S@©MR ISSN 1813-3304

CUBNPCKHNE SJIEKTPOHHDBIE
MATEMATUYECKHUE U3BECTUA

Siberian Electronic Mathematical Reports
http://semr.math.nsc.ru

Tom 18, N2, cmp. 1475-1481 (2021) VK 519.172.2
DOI 10.33048 /semi.2021.18.110 MSC 05C75

TIGHT DESCRIPTION OF FACES IN TORUS
TRIANGULATIONS WITH MINIMUM DEGREE 5

0.V.BORODIN, A.O.IVANOVA

ABSTRACT. The degree d of a vertex or face in a graph G is the
number of incident edges. A face f = v1...vq in a plane or torus graph
G is of type (k1,ka,...,kq) if d(vi) < k; for each i. By § we denote
the minimum vertex-degree of G. In 1989, Borodin confirmed Kotzig’s
conjecture of 1963 that every plane graph with minimum degree § equal
to b has a (5,5, 7)-face or a (5, 6, 6)-face, where all parameters are tight.
It follows from the classical theorem of Lebesgue (1940) that every plane
quadrangulation with 6 > 3 has a face of one of the types (3,3,3,0),
(3,3,4,11), (3,3,5,7), (3,4,4,5). Recently, we improved this description
to the following one: “(3, 3, 3, 00), (3, 3,4,9), (3,3,5,6), (3,4,4,5)”, where
all parameters except possibly 9 are best possible and 9 cannot go down
below 8. In 1995, Avgustinovich and Borodin proved that every torus
quadrangulation with 6 > 3 has a face of one of the following types:
(3,3,3,0), (3,3,4,10), (3,3,5,7), (3,3,6,6), (3,4,4,6), (4,4,4,4), where
all parameters are best possible. The purpose of our note is to prove that
every torus triangulation with & > 5 has a face of one of the types (5, 5, 8),
(5,6,7), or (6,6,6), where all parameters are best possible.
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1. INTRODUCTION

The degree d of a vertex or face in a plane or torus graph G is the number of
incident edges. A k-vertez and k-face is one of degree k, a k™ -verter has degree
at least k, and so on. A face f = vy...v4 in G is of type (k1,ka2,...,v4), O &
(k1, ko, ..., vq)-face if d(v;) < k; whenever 1 <i <d.

By ¢ and w denote the minimum vertex degree and smallest degree-sum of faces
in G, respectively.

We now recall some results on the structure of faces in plane graph with § > 3,
beginning with the fundamental theorem of Lebesgue [14] from 1940.

Theorem 1 (Lebesgue [14]). Every plane graph with 6 > 3 has a face of one of
the following types:

(3,6, 00), (3,7,4 ), (3,8,23), (3,9,17), (3,10,14), (3,11,13),
(4,4, 00), (4,5,19), (4,6,11), (4 7, 9),( ,5,9), (5,6,7),
(3,3,3,00), (3,3,4,11), (3,3,5,7), (3,4,4,5), (3,3.3,3,5).

The classical Theorem 1, along with other ideas in Lebesgue [14], has a lot of
applications to plane graph coloring problems (the first example of such applications
and recent surveys can be found in [5,15]).

Some parameters of Lebesgue’s Theorem were improved for several narrow classes
of plane graphs.

In 1963, Kotzig [13] proved that every plane triangulation with 6 = 5 satisfies
w < 18 and conjectured that w < 17 holds. In 1989, Kotzig’s conjecture was
confirmed by Borodin [2] in a more general form.

Theorem 2 (Borodin [2]). Every plane graph with 6 = 5 has a (5,5,7)-face or a
(5,6,6)-face, where all parameters are tight.

Theorem 2 also confirmed a conjecture of Griibaum [10] from 1975 that the
cyclic connectivity (defined as the minimum number of edges to be deleted from
a graph to obtain two components each containing a cycle) of every 5-connected
planar graph is at most 11, which is tight (a bound of 13 was earlier obtained by
Plummer [16]).

Theorem 2 was extended to several classes of plane graphs over the last decades;
see, for example, recent surveys [7,12] and also [3-5,11].

In particular, precise descriptions of the structure of faces were obtained for
plane graphs with § > 4 and for triangulated plane graphs.

Theorem 3 (Borodin, Ivanova [6]). Every plane graph with 6 > 4 has a 3-face of
one of the following types: (4,4,00), (4,5,14), (4,6,10), (4,7,7), (5,5,7), (5,6,6),
where all parameters are best possible.

Theorem 4 (Borodin, Ivanova, Kostochka [9]). Every plane triangulation has a
face of one of the following types: (3,4,31), (3,5,21), (3,6,20), (3,7,13), (3,8,14),
(3,9,12), (3,10,12), (4,4,00), (4,5,11), (4,6,10), (4,7,7), (5,6.6), (5,5,7), where
all parameters are tight.

It follows from Theorem 1 that every plane quadrangulation with § > 3 has a
face of one of the types (3,3,3,00), (3,3,4,11), (3,3,5,7), (3,4,4,5). Recently, we
improved this result as follows.
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Theorem 5 (Borodin, Ivanova [8]). FEvery plane quadrangulation with § > 3 has
a face of one of the types: (3,3,3,00), (3,3,4,9), (3,3,5,6), (3,4,4,5), where all
parameters except possibly 9 are best possible.

