb,Λq−1 ) + ‖p‖C2(I,Cb,Λq−1 ), n/2 + 1 < 2s+ k.

It is easy to see that

Bk,2s,svel,Λq , B
k,2s,s
for,Λq , B

k+1,2s,s
pre,Λq−1 ,

are Banach spaces. We proceed with two simple lemmata.

Lemma 3.4. If n ≥ 3 and s ∈ N then the following embedding are continuous:

Bk,2s,svel,Λq ↪→ B
k+2,2(s−1),s−1
vel,Λq , Bk,2s,sfor,Λq ↪→ B

k+2,2(s−1),s−1
for,Λq ,

Bk+1,2s,s
pre,Λq−1 ↪→ B

k+3,2(s−1),s−1
pre,Λq−1 .

If, in addition, k + 2s > n/2− 1 then the embedding

Bk,2s,svel,Λq ↪→ L2(I, L∞Λq ) ∩ L∞(I, LnΛq )

is continuous, too.

Proof. The continuity of the �rst three embeddings follows immediately from the
de�nition of the spaces.

Next, by the de�nition, the space Bk,2s,svel,Λq is continuously embedded into the

spaces C(I,Hk+2s
Λq ) and L2(I,Hk+2s+1

Λq ).
Note that, by the Sobolev embedding theorem (see, for instance, [1, Ch. 4,

Theorem 4.12]), for any k′, s′ ∈ Z+ and λ ∈ (0, 1) satisfying

(3.21) k′ − s′ − λ > n/2,

there exists a constant c(k, s, λ) depending on the parameters, such that

‖u‖
Cs
′,λ
b (Rn) ≤ c(k

′, s′, λ) ‖u‖Hk′ (Rn)
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for all u ∈ Hk′(Rn).

Since 2s+ k > n/2− 1 we see that L2(I,Hk+2s+1
Λq ) is continuously embedded to

L2(I, L∞Λq ).
If, in addition, m′ > n/2− 1 then by (2.3) and the hypothesis of the lemma,

(3.22) ‖u‖Ln
Λq
≤ Cn‖∇m

′
u‖

n−2
2m′

L2
Λq
‖u‖

2m′−n+2
2m′

L2
Λq

with the Gagliardo-Nirenberg constant Cn, because

1

n
=
(1

2
− m′

n

)
α+

1− α
2

, α =
n− 2

2m′
∈ (0, 1).

Then, since 2s + k > n/2 − 1, we see that C(I,Hk+2s
Λq ) is continuously embedded

to L∞(I, LnΛq ). �

Lemma 3.5. Suppose that n ≥ 3, s ∈ N, k ∈ Z+, 2s+k > n
2 −1. As de�ned above,

the mappings

dq−1 : B
k+1,2(s−1),s−1
pre,Λq−1 → B

k,2(s−1),s−1
for,Λq ,

∆ : Bk,2s,svel,Λq → B
k,2(s−1),s−1
for,Λq ,

∂t : Bk,2s,svel,Λq → B
k,2(s−1),s−1
for,Λq ,

Bk,2s,svel,Λq 3 u(x, t) → u(x, 0) ∈ Hk+2s,Λq ,

∂βx : B
k,2(s−1),s−1
vel,Λq → B

k−|β|,2(s−1),s−1
for,Λq , |β| ≤ k,

∂βx : B
k,2(s−1),s−1
vel,Λq → B

k−|β|,2(s−1),s−1
vel,Λq (I,Rn), |β| ≤ k,

∂βx : B
k,2(s−1),s−1
for,Λq → B

k−|β|,2(s−1),s−1
for,Λq , |β| ≤ k,

Nq : B
k+2,2(s−1),s−1
vel,Λq → B

k,2(s−1),s−1
for,Λq ,

Nq : Bk,2s,svel,Λq → B
k,2(s−1),s−1
for,Λq .

are continuous. Besides, if w ∈ Bk+2,2(s−1),s−1
vel,Λq then the mappings

Bq(w, ·) : B
k+2,2(s−1),s−1
vel,Λq → B

k,2(s−1),s−1
for,Λq ,

Bq(w, ·) : Bk,2s,svel,Λq → B
k,2(s−1),s−1
for,Λq ,

are continuous, too, and for all u,w ∈ Bk+2,2(s−1),(s−1)
vel,Λq ,

(3.23) ‖Bq(w, u)‖
B
k,2(s−1),s−1

for,Λq
≤ c(q)s,k‖w‖Bk+2,2(s−1),s−1

vel,Λq
‖u‖

B
k+2,2(s−1),s−1

vel,Λq
,

with positive constants c
(q)
s,k independent on u,w.

Proof. Indeed, the �rst seven linear operators are continuous by the very de�nition
of the function spaces.

We begin with s = 1. By the de�nition, the space Bk+2,0,0
vel,Λq is continuously

embedded into the spaces C(I,Hk+2
Λq ) and L2(I,Hk+3

Λq ).
Applying (3.22) with m′ = k + 2 > n/2− 1, we obtain

(3.24) ‖Bq(w, u)‖2L2
Λq
≤ ‖w‖2Ln

Λq
‖∇u‖2

L
2n
n−2
Λq

+ ‖∇w‖
2n
n−2

L2
Λq
‖u‖2Ln

Λq
≤

c
(
‖∇2u‖2L2

Λq
‖∇k+2w‖

n−2
k+2

L2
Λq
‖w‖

2k−n+6
k+2

L2
Λq

+ ‖∇2w‖2L2
Λq
‖∇k+2u‖

n−2
k+2

L2
Λq
‖u‖

2k−n+6
k+2

L2
Λq

)
,
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where the constant c being independent of u and w, and so

(3.25) ‖Bq(w, u)‖2C(I,L2
Λq

) ≤

c
(
‖w‖2

C(I,Hk+2
Λq

)
‖∇2u‖2C(I,L2

Λq
) + ‖∇2w‖2C(I,L2

Λq
)‖u‖

2
C(I,Hk+2

Λq
)

)
.

