
S e©MR ISSN 1813-3304

ÑÈÁÈÐÑÊÈÅ ÝËÅÊÒÐÎÍÍÛÅ

ÌÀÒÅÌÀÒÈ×ÅÑÊÈÅ ÈÇÂÅÑÒÈß

Siberian Electronic Mathematical Reports

http://semr.math.nsc.ru

Òîì 18, �2, ñòð. 1475�1481 (2021) ÓÄÊ 519.172.2

DOI 10.33048/semi.2021.18.110 MSC 05C75

TIGHT DESCRIPTION OF FACES IN TORUS

TRIANGULATIONS WITH MINIMUM DEGREE 5

O.V.BORODIN, A.O. IVANOVA

Abstract. The degree d of a vertex or face in a graph G is the
number of incident edges. A face f = v1 . . . vd in a plane or torus graph
G is of type (k1, k2, . . . , kd) if d(vi) ≤ ki for each i. By δ we denote
the minimum vertex-degree of G. In 1989, Borodin con�rmed Kotzig's
conjecture of 1963 that every plane graph with minimum degree δ equal
to 5 has a (5, 5, 7)-face or a (5, 6, 6)-face, where all parameters are tight.
It follows from the classical theorem of Lebesgue (1940) that every plane
quadrangulation with δ ≥ 3 has a face of one of the types (3, 3, 3,∞),
(3, 3, 4, 11), (3, 3, 5, 7), (3, 4, 4, 5). Recently, we improved this description
to the following one: �(3, 3, 3,∞), (3, 3, 4, 9), (3, 3, 5, 6), (3, 4, 4, 5)�, where
all parameters except possibly 9 are best possible and 9 cannot go down
below 8. In 1995, Avgustinovich and Borodin proved that every torus
quadrangulation with δ ≥ 3 has a face of one of the following types:
(3, 3, 3,∞), (3, 3, 4, 10), (3, 3, 5, 7), (3, 3, 6, 6), (3, 4, 4, 6), (4, 4, 4, 4), where
all parameters are best possible. The purpose of our note is to prove that
every torus triangulation with δ ≥ 5 has a face of one of the types (5, 5, 8),
(5, 6, 7), or (6, 6, 6), where all parameters are best possible.

Keywords: plane graph, torus, triangulation, quadrangulation, structure
properties, 3-faces.

Borodin, O.V., Ivanova, A.O., Tight description of faces in torus triangulations

with minimum degree 5.

© 2021 Borodin O.V., Ivanova A.O.

The �rst author' work was supported by the Ministry of Science and Higher Education of the
Russian Federation (project no. 0314-2019-0016). The second author's work was supported by the
Ministry of Science and Higher Education of the Russian Federation (Grant No. FSRG-2020-0006).

Received October, 28, 2021, published December, 1, 2021.

1475



1476 O.V.BORODIN, A.O. IVANOVA

1. Introduction

The degree d of a vertex or face in a plane or torus graph G is the number of
incident edges. A k-vertex and k-face is one of degree k, a k+-vertex has degree
at least k, and so on. A face f = v1 . . . vd in G is of type (k1, k2, . . . , vd), or a
(k1, k2, . . . , vd)-face if d(vi) ≤ ki whenever 1 ≤ i ≤ d.

By δ and w denote the minimum vertex degree and smallest degree-sum of faces
in G, respectively.

We now recall some results on the structure of faces in plane graph with δ ≥ 3,
beginning with the fundamental theorem of Lebesgue [14] from 1940.

Theorem 1 (Lebesgue [14]). Every plane graph with δ ≥ 3 has a face of one of
the following types:

(3, 6,∞), (3, 7, 41), (3, 8, 23), (3, 9, 17), (3, 10, 14), (3, 11, 13),
(4, 4,∞), (4, 5, 19), (4, 6, 11), (4, 7, 9), (5, 5, 9), (5, 6, 7),

(3, 3, 3,∞), (3, 3, 4, 11), (3, 3, 5, 7), (3, 4, 4, 5), (3, 3, 3, 3, 5).