We believe that 9 above is also sharp and thus the whole description is tight. At
least, we know that 9 cannot go down below 8.

In 1995, Avgustinovich and Borodin gave the following tight description of faces
in quadrangulations of the torus.

Theorem 6 (Avgustinovich, Borodin [1]). Every torus quadrangulation with 6 > 3
has a face of one of the following types: (3,3, 3, 00), (3,3,4,10), (3,3,5,7), (3,3,6,6),
(3,4,4,6), (4,4,4,4), where all parameters are best possible.

The purpose of this note is to prove the following tight describing of faces in
torus triangulations with ¢ > 5.

Theorem 7. Every torus triangulation with § > 5 has a face of one of the following
types:

(Ta) (5,5,8),

(Th) (5,6,7), or

(Tc) (6,6,6),

where all parameters are best possible.

2. THE TIGHTNESS OF THEOREM 7

The tightness of (Ta) is confirmed by the torus graph in Fig. 1, since its every
face is incident with a 5-vertex, 8-vertex and the third vertex of degree 5 or 8.

Fi1G. 1. A torus triangulation with all faces of type (57,51, 8%).
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Figure 2 represents a torus graph with seven pairwise adjacent 6-faces. Here,
0,1,...,6 are not the vertices of a graph but just the points on the boundary of a
plane pattern of the torus, so the points labeled the same should be glued to return
to the torus. The dual of this graph has only 3-faces incident with three 6-vertices,
which confirms the necessity and sharpness of T(c).

Now if we replace each 6-face in Fig. 2 by a construction shown in Fig. 3,
we produce a torus triangulation in which every face vivquvs satisfies d(vy) > 5,
d(vg) > 6, and d(vz) > 7. This confirms that the term T(b) is also best possible in
Theorem 7.

6 C 6
5 C

5
4 4

O
0

FiG. 2. Seven pairwise adjacent 6-faces on the torus.

3. PROVING THE EXISTENCE OF FACE-TYPES IN THEOREM 7

Suppose T is a counterexample to Theorem 7.
Euler’s formula |V| — |E| 4 |F| = 0 for the torus triangulation 7" implies

(1) > (d(v) - 6) = 0.

veV

We assign a charge pu(v) = d(v) — 6 to every vertex v, so only 5-vertices have a
negative charge. Using the properties of T' as a counterexample, we define a local
redistribution of charges, preserving their sum, such that the new charge p/'(v) is
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Fic. 3. A replacement for each 6-face in Figure 2 to produce a
torus triangulation with all faces of type (57,67, 7).

non-negative whenever v € V' and there is at least one vertex v with p'(v) > 0.
This will contradict the fact that the sum of the new charges is, by (1), equal to 0.

We use the following rule of discharging.
R. Each 5-vertex receives % from each 7*-neighbor.

We now check that p/(v) > 0 by R for all v € V, which implies due to (1) that
vertices v with p/(v) > 0 cannot exist in 7.
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In what follows, by “non-(k,l,m)!” we mean a short-hand for “since 7' has no
(k, 1, m)-faces”.

CASE 1. d(v) > 10. By R, we have p/(v) > d(v) — 6 — @ = W > 0, so
T has no 10" -vertices.

CASE 2. d(v) = 9. Since u/(v) > 9—6—% = 0, we can assume that each 9-vertex
of T is completely surrounded by 5-vertices.

CASE 3. d(v) = 8. By by non-(5,5,8)!, our v has at most four 5-neighbors, so
1/ (v) > 8—6—4x & >0, which means that T has no 8-vertices either.

CASE 4. d(v) = 7. Now v has at most three 5-neighbors by non-(5, 5, 7)!, which
implies that p/(v) > 7—6— 3 x & = 0. Moreover, z/(v) = 0 implies that v has
exactly three 5-neighbors.

CASE 5. d(v) = 6. Since v does not participate in R, we have p/(v) = p(v) = 0.

CASE 6. d(v) = 5. Note that v has at most two 6~ -neighbors by non-(5, 6
so v has at least three 7T-neighbors, which results in u/(v) > 5 — 6 + 3 x
by R.

To arrive at a final contradiction arising in connection with a 5-vertex v, it
suffices to show that in fact either u/(v) > 0, which means that T has no 5-vertices,
or v has a neighbor with a positive p'.

The absence of 5-vertices in T" would imply by Cases 1-4 that T entirely consists
of 6-vertices, contrary to non-(6,6,6)!.

It remains to assume that our 5-vertex v has precisely two 6~ -neighbors, say vy
and vs. However, then d(vq) > 8 and d(vs) > 8 by non-(5,6,7)!, so p/(vq) > 0 as
shown in Cases 1-3.

,6)!,
1
320

Thus we have proved p'(v) > 0 for every v € V and there is a vertex v with
w' (v) > 0, which contradicts (1) and completes the proof of Theorem 7.
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