By Leibniz rule,

(3.26) ∂jBq(w, u) = Bq(∂jw, u) + Bq(w, ∂ju).

As n ≥ 3, using (3.22) we also get

(3.27) ‖∇Bq(w, u)‖2L2
Λq
≤ c
(
‖w‖2Ln

Λq
‖∇2u‖2

L
2n
n−2
Λq

+

2 ‖∇w‖2Ln
Λq
‖∇u‖2

L
2n
n−2
Λq

+ ‖∇2w‖2
L

2n
n−2
Λq

‖u‖2Ln
Λq

)
≤

c
(
‖w‖2

Hk+2
Λq
‖∇3u‖2L2(Rn) + 2 ‖w‖2

Hk+3
Λq
‖∇u‖2L2(Rn) + ‖∇3w‖2L2

Λq
‖u‖2

Hk+2
Λq

)
with a constant c independent of u and w. On combining (3.24) and (3.27) we
deduce that, for n ≥ 3,

‖Bq(w, u)‖2L2(I,H1
Λq

) ≤ c
(
‖w‖2

C(I,Hk+2
Λq

)
‖∇3u‖2L2(I,L2

Λq
)(3.28)

+ 2 ‖w‖2
L2(I,Hk+3

Λq
)
‖∇2u‖2C(I,L2

Λq
) + ‖∇3w‖2L2(I,L2

Λq
)‖u‖

2
C(I,Hk+2

Λq
)

)
.

Inequalities (3.25), (3.28) provide that the operator Bq(w, ·) maps Bk+2,0,0
vel,Λq

continuously to B0,0,0
for,Λq if k > n/2− 3.

If |α| = k′ ≤ k0, k0 = k or k0 = k + 1, then, similarly to (3.26) we get

(3.29) ∂αxBq(w, u) =
∑

β+γ=α

cβ,γ Bq(∂
β
xw, ∂

γ
xu).

Next, for any 0 ≤ k′ ≤ k0, similarly to (3.27), using the H�older inequality with
a number p = p(k′, l) > 1 we obtain

‖∇k
′
Bq(w, u)‖2L2

Λq
≤

k′∑
l=0

ck′,l

(
‖∇lw‖2

L
2p
p−1
Λq

‖∇k
′+1−lu‖2

L2p
Λq

+ ‖∇k
′+1−lw‖2

L
2p
p−1
Λq

‖∇lu‖2
L2p
Λq

)
the coe�cients cβ,γ and ck′,l being of binomial type.

If 0 ≤ k′ ≤ k0, then we take p = p(k′, 0) = n
n−2 and use (2.1), (3.22) with

m′ = k + 2, to obtain

(3.30) ‖∇k
′+1u‖2

L2p
Λq
‖w‖2

L
2p
p−1
Λq

= ‖∇k
′+1u‖2

L
2n
n−2
Λq

‖w‖2Ln
Λq
≤

Ck′,k‖∇k
′+2u‖2L2

Λq
‖∇k+2w‖

n−2
2(k+2)

L2
Λq
‖w‖

2k−n+6
2(k+2)

L2
Λq

≤

Ck′,k‖∇k
′+2u‖2L2

Λq
‖w‖2

Hk+2
Λq

with positive constants Ck′,k independent on u,w.
If 1 ≤ l ≤ k′ ≤ k0 then we may apply (2.3) to each factor in the typical summand

‖∇k
′+1−lu‖2

L2p
Λq
‖∇lw‖2

L
2p
p−1
Λq
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with entries p = p(k′, l), αj = α
(l)
j , satisfying

(3.31)


1
2p = k′−l+1

n +
(

1
2 −

k0+2
n

)
α1 + 1−α1

2 ,

p−1
2p = l

n +
(

1
2 −

k+2
n

)
α2 + 1−α2

2 ,
k′−l+1
k0+2 ≤ α1 < 1, l

k+2 ≤ α2 < 1.

Relations (3.31) are actually equivalent to the following:

(3.32)
k′ − l + 1

k0 + 2
≤ α1 =

n

k0 + 2

(1

2
− 1

2p
+

1 + k′ − l
n

)
< 1

(3.33)
l

k + 2
≤ α2 =

n

k + 2

( 1

2p
+
l

n

)
< 1.

The lower bounds are always true if p > 1 and so, these inequalities are reduced to

1

2
+
k′ − l − (k0 + 1)

n
<

1

2p
<
k + 2− l

n
, p > 1.

The segment for 1
2p is not empty because

1

2
+
k′ − l − 1− k0

n
<
k + 2− l

n

provided by the assumptions k + 3 > n/2, 0 ≤ k′ ≤ k0. Moreover, as

1

2
+
k′ − l − k0 − 1

n
<

1

2
,
k + 2− l

n
> 0,

we see that there is a proper q > 1 to achieve (3.32), (3.33).
Then, similarly to (3.30), and using Young's inequality (2.1),

(3.34) ‖∇k
′+1−lu‖2L2p(Rn)‖∇

lw‖2
L

2p
p−1
Λq

≤

C
(l,k)
k′,k0
‖∇k0+2u‖2α1

L2
Λq
‖∇k+2w‖2α2

L2
Λq
‖u‖2(1−α1)

L2
Λq

‖w‖2(1−α2)

L2
Λq

≤

C
(l,k)
k′,k0
‖u‖2

H
k0+2

Λq
‖w‖2

Hk+2
Λq

with positive constants C
(l,k)
k′,k0

independent on u,w.