The classical Theorem 1, along with other ideas in Lebesgue [14], has a lot of
applications to plane graph coloring problems (the �rst example of such applications
and recent surveys can be found in [5, 15]).

Some parameters of Lebesgue's Theorem were improved for several narrow classes
of plane graphs.

In 1963, Kotzig [13] proved that every plane triangulation with δ = 5 satis�es
w ≤ 18 and conjectured that w ≤ 17 holds. In 1989, Kotzig's conjecture was
con�rmed by Borodin [2] in a more general form.

Theorem 2 (Borodin [2]). Every plane graph with δ = 5 has a (5, 5, 7)-face or a
(5, 6, 6)-face, where all parameters are tight.

Theorem 2 also con�rmed a conjecture of Gr�ubaum [10] from 1975 that the
cyclic connectivity (de�ned as the minimum number of edges to be deleted from
a graph to obtain two components each containing a cycle) of every 5-connected
planar graph is at most 11, which is tight (a bound of 13 was earlier obtained by
Plummer [16]).

Theorem 2 was extended to several classes of plane graphs over the last decades;
see, for example, recent surveys [7, 12] and also [3�5,11].

In particular, precise descriptions of the structure of faces were obtained for
plane graphs with δ ≥ 4 and for triangulated plane graphs.

Theorem 3 (Borodin, Ivanova [6]). Every plane graph with δ ≥ 4 has a 3-face of
one of the following types: (4, 4,∞), (4, 5, 14), (4, 6, 10), (4, 7, 7), (5, 5, 7), (5, 6, 6),
where all parameters are best possible.

Theorem 4 (Borodin, Ivanova, Kostochka [9]). Every plane triangulation has a
face of one of the following types: (3, 4, 31), (3, 5, 21), (3, 6, 20), (3, 7, 13), (3, 8, 14),
(3, 9, 12), (3, 10, 12), (4, 4,∞), (4, 5, 11), (4, 6, 10), (4, 7, 7), (5, 6, 6), (5, 5, 7), where
all parameters are tight.

It follows from Theorem 1 that every plane quadrangulation with δ ≥ 3 has a
face of one of the types (3, 3, 3,∞), (3, 3, 4, 11), (3, 3, 5, 7), (3, 4, 4, 5). Recently, we
improved this result as follows.



TIGHT DESCRIPTION OF FACES IN TORUS TRIANGULATIONS 1477

Theorem 5 (Borodin, Ivanova [8]). Every plane quadrangulation with δ ≥ 3 has
a face of one of the types: (3, 3, 3,∞), (3, 3, 4, 9), (3, 3, 5, 6), (3, 4, 4, 5), where all
parameters except possibly 9 are best possible.

We believe that 9 above is also sharp and thus the whole description is tight. At
least, we know that 9 cannot go down below 8.

In 1995, Avgustinovich and Borodin gave the following tight description of faces
in quadrangulations of the torus.

Theorem 6 (Avgustinovich, Borodin [1]). Every torus quadrangulation with δ ≥ 3
has a face of one of the following types: (3, 3, 3,∞), (3, 3, 4, 10), (3, 3, 5, 7), (3, 3, 6, 6),
(3, 4, 4, 6), (4, 4, 4, 4), where all parameters are best possible.

The purpose of this note is to prove the following tight describing of faces in
torus triangulations with δ ≥ 5.

Theorem 7. Every torus triangulation with δ ≥ 5 has a face of one of the following
types:

(Ta) (5, 5, 8),
(Tb) (5, 6, 7), or
(Tc) (6, 6, 6),
where all parameters are best possible.

