СИБИРСКИЕ ЭЛЕКТРОННЫЕ МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

Siberian Electronic Mathematical Reports

http://semr.math.nsc.ru

TIGHT DESCRIPTION OF FACES IN TORUS TRIANGULATIONS WITH MINIMUM DEGREE 5

O.V.BORODIN, A.O.IVANOVA

Abstract

The degree d of a vertex or face in a graph G is the number of incident edges. A face $f=v_{1} \ldots v_{d}$ in a plane or torus graph G is of type $\left(k_{1}, k_{2}, \ldots, k_{d}\right)$ if $d\left(v_{i}\right) \leq k_{i}$ for each i. By δ we denote the minimum vertex-degree of G. In 1989, Borodin confirmed Kotzig's conjecture of 1963 that every plane graph with minimum degree δ equal to 5 has a ($5,5,7$)-face or a ($5,6,6$)-face, where all parameters are tight. It follows from the classical theorem of Lebesgue (1940) that every plane quadrangulation with $\delta \geq 3$ has a face of one of the types $(3,3,3, \infty)$, $(3,3,4,11),(3,3,5,7),(3,4,4,5)$. Recently, we improved this description to the following one: " $(3,3,3, \infty),(3,3,4,9),(3,3,5,6),(3,4,4,5)$ ", where all parameters except possibly 9 are best possible and 9 cannot go down below 8. In 1995, Avgustinovich and Borodin proved that every torus quadrangulation with $\delta \geq 3$ has a face of one of the following types: $(3,3,3, \infty),(3,3,4,10),(3,3,5,7),(3,3,6,6),(3,4,4,6),(4,4,4,4)$, where all parameters are best possible. The purpose of our note is to prove that every torus triangulation with $\delta \geq 5$ has a face of one of the types $(5,5,8)$, $(5,6,7)$, or $(6,6,6)$, where all parameters are best possible.

Keywords: plane graph, torus, triangulation, quadrangulation, structure properties, 3 -faces.

[^0]
1. Introduction

The degree d of a vertex or face in a plane or torus graph G is the number of incident edges. A k-vertex and k-face is one of degree k, a k^{+}-vertex has degree at least k, and so on. A face $f=v_{1} \ldots v_{d}$ in G is of type $\left(k_{1}, k_{2}, \ldots, v_{d}\right)$, or a $\left(k_{1}, k_{2}, \ldots, v_{d}\right)$-face if $d\left(v_{i}\right) \leq k_{i}$ whenever $1 \leq i \leq d$.

By δ and w denote the minimum vertex degree and smallest degree-sum of faces in G, respectively.

We now recall some results on the structure of faces in plane graph with $\delta \geq 3$, beginning with the fundamental theorem of Lebesgue [14] from 1940.

Theorem 1 (Lebesgue [14]). Every plane graph with $\delta \geq 3$ has a face of one of the following types:

$$
\begin{gathered}
(3,6, \infty),(3,7,41),(3,8,23),(3,9,17),(3,10,14),(3,11,13) \\
(4,4, \infty),(4,5,19),(4,6,11),(4,7,9),(5,5,9),(5,6,7) \\
(3,3,3, \infty),(3,3,4,11),(3,3,5,7),(3,4,4,5),(3,3,3,3,5)
\end{gathered}
$$

The classical Theorem 1, along with other ideas in Lebesgue [14], has a lot of applications to plane graph coloring problems (the first example of such applications and recent surveys can be found in $[5,15]$).

Some parameters of Lebesgue's Theorem were improved for several narrow classes of plane graphs.

In 1963, Kotzig [13] proved that every plane triangulation with $\delta=5$ satisfies $w \leq 18$ and conjectured that $w \leq 17$ holds. In 1989, Kotzig's conjecture was confirmed by Borodin [2] in a more general form.

Theorem 2 (Borodin [2]). Every plane graph with $\delta=5$ has a (5,5, 7)-face or a (5, 6, 6)-face, where all parameters are tight.