Hence, (3.30), (3.34) yield

(3.35) ‖Bq(w, u)‖2C(I,Hk
Λq

) ≤

c
(
‖u‖2

C(I,Hk+2
Λq

)
‖w‖2

C(I,Hk+2
Λq

)
+ ‖w‖2

C(I,Hk+2
Λq

)
‖u‖2

C(I,Hk+2
Λq

)

)
,

(3.36) ‖Bq(w, u)‖2
L2
T (H

k+1
Λq

)
≤

c
(
‖u‖2CT (Hk+2(Λq )

‖w‖2
LT (H

k+3
Λq

)
+ ‖w‖2

CT (H
k+2
Λq

)
‖u‖2

LT (H
k+3
Λq

)

)
with a positive constant c independent on u,w.

Now (3.35), (3.36) imply that the mapping Bq(w, ·) maps Bk+2,0,0
vel,Λq continuously

to Bk,0,0for,Λq for any k > n/2−3 if n ≥ 3 and bound (3.23) hold true for s = 1 because

of (2.1).
Next, we argue by the induction. Assume that for some s′ ≥ 1 the mapping

Bq(w, ·) maps the space B
k+2,2(s′−1),s′−1
vel,Λq to B

k,2(s′−1),s′−1
for,Λq continuously for any

k > n/2−2s′−1 and bound (3.23) holds true for s = s′. Then the space Bk+2,2s′,s′

vel,Λq
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is embedded continuously to the space B
k+4,2(s′−1),s′−1
vel,Λq and, by the inductive

assumption, Bq(w, ·) maps B
k+4,2(s′−1),s′−1
vel,Λq continuously to B

k+2,2(s′−1),s′−1
for,Λq for

any (k+ 2) > n/2− 2s′− 1 or, the same, k > n/2− 2(s′+ 1)− 1. Moreover, bound
(3.23) holds true for s = s′ and with k + 2 instead of k.

It is left to check the behaviour of the partial derivatives ∂s
′

t ∂
α
xBq(w, u) with

|α| ≤ k+ 1. By the very de�nition, of space Bk+2,2s′,s′

vel,Λq , the partial derivatives ∂itu,

∂itw belong to B
k+2,2(s′−i),(s′−i)
vel,Λq , C(I,H

k+2+2(s′−i)
Λq ) and L2(I,H

k+3+2(s′−i)
Λq ).

By the Leibniz rule,

∂tBq(w, u) = Bq(∂tw, u) + Bq(w, ∂tu).

Then for acceptable α ∈ Z+ and i, similarly to (3.29), we get with binomial type
coe�cients cβ,γ and Clj

(3.37) ∂αx ∂
i
tBq(w, u) =

∑
β+γ=α

i∑
l=0

cβ,γC
l
i Bq(∂

β
x∂

l
tw, ∂

γ
x∂

i−l
t u).

Similarly to (3.30), if 0 ≤ k′ ≤ k+ 1 then we take p = p
(s′)
i,0 = n

n−2 and use (2.1),

(3.22) with m′ = 2s′ + k + 2, to obtain

(3.38) ‖∂s
′

t ∇k
′+1u‖2

L2p
Λq
‖w‖2

L
2p
p−1
Λq

= ‖∂s
′

t ∇k
′+1u‖2

L
2n
n−2
Λq

‖w‖2Ln
Λq
≤

Ck,s
′

k′,0‖∂
s′

t ∇k
′+2u‖2L2

Λq
‖∇2s′+k+2w‖

n−2
2(2s′+k+2)

L2
Λq

‖w‖
2(2s′+k)−n+6

2(2s′+k+2)

L2
Λq

≤

Ck,s
′

k′,0‖∂
s′

t ∇k
′+2u‖2L2

Λq
‖w‖2

H2s′+k+2
Λq

with positive constants Ck,s
′,

k′,0 independent on u,w.

Again, similarly to (3.34), If 1 ≤ j ≤ k′ ≤ k0 then we may apply (2.3) to each
factor in the typical summand

‖∂s
′−i
t ∇k

′+1−ju‖2
L2p
Λq
‖∂it∇jw‖2

L
2p
p−1
Λq

with entries satisfying

(3.39)


1
2p = k′−j+1

n +
(

1
2 −

k0+2+2i
n

)
α1 + 1−α1

2 ,

p−1
2p = j

n +
(

1
2 −

k+2+2(s′−i)
n

)
α2 + 1−α2

2 ,
k′−j+1
k0+2+2i ≤ α1 < 1, j

k+2+2(s′−i) ≤ α2 < 1.

Relations (3.39) are actually equivalent to the following:

(3.40)
k′ − j + 1

k0 + 2 + 2i
≤ α1 =

n

k0 + 2 + 2i

(1

2
− 1

2p
+

1 + k′ − j
n

)
< 1

(3.41)
j

k + 2 + 2(s′ − i)
≤ α2 =

n

k + 2 + 2(s′ − i)

( 1

2p
+
j

n

)
< 1.

The lower bounds are always true if q > 1 and so, these inequalities are reduced to

1

2
+
k′ − j − (k0 + 1 + 2i)

n
<

1

2p
<
k + 2 + 2(s′ − i)− j

n
, p > 1.
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The segment for 1
2qj

is not empty because

1

2
+
k′ − j − 1− k0 − 2i

n
<
k + 2− j + 2(s′ − i)

n

provided by the assumptions k > n/2− 2(s′ + 1)− 1, 0 ≤ k′ ≤ k0. Moreover, as

1

2
+
k′ − j − (k0 + 1 + 2i)

n
<

1

2
,
k + 2 + 2(s′ − i)− j

n
> 0,

we see that there is a proper q > 1 to achieve (3.40), (3.41).
Then, similarly to (3.30), and using Young's inequality (2.1),

(3.42) ‖∂s
′−i
t ∇k

′+1−ju‖L2p
Λq
‖∂it∇jw‖

L
2p
p−1
Λq

≤

c‖∂s
′−i
t ∇k0+2+2iu‖α1

L2
Λq
‖∂it∇k+2+2(s′−i)w‖α2

L2
Λq
‖∂s

′−i
t u‖1−α1

L2
Λq
‖∂itw‖

1−α2

L2
Λq
≤

c‖∂s
′−i
t u‖

H
k0+2+2i

Λq
‖∂itw‖Hk+2+2(s′−i)

Λq

with positive constants c independent on u,w.
Hence, (3.38), (3.42) yield

(3.43) ‖∂s
′

t Bq(w, u)‖2C(I,Hk
Λq

) ≤

c

s′∑
i=0

‖∂s
′−i
t u‖2

C(I,Hk+2+2i
Λq

)
‖∂itw‖2C(I,H

k+2+2(s′−i)
Λq

)
+

c

s′∑
i=0

‖∂s
′−i
t w‖2

C(I,Hk+2+2i
Λq

)
‖∂itu‖2C(I,H

k+2+2(s′−i)
Λq

)
,

(3.44) ‖∂s
′

t Bq(w, u)‖2
L2(I,Hk+1

Λq
)
≤

c

s′∑
i=0

‖∂s
′−i
t u‖2

L2(I,Hk+3+2i
Λq

)
‖∂itw‖2C(I,H

k+2+2(s′−i)
Λq

)
+

c

s′∑
i=0

‖∂s
′−i
t w‖2

L2(I,Hk+3+2i
Λq

)
‖∂itu‖2C(I,H

k+3+2(s′−i)
Λq

)

with a positive constant c independent on u, v.

Now (3.43), (3.44) imply that the mappingBq(w, ·) mapsBk+2,2s′,s′

vel,Λq continuously

to Bk,2s
′,s′

for,Λq if n ≥ 3. Moreover, by (2.1), bound (3.23) holds true for s = s′ + 1.

This �nishes the proof of inequality (3.23) and the continuity of operator Bq(w, ·) :

B
k+2,2(s−1),s−1
vel,Λq → B

k,2(s−1),s−1
for,Λq , for n ≥ 3 and for all k ∈ Z+ and s ∈ N satisfying

2s+ k > n/2− 1.

The boundedness of the operator Bq(w, ·) : Bk,2s,svel,Λq → B
k,2(s−1),s−1
for,Λq now follows

from Lemma 3.4.
Now, since the bilinear form Bq is symmetric and Bq(u, u) = 2Nq(u), we easily

obtain

(3.45) Nq(u)−Nq(u0) = Bq(u0, u− u0) + (1/2)Bq(u− u0, u− u0).

Therefore, by the continuity of the mapping Bq(w, ·),

‖Nq(u)−Nq(u0)‖
B
k,2(s−1),s−1

for,Λq
≤ 1

2
c(k, s)‖u− u0‖2Bk+2,2(s−1),s−1

vel,Λq
+
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c(k, s)‖u0‖Bk+2,2(s−1),s−1

vel,Λq
‖u− u0‖Bk+2,2(s−1),s−1

vel,Λq

with a positive constant c(k, s) independent of u and u0, i.e., the nonlinear operator

Nq maps B
k+2,2(s−1),s−1
vel,Λq continuously into B

k,2(s−1),s−1
for,Λq and Bk,2s,svel,Λq continuously

into B
k,2(s−1),s−1
for,Λq . �

Proposition 3.1. Let n ≥ 3, 1 ≤ q < n, 2s + k > n/2 and F ∈ B
k,2(s−1),s−1
for,Λq

satis�es 〈F, v〉Λq = 0 for all v ∈ VΛq . Then there is a unique form p(0) from the

space B
k+1,2(s−1),s−1
pre,Λq−1 , satisfying

(3.46) dq−1p
(0) = F in Rn × [0, T ].

Proof. Indeed, the space B
k,2(s−1),s−1
for,Λq is embedded continuously to C(I,Hk+2s−2

Λq )∩
L2(I,Hk+2s−1

Λq ). Then for almost all t ∈ [0, T ] the unique solution p(0)(·, t) to (3.46),
satisfying (2.13), (2.14), (2.18) and (3.18) was constructed in Proposition 2.2. Then
(2.18) for p(0) yields

‖p(0)‖L2(I,Cb,Λq−1 ) ≤ cq‖F‖L2(I,H2s+k−1
Λq

) for 2s+ k > n/2,

‖p(0)|C(I,Cb,Λq−1 ) ≤ cq‖F‖C(I,H2s+k−2
Λq

) for 2s+ k > n/2 + 1.

Finally, by the elliptic regularity, p(0) ∈ C(I,H2s+k−1
loc,Λq−1) ∩ L2(I,H2s+k

loc,Λq−1). �

Now we arrive at the principal theorem related to linearizations of the Navier-
Stokes type Equations associated with the de Rham complex.