Theorem 2 also confirmed a conjecture of Grübaum [10] from 1975 that the cyclic connectivity (defined as the minimum number of edges to be deleted from a graph to obtain two components each containing a cycle) of every 5 -connected planar graph is at most 11 , which is tight (a bound of 13 was earlier obtained by Plummer [16]).

Theorem 2 was extended to several classes of plane graphs over the last decades; see, for example, recent surveys $[7,12]$ and also $[3-5,11]$.

In particular, precise descriptions of the structure of faces were obtained for plane graphs with $\delta \geq 4$ and for triangulated plane graphs.

Theorem 3 (Borodin, Ivanova [6]). Every plane graph with $\delta \geq 4$ has a 3-face of one of the following types: $(4,4, \infty),(4,5,14),(4,6,10),(4,7,7),(5,5,7),(5,6,6)$, where all parameters are best possible.

Theorem 4 (Borodin, Ivanova, Kostochka [9]). Every plane triangulation has a face of one of the following types: $(3,4,31),(3,5,21),(3,6,20),(3,7,13),(3,8,14)$, $(3,9,12),(3,10,12),(4,4, \infty),(4,5,11),(4,6,10),(4,7,7),(5,6,6),(5,5,7)$, where all parameters are tight.

It follows from Theorem 1 that every plane quadrangulation with $\delta \geq 3$ has a face of one of the types $(3,3,3, \infty),(3,3,4,11),(3,3,5,7),(3,4,4,5)$. Recently, we improved this result as follows.

Theorem 5 (Borodin, Ivanova [8]). Every plane quadrangulation with $\delta \geq 3$ has a face of one of the types: $(3,3,3, \infty),(3,3,4,9),(3,3,5,6),(3,4,4,5)$, where all parameters except possibly 9 are best possible.

We believe that 9 above is also sharp and thus the whole description is tight. At least, we know that 9 cannot go down below 8 .

In 1995, Avgustinovich and Borodin gave the following tight description of faces in quadrangulations of the torus.

Theorem 6 (Avgustinovich, Borodin [1]). Every torus quadrangulation with $\delta \geq 3$ has a face of one of the following types: $(3,3,3, \infty),(3,3,4,10),(3,3,5,7),(3,3,6,6)$, $(3,4,4,6),(4,4,4,4)$, where all parameters are best possible.

The purpose of this note is to prove the following tight describing of faces in torus triangulations with $\delta \geq 5$.

Theorem 7. Every torus triangulation with $\delta \geq 5$ has a face of one of the following types:
(Ta) $(5,5,8)$,
(Tb) $(5,6,7)$, or
(Tc) $(6,6,6)$,
where all parameters are best possible.

2. The tightness of Theorem 7

The tightness of (Ta) is confirmed by the torus graph in Fig. 1, since its every face is incident with a 5 -vertex, 8 -vertex and the third vertex of degree 5 or 8 .

Fig. 1. A torus triangulation with all faces of type $\left(5^{+}, 5^{+}, 8^{+}\right)$.

Figure 2 represents a torus graph with seven pairwise adjacent 6-faces. Here, $0,1, \ldots, 6$ are not the vertices of a graph but just the points on the boundary of a plane pattern of the torus, so the points labeled the same should be glued to return to the torus. The dual of this graph has only 3 -faces incident with three 6 -vertices, which confirms the necessity and sharpness of $T(c)$.

Now if we replace each 6-face in Fig. 2 by a construction shown in Fig. 3, we produce a torus triangulation in which every face $v_{1} v_{2} v_{3}$ satisfies $d\left(v_{1}\right) \geq 5$, $d\left(v_{2}\right) \geq 6$, and $d\left(v_{3}\right) \geq 7$. This confirms that the term $\mathrm{T}(\mathrm{b})$ is also best possible in Theorem 7 .

FIg. 2. Seven pairwise adjacent 6 -faces on the torus.