Theorem 3.2. Let n ≥ 3, 0 ≤ q < n, s ∈ N, k ∈ Z+, 2s + k > n/2, and

w ∈ Bk,2s,svel,Λq . Then (3.1) induces a bijective continuous linear mapping

(3.47) A(q)
w : Bk,2s,svel,Λq ×B

k+1,2(s−1),s−1
pre,Λq−1 → B

k,2(s−1),s−1
for,Λq ×H2s+k,Λq .

which admits a continuous inverse (A(q)
w )−1.

Proof. It follows the same scheme as the proof of similar regularity theorems for
Stokes and Navier-Stokes equations, see, for instance, [18], [43].

We begin with a simple lemma.

Lemma 3.6. If n ≥ 3, s ∈ N, k ∈ Z+, 2s + k > n/2 then (3.47) is an injective
continuous linear mapping.

Proof. Indeed, the continuity of A(q)
w follows from Lemma 3.5. Let

(u, p) ∈ Bk,2s,svel,Λq ×B
k+1,2(s−1),s−1
pre,Λq−1 ,

A(q)
w (u, p) = (f, u0) ∈ B

k,2(s−1),s−1
for,Λq ×Hk+2s,Λq .

The integration by parts with the use of (1.1) yields

(3.48) −(∆u, u)L2
Λq

= ‖∇u(·, t)‖2L2
Λq
.

As d∗q−1 u = 0 in Rn × [0, T ], we see that

(3.49) (dq−1p, u)L2
Λq

= (p, d∗q−1 u)L2
Λq−1

= 0.

As 2s + k + 1 > n/2, Lemma 3.4 implies that the space Bk,2s,svel,Λq is continuously

embedded into L2(I, L∞Λq )∩L∞(I, LnΛq ). Then formulas (3.8), (3.6), (3.48) and (3.49)
readily imply that u is the unique weak solution to (3.1) granted by Theorem 3.1,
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i.e., (3.2) is ful�lled. In particular, if (f, u0) = 0 then u ≡ 0 and p satis�es dq−1p = 0

in Rn× [0, T ]. By the de�nition of the space B
k+1,2(s−1),s−1
pre,Λq−1 the form p satis�es also

(2.13) for each t ∈ [0, T ], (3.18) and (3.19). Hence p(·, t) = 0 for almost all t ∈ [0, T ]

by Proposition 3.1 and then the operator A(q)
w is injective. �

Let us continue with the proof of the surjectivity.

Lemma 3.7. Let n ≥ 3, s ∈ N, k ∈ Z+, 2s + k > n/2 and w ∈ Bk,2s,svel,Λq . Then for

each (f, u0) ∈ Bk,2(s−1),s−1for,Λq ×H2s+k,Λq there is a solution u ∈ Bk,2s,svel,Λq to (3.2).

Proof. Let (f, u0) be arbitrary data in B
k,2(s−1),s−1
for,Λq ×H2s+k,Λq and and let {um}

be the sequence of the corresponding Faedo-Galerkin approximations, constructed
in the proof of Theorem 3.1. The scalar functions Fi(t) = 〈f(·, t), bi〉Λq belong to

Cs−1[0, T ] ∩Hs[0, T ] and the components C
(m)
i,j (t) belong to Cs[0, T ] ∩Hs+1[0, T ],

see (3.5). Since w ∈ Bk,2s,svel,Λq , formula (3.5) means that the entries of the matrix

exp
( ∫ t

0
C(m)(τ)dτ

)
belong actually to Cs+1[0, T ] ∩Hs+2[0, T ] and then the com-

ponents of the vector g(m) belong to Cs[0, T ] ∩Hs+1[0, T ].
Let us begin with s = 1 and k ∈ Z+ satisfying k > n/2 − 2. If we multiply the

equation corresponding to index j in (3.3) by
dg

(m)
j

dτ then, after the summation with
respect to j, we obtain for all τ ∈ [0, T ]:

(3.50) ‖∂τum‖2L2
Λq

+
µ

2

d

∂τ
‖∇um‖2L2

Λq
=

(f, ∂τum)L2
Λq

+ (Bq(um, w), ∂τum)L2
Λq
.

After the integration with respect to τ ∈ [0, t] and the application of the H�older
inequalities with q1 = ∞, q2 = 2, q3 = 2 and p1 = 2n

n−2 , p2 = n, p3 = 2 with the

use of (3.6), (3.7) we arrive at the following:

(3.51) ‖∂τum‖2L2([0,t],L2
Λq

+ µ‖∇um(·, t)‖2L2
Λq
≤ 2‖∇u0m‖2L2

Λq
+

2‖f‖2L2(I,L2
Λq

) + cq

∫ t

0

(‖w‖2L∞
Λq
‖∇um‖2L2

Λq
+ ‖um‖2

L
2n
n−2
Λq

‖∇w‖2Ln
Λq

) dτ ≤

2‖∇u0m‖2L2
Λq

+ 2‖f‖2L2(I,L2
Λq

)+

cq

∫ t

0

(
‖w‖2

Hk+2
Λq

+ ‖∇k+2w‖
n−2
k+1

L2
Λq
‖∇w‖

2k−n+4
k+1

L2
Λq

)‖∇um‖2L2
Λq

)
dτ,

with a constant cq > 0 independent on w andm, the last bound being a consequence
of the Sobolev Embedding Theorems and Gagliardo-Nirenberg inequalities (3.17),
(3.22) with m′ = k + 1 > n/2− 1.

As u0,m we may take the orthogonal projection on the linear span L({bj}j∈N) in
H1,Λq achieving

lim
m→+∞

‖u0 − u0,m‖H1
Λq

= 0, ‖u0,m‖H1
Λq
≤ ‖u0‖H1

Λq
,

cf. [43, formula (3.87)].
On the other hand, k > n/2− 2 provides n−2

k+1 < 2 and then

(3.52) ‖∇k+2w‖
n−2
k+1

L2
Λq
‖∇w‖

2k−n+4
k+1

L2
Λq

≤ k + 1

n− 2
‖∇k+2w‖2L2

Λq
+

k + 1

2k − n+ 4
‖∇w‖2L2

Λq

by Young's inequality (2.1).
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Since w ∈ C(I,Hk+2(Rn)), inequality (3.51) implies that the sequence {um} is
bounded in the space C(I,H1

Λq )∩L2(I,H1
Λq ) and the sequence {∂tum} is bounded

in the space L2(I, L2
Λq ). In particular, we may extract a subsequence {um′}, {∂tum′}

such that
1) {um′} converges ∗-weakly in L∞(I, L2

Λq ) to an element u ∈ L∞(I,H0,Λq ),
2) for each 1 ≤ j ≤ n, the sequence of forms {∂jum′} converges ∗-weakly in

C(I,H0,Λq ) to an element u(j) ∈ C(I,H0,Λq ),
3) {um′} converges weakly in L2(I,H1,Λq ) to an element u ∈ L2(I,H1,Λq ),
4) {∂tum′} converges weakly in L2(I,H0,Λq ) to an element ũ ∈ L2(I,H0,Λq ).
By the very construction and Theorem 3.1, the form u is the unique solution

to (3.2) from the space C(I,H1,Λq ) ∩ L2(I,H1,Λq ) with ∂tu = ũ ∈ L2(I,H0,Λq ),

∂ju = u(j) ∈ C(I,H0,Λq ).
Moreover, similarly to (3.24), using the H�older inequality, (3.6), (3.7) and (2.3),

we obtain
‖PqBq(w, u)‖2L2

Λq
≤ ‖Bq(w, u)‖2L2

Λq
≤

cq

(
‖∇u‖2L2

Λq
‖w‖2L∞

Λq
+ ‖∇w‖2Ln

Λq
‖u‖2

L
2n
n−2
Λq

)
≤

cq

(
‖∇u‖2L2

Λq
‖w‖2

Hk+2
Λq

+ ‖∇k+2w‖
n−2
k+1

L2
Λq
‖∇w‖

2k−n+4
k+1

L2
Λq

‖∇u‖2L2
Λq

)
,

with a constant cq independent on u,w and then, by (3.52),
(3.53)
‖PqBq(w, u)‖2L2(I,L2

Λq
) ≤ ‖Bq(w, u)‖2L2(I,L2

Λq
) ≤ cq‖u‖

2
C(I,H1

Λq
)‖w‖

2
L2(I,Hk+2

Λq
)
,

(3.54)
‖PqBq(w, u)‖2C(I,L2

Λq
) ≤ ‖Bq(w, u)‖2C(I,L2(Rn)) ≤ cq‖u‖

2
C(I,H1

Λq
)‖w‖

2
C(I,Hk+2

Λq
)
,

with a constant cq > 0 independent on u,w. Thus, the forms PqBq(w, u) and
Bq(w, u) belong to L2(I, L2

Λq ) ∩ C(I, L2
Λq ).

Actually, (3.2) imply that, in the sense of distributions,

(3.55) µ∆u = ∂tu+ Pq(Bq(w, u)− f) in Rn × (0, T ).

Then, by Lemma 2.2 the form ∆u belongs to L2(I,H0,Λq ).
As it is known, one of the equivalent norms on Hs

Λq is the norm

(3.56) (‖1 + |ζ|2)s/2F(u)‖L2
Λq
.

As u,∆u ∈ L2(I,H0,Λq ), we see that (‖1 + |ζ|2)F(u)‖L2(I,L2
Λq

) is �nite and then

u ∈ L2(I,H2,Λq ) ∩ C(I,H1,Λq ).
Thus, we constructed a unique solution u ∈ L2(I,H2,Λq ) ∩ C(I,H1,Λq ) to (3.2)

if u0 ∈ H1,Λq , f ∈ L2(I, L2
Λq ). But we have actually at least u0 ∈ H2,Λq , f ∈

L2(I,H1
Λq ). Moreover, for each 1 ≤ j ≤ n, using the Sobolev Embeddings and

(3.22) with m′ = k + 1, (3.52), we obtain with a constant cq > 0 independent on
u,w,

‖Bq(∂jw, u)‖2L2
Λq
≤ cq

(
‖∂jw‖2L∞

Λq
‖∇u‖2L2

Λq
+ ‖∂j∇w‖2Ln

Λq
‖∇u‖2

L
2n
n−2
Λq

)
≤

cq ‖w‖2Hk+3
Λq
‖u‖2H1

Λq
,

‖Bq(∂jw, u)‖2L2(I,L2
Λq

) ≤ c ‖w‖
2
L2(I,Hk+3

Λq
)
‖u‖2C(I,H1

Λq
),

i.e. Bq(∂jw, u) ∈ L2(I, L2
Λq ).
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Next, by Lemma 3.5, for each 1 ≤ j ≤ n we have (∂jf, ∂ju0) ∈ L2(I,H2
Λq ) ×

H1,Λq , Therefore, by the already proved part of the lemma, there is a unique solution

u(j) ∈ C(I,H1,Λq ) ∩ L2(I,H2,Λq ) to
(3.57)

d(u(j),v)
L2
Λq

dτ + µ
∑
|α|=1

(∂αu(j), ∂αv)L2
Λq

= 〈∂jf −Bq(∂jw, u)−Bq(w, u
(j)), v〉Λq ,

u(j)(·, 0) = ∂ju0

for each v ∈ H1,Λq . On the other hand, ∂ju ∈ L2(I,H1,Λq ) ∩ C(I,H0,Λq ) satis�es