3. Proving the existence of face-types in Theorem 7

Suppose T is a counterexample to Theorem 7.
Euler's formula $|V|-|E|+|F|=0$ for the torus triangulation T implies

$$
\begin{equation*}
\sum_{v \in V}(d(v)-6)=0 \tag{1}
\end{equation*}
$$

We assign a charge $\mu(v)=d(v)-6$ to every vertex v, so only 5 -vertices have a negative charge. Using the properties of T as a counterexample, we define a local redistribution of charges, preserving their sum, such that the new charge $\mu^{\prime}(v)$ is

Fig. 3. A replacement for each 6 -face in Figure 2 to produce a torus triangulation with all faces of type $\left(5^{+}, 6^{+}, 7^{+}\right)$.
non-negative whenever $v \in V$ and there is at least one vertex v with $\mu^{\prime}(v)>0$. This will contradict the fact that the sum of the new charges is, by (1), equal to 0 .

We use the following rule of discharging.
R. Each 5-vertex receives $\frac{1}{3}$ from each 7^{+}-neighbor.

We now check that $\mu^{\prime}(v) \geq 0$ by \mathbf{R} for all $v \in V$, which implies due to (1) that vertices v with $\mu^{\prime}(v)>0$ cannot exist in T.

In what follows, by "non- (k, l, m) !" we mean a short-hand for "since T has no (k, l, m)-faces".

CASE 1. $d(v) \geq 10$. By \mathbf{R}, we have $\mu^{\prime}(v) \geq d(v)-6-\frac{d(v)}{3}=\frac{2(d(v)-9)}{3}>0$, so T has no 10^{+}-vertices.

CASE 2. $d(v)=9$. Since $\mu^{\prime}(v) \geq 9-6-\frac{9}{3}=0$, we can assume that each 9 -vertex of T is completely surrounded by 5 -vertices.

CASE 3. $d(v)=8$. By by non- $(5,5,8)$!, our v has at most four 5 -neighbors, so $\mu^{\prime}(v) \geq 8-6-4 \times \frac{1}{3}>0$, which means that T has no 8 -vertices either.

CASE 4. $d(v)=7$. Now v has at most three 5 -neighbors by non- $(5,5,7)!$, which implies that $\mu^{\prime}(v) \geq 7-6-3 \times \frac{1}{3}=0$. Moreover, $\mu^{\prime}(v)=0$ implies that v has exactly three 5 -neighbors.

CASE 5. $d(v)=6$. Since v does not participate in R, we have $\mu^{\prime}(v)=\mu(v)=0$.

CASE 6. $d(v)=5$. Note that v has at most two 6^{-}-neighbors by non- $(5,6,6)$!, so v has at least three 7^{+}-neighbors, which results in $\mu^{\prime}(v) \geq 5-6+3 \times \frac{1}{3} \geq 0$ by \mathbf{R}.

To arrive at a final contradiction arising in connection with a 5 -vertex v, it suffices to show that in fact either $\mu^{\prime}(v)>0$, which means that T has no 5 -vertices, or v has a neighbor with a positive μ^{\prime}.

The absence of 5 -vertices in T would imply by Cases $1-4$ that T entirely consists of 6 -vertices, contrary to non- $(6,6,6)$!.

It remains to assume that our 5 -vertex v has precisely two 6^{-}-neighbors, say v_{1} and v_{3}. However, then $d\left(v_{4}\right) \geq 8$ and $d\left(v_{5}\right) \geq 8$ by non- $(5,6,7)!$, so $\mu^{\prime}\left(v_{4}\right)>0$ as shown in Cases 1-3.

Thus we have proved $\mu^{\prime}(v) \geq 0$ for every $v \in V$ and there is a vertex v with $\mu^{\prime}(v)>0$, which contradicts (1) and completes the proof of Theorem 7.