(3.57), too. Hence the uniqueness provides that ∂ju = u(j) for each 1 ≤ j ≤ n.
Combining this with the fact that (3.56) de�ne the equivalent norms on the Sobolev
scale Hs

Λq we conclude that u ∈ C(I,H2,Λq ) ∩ L2(I,H3,Λq ).
Next, by the Sobolev Embedding Theorem and inequality (3.22) withm′ = k+1,

‖∇PqBq(w, u)‖2L2(I,L2
Λq

) ≤ ‖∇Bq(w, u)‖2L2(I,L2
Λq

) ≤

cq

∫ T

0

(
‖∇2u‖2L2

Λq
‖w‖2L∞

Λq
+ 2‖∇w‖2Ln

Λq
‖∇u‖2

L
2n
n−2
Λq

+ ‖∇2w‖2Ln
Λq
‖u‖2

L
2n
n−2
Λq

)
dτ ≤

cq‖u‖2L2(I,H2
Λq

)‖w‖
2
C(I,Hk+2

Λq
)

+ c‖u‖2C(I,H1
Λq

)‖w‖
2
L2(I,Hk+3

Λq
)
,

with a constant cq independent on u,w, i.e., because of (3.53), (3.54), the forms
PqBq(w, u) and Bq(w, u) belong to L2(I,H1

Λq ) ∩ C(I, L2
Λq ). Then it follows from

(3.55) that ∂tu ∈ C(I,H0,Λq )∩L2(I,H1,Λq ) if f ∈ C(I, L2
Λq )∩L2(I,H1

Λq ) = B0,0,0
for,Λq

and u0 ∈ H2,Λq .

Thus, for each pair (f, u0) ∈ B0,0,0
for,Λq ×H2,Λq and each w ∈ Bk,2,1vel,Λq , k > n/2− 2,

there is a unique solution u ∈ B0,2,1
vel,Λq to (3.2).

If k = 0 then the proof of the lemma for s = 1 is complete (however this is
possible for n = 3 only because k > n/2− 2). For k ≥ 1 we argue by the induction
with respect to k′ ∈ Z+, 0 ≤ k′ ≤ k − 1.

Assume that for each pair (f, u0) ∈ Bk
′,0,0

for,Λq × H2+k′,Λq and w ∈ Bk,2,1vel,Λq , k >

n/2− 2, there is a unique solution u ∈ Bk
′,2,1

vel,Λq to (3.2). We have to prove that the

solution u belongs to Bk
′+1,2,1

vel,Λq if (f, u0) ∈ Bk
′+1,0,0

for,Λq ×H3+k′,Λq .
Indeed, by Lemma 3.5, for each 1 ≤ j ≤ n we have

(∂jf, ∂ju0) ∈ Bk
′,0,0

for,Λq ×H2+k′,Λq , ∂jw ∈ Bk−1,2,1vel,Λq

and, by Lemma 3.5, we have Bq(∂jw, u) ∈ Bk
′,0,0

for,Λq . Then, by the inductive assump-

tion there is a unique di�erential form u(j) ∈ Bk
′,2,1

vel,Λq satisfying (3.57). Moreover,

(3.35), (3.35), (3.36) and Lemmata 2.2, 3.5 imply that the forms PqBq(w, u),
Bq(w, u) belong to the space C(I,Hk′−1,Λq ) ∩ L2(I,Hk′,Λq ). Now, formula (3.55)

yields ∂tu ∈ C(I,Hk′−1,Λq ) ∩ L2(I,Hk′,Λq ). Thus, we conclude that u ∈ Bk
′+1,2,1

vel,Λq .
Finally, we invoke an induction with respect to s. With this purpose, assume that

the statement of the lemma is true for s = s0 and each k ∈ Z+ satisfying 2s0 + k >
n/2. Let us prove it for s = s0 + 1 and any k ∈ Z+ satisfying 2(s0 + 1) + k > n/2.

More precisely, we have to show that each data (f, u0) ∈ Bk,2s0,s0for,Λq ×H2(s0+1)+k,Λq

and w ∈ Bk0,2(s0+1),s0+1
vel,Λq admits a unique solution u ∈ Bk0,2(s0+1),s0+1

vel,Λq to (3.2).
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According to Lemma 3.4 we have (f, u0) ∈ Bk+2,2(s0−1),s0−1
for,Λq ×H2s0+k+2,Λq and

w ∈ Bk+2,2s0,s0
vel,Λq . Then, by the inductive assumption, there is a unique solution

u ∈ Bk+2,2s0,s0
vel,Λq to (3.2). Again, (3.35), (3.36), and Lemmata 2.2, 3.5 imply that

the forms PqBq(w, u),Bq(w, u) belong to Bk,2s0,s0for,Λq and then (3.55) yields ∂tu ∈
Bk,2s0,s0for,Λq , too. Summarizing, we conclude that u belongs to the spaceB

k,2(s0+1),s0+1
vel,Λq ,

that was to be proved. �

At this point it follows from Proposition 3.1 that there is a unique function

p ∈ Bk+1,2(s−1),s−1
pre,Λq−1 such that

(3.58) dq−1p = (I −Pq)(f −Bq(w, u)) in Rn × [0, T ].