References

[1] S.V. Avgustinovich, O.V. Borodin, Edge neighborhoods in normal maps, in Korshunov, A.D. (ed.), Operations research and discrete analysis, Mathematics and its applications, 391, 17-22, 1997. Zbl 0860.05022
[2] O.V. Borodin, Solution of problems of Kotzig and Grünbaum concerning the isolation of cycles in planar graphs, Math. Notes, 46:5 (1989), 835-837. Zbl 0717.05034
[3] O.V. Borodin, Triangulated 3-polytopes without faces of low weight, Discrete Math., 186:1-3 (1998), 281-285. Zbl 0956.52010
[4] O.V. Borodin, Sharpening Lebesgue's theorem on the structure of lowest faces of convex polytopes, Diskretn. Anal. Issled. Oper., Ser. 1, 9:3 (2002), 29-39. Zbl 1015.52008
[5] O.V. Borodin, Colorings of plane graphs: a survey, Discrete Math., 313:4 (2013), 517-539. Zbl 1259.05042
[6] O.V. Borodin, A.O. Ivanova, Describing 3-faces in normal plane maps with minimum degree 4, Discrete Math., 313:23 (2013), 2841-2847. Zbl 1281.05054
[7] O.V. Borodin, A.O. Ivanova, New results about the structure of plane graphs: A survey, AIP Conference Proceedings, 1907, 030051 (2017).
[8] O.V. Borodin, A.O. Ivanova, An improvement of Lebesgue's description of edges in 3-polytopes and faces in plane quadrangulations, Discrete Math., 342:6 (2019), 1820-1827. Zbl 1414.05089
[9] O.V. Borodin, A.O. Ivanova, A.V. Kostochka, Describing faces in plane triangulations, Discrete Math., 319 (2014), 47-61. Zbl 1280.05027
[10] B. Grünbaum, Polytopal graphs, in Studies in Graph Theory, D.R. Fulkerson, ed., MAA Studies in Mathematics, 12 (1975), 201-224.
[11] M. Horn̆ák, S. Jendrol', Unavoidable sets of face types for planar maps, Discuss. Math., Graph Theory, 16:2 (1996), 123-141. Zbl 0877.05048
[12] S. Jendrol', H.-J. Voss, Light subgraphs of graphs embedded in the plane. A survey, Discrete Math., 313:4 (2013), 406-421. Zbl 1259.05045
[13] A. Kotzig, From the theory of Euler's polyhedrons, Mat.-Fyz. Čas., 13 (1963), 20-30. Zbl 0134.19601
[14] H. Lebesgue, Quelques conséquences simples de la formule d'Euler, J. Math. Pures Appl., IX. Sér., 19 (1940), 27-43. Zbl 0024.28701
[15] O. Ore, M.D. Plummer, Cyclic coloration of plane graphs, Recent Progr. Comb., Proc. 3rd Waterloo Conf. 1968, (1969), 287-293. Zbl 0195.25701
[16] M.D. Plummer, On the cyclic connectivity of planar graph, Graph Theory Appl., Lect. Notes Math., 303 (1972), 235-242. Zbl 0247.05113

Oleg Veniaminovich Borodin
Sobolev Institute of Mathematics,
4, Koptyuga ave.,
Novosibirsk, 630090, Russia
Email address: brdnoleg@math.nsc.ru
Anna Olegovna Ivanova
Ammosov North-Eastern Federal University,
48, Kulakovskogo str.,
Yakutsk, 677013, Russia
Email address: shmgnanna@mail.ru

[^0]: Borodin, O.V., Ivanova, A.O., Tight description of faces in torus triangulations with minimum degree 5 .
 (C) 2021 Borodin O.V., Ivanova A.O.

 The first author' work was supported by the Ministry of Science and Higher Education of the Russian Federation (project no. 0314-2019-0016). The second author's work was supported by the Ministry of Science and Higher Education of the Russian Federation (Grant No. FSRG-2020-0006).

 Received October, 28, 2021, published December, 1, 2021.