Adding (3.55) to (3.58) we conclude that the pair

(u, p) ∈ Bk,2s,svel,Λq ×B
k+1,2(s−1),s−1
pre,Λq−1

is the unique solution to (3.1) related to the datum (f, u0) ∈ B
k,2(s−1),s−1
for,Λq−1 ×

H2s+k,Λq−1 . This implies the surjectivity of the mapping A(q)
w .

Finally, as the mapping A(q)
w is bijective and continuous, the continuity of the

inverse (Aqw)−1 follows from the inverse mapping theorem for Banach spaces. �

Since problem (3.1) is a linearisation of the Navier-Stokes equations type at an
arbitrary q-form w, it follows from Theorem 3.2 that the corresponding nonlinear
mapping given by the Navier-Stokes type equations is locally invertible. The implicit
function theory for Banach spaces even implies that the local inverse mappings can
be obtained from the contraction principle of Banach. In this way we obtain what
we shall call the open mapping theorem for problem (1.2).

Theorem 3.3. Let n ≥ 3, 0 ≤ q < n, s ∈ N and k ∈ Z+, 2s+k > n/2. Then (1.2)
induces an injective continuous nonlinear mapping

(3.59) A(q) : Bk,2s,svel,Λq ×B
k+1,2(s−1),s−1
pre,Λq−1 → B

k,2(s−1),s−1
for,Λq ×H2s+k,Λq

which is moreover open.

Proof. Indeed, the continuity of the mapping A(q) is clear from Lemma 3.5. More-
over, suppose that

(u, p) ∈ Bk,2s,svel,Λq ×B
k+1,2(s−1),s−1
pre,Λq−1 ,

A(q)(u, p) = (f, u0) ∈ B
k,2(s−1),s−1
for,Λq ×Hk+2s,Λq .

As in the proof of Theorem 3.2, formulas (3.8), (3.6), (3.48) and (3.49) imply that
(2.26) is ful�lled, i.e., u is a weak solution to equations (1.2).

As 2s+ k + 1 > n/2, by Lemma 3.4 the space Bk,2s,svel,Λq is continuously embedded

into L2(I, L∞Λq )∩L∞(I, LnΛq ). Hence, Theorem 2.2 shows that if (u′, p′) and (u′′, p′′)

belong to Bk,2s,svel,Λq ×B
k+1,2(s−1),s−1
pre,Λq−1 and A(q)(u′, p′) = A(q)(u′′, p′′) then u′ = u′′ and

dq−1(p′ − p′′)(·, t) = 0, d∗q−2(p′ − p′′)(·, t) = 0

for all t ∈ [0, T ]. Then p′ = p′′ according to Proposition 3.1 if 1 ≤ q < n. Of course,
for q = 0 we do not need any p. So, the operator A(q) of (3.59) is injective for any
q, 0 ≤ q < n.
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Finally, equality (3.45) makes it evident that the Frech�et derivative (A(q)
(w,p0)

)′ of

the nonlinear mapping A(q) at an arbitrary point

(w, p0) ∈ Bk,2s,svel,Λq ×B
k+1,2(s−1),s−1
pre,Λq−1

coincides with the continuous linear mappingA(q)
w of (3.47). By Theorem 3.2,A(q)

w is

an invertible continuous linear mapping from the space Bk,2s,svel,Λq ×B
k+1,2(s−1),s−1
pre,Λq−1 to

B
k,2(s−1),s−1
for,Λq ×Hk+2s,Λq . Both the openness of the mapping A(q) and the continuity

of its local inverse mapping now follow from the implicit function theorem for
Banach spaces, see for instance [12, Theorem 5.2.3, p. 101]. �

In particular, for q = 1 we obtain an open mapping theorem for the classical
Navier-Stokes equations over the constructed scale of the Bochner-Sobolev type
spaces.

Theorem 3.3 suggests a clear direction for the development of the topic, in which
one takes into account the following property of the so-called clopen (closed and
open) sets.

Corollary 3.1. Let n ≥ 3, 0 ≤ q < n, s ∈ N and k ∈ Z+, 2s+ k > n/2. The range
of the mapping (3.59) is closed if and only if it coincides with the whole destination
space.

Proof. Since the destination space is convex, it is connected. As is known, the only
clopen sets in a connected topological vector space are the empty set and the space
itself. Hence, the range of the mapping A(q) is closed if and only if it coincides with
the whole destination space. �

The following statement echoes the idea of using the properness property to
study nonlinear operator equations, see for instance [40].

Corollary 3.2. Let n ≥ 3, 0 ≤ q < n, s ∈ N and k ∈ Z+, 2s+ k > n/2. The range
of the mapping (3.59) is closed if and only if pre-image of precompact sets under
this map are bounded.

Finally, we set

C∞pre,Λq−1 = ∩∞s=1B
1,2(s−1),s−1
pre,Λq−1 , C∞vel,Λq = ∩∞s=1B

0,2s,s
vel,Λq ,

H∞,Λq = ∩∞s=1H2s,Λq , C
∞
for,Λq = ∩∞s=0B

0,2s,s
for,Λq .

Corollary 3.3. Let n ≥ 3. Equations (1.2) induce an injective continuous nonlinear
mapping

A(q) : C∞vel,Λq × C∞pre,Λq−1 → C∞for,Λq ×H∞,Λq

which is moreover open.

Proof. It follows immediately from Theorem 3.3. �

We �nish the paper by mentioning a familiar example by P. Fatou (1922). He
constructed a holomorphic mapping f(z) of C2 whose Jacobi matrix f ′(z) has a
constant determinant di�erent from zero. The mapping f is a homeomorphism onto
the image, however, the image of f leaves out a closed subset of C2 with nonempty
interior. This shows that nonlinear mappings may behave rather intricately.
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