2. The tightness of Theorem 7

The tightness of (Ta) is con�rmed by the torus graph in Fig. 1, since its every
face is incident with a 5-vertex, 8-vertex and the third vertex of degree 5 or 8.
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Fig. 1. A torus triangulation with all faces of type (5+, 5+, 8+).
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Figure 2 represents a torus graph with seven pairwise adjacent 6-faces. Here,
0, 1, . . . , 6 are not the vertices of a graph but just the points on the boundary of a
plane pattern of the torus, so the points labeled the same should be glued to return
to the torus. The dual of this graph has only 3-faces incident with three 6-vertices,
which con�rms the necessity and sharpness of T(c).

Now if we replace each 6-face in Fig. 2 by a construction shown in Fig. 3,
we produce a torus triangulation in which every face v1v2v3 satis�es d(v1) ≥ 5,
d(v2) ≥ 6, and d(v3) ≥ 7. This con�rms that the term T(b) is also best possible in
Theorem 7.
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Fig. 2. Seven pairwise adjacent 6-faces on the torus.

3. Proving the existence of face-types in Theorem 7

Suppose T is a counterexample to Theorem 7.
Euler's formula |V | − |E|+ |F | = 0 for the torus triangulation T implies

(1)
∑
v∈V

(d(v)− 6) = 0.

We assign a charge µ(v) = d(v) − 6 to every vertex v, so only 5-vertices have a
negative charge. Using the properties of T as a counterexample, we de�ne a local
redistribution of charges, preserving their sum, such that the new charge µ′(v) is
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Fig. 3. A replacement for each 6-face in Figure 2 to produce a
torus triangulation with all faces of type (5+, 6+, 7+).

non-negative whenever v ∈ V and there is at least one vertex v with µ′(v) > 0.
This will contradict the fact that the sum of the new charges is, by (1), equal to 0.

We use the following rule of discharging.

R. Each 5-vertex receives 1
3 from each 7+-neighbor.

We now check that µ′(v) ≥ 0 by R for all v ∈ V , which implies due to (1) that
vertices v with µ′(v) > 0 cannot exist in T .
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In what follows, by �non-(k, l,m)!� we mean a short-hand for �since T has no
(k, l,m)-faces�.

CASE 1. d(v) ≥ 10. By R, we have µ′(v) ≥ d(v)− 6− d(v)
3 = 2(d(v)−9)

3 > 0, so
T has no 10+-vertices.

CASE 2. d(v) = 9. Since µ′(v) ≥ 9−6− 9
3 = 0, we can assume that each 9-vertex

of T is completely surrounded by 5-vertices.

CASE 3. d(v) = 8. By by non-(5, 5, 8)!, our v has at most four 5-neighbors, so
µ′(v) ≥ 8− 6− 4× 1

3 > 0, which means that T has no 8-vertices either.

CASE 4. d(v) = 7. Now v has at most three 5-neighbors by non-(5, 5, 7)!, which
implies that µ′(v) ≥ 7 − 6 − 3 × 1

3 = 0. Moreover, µ′(v) = 0 implies that v has
exactly three 5-neighbors.

CASE 5. d(v) = 6. Since v does not participate in R, we have µ′(v) = µ(v) = 0.

CASE 6. d(v) = 5. Note that v has at most two 6−-neighbors by non-(5, 6, 6)!,
so v has at least three 7+-neighbors, which results in µ′(v) ≥ 5 − 6 + 3 × 1

3 ≥ 0
by R.

To arrive at a �nal contradiction arising in connection with a 5-vertex v, it
su�ces to show that in fact either µ′(v) > 0, which means that T has no 5-vertices,
or v has a neighbor with a positive µ′.

The absence of 5-vertices in T would imply by Cases 1�4 that T entirely consists
of 6-vertices, contrary to non-(6, 6, 6)!.

It remains to assume that our 5-vertex v has precisely two 6−-neighbors, say v1
and v3. However, then d(v4) ≥ 8 and d(v5) ≥ 8 by non-(5, 6, 7)!, so µ′(v4) > 0 as
shown in Cases 1�3.

Thus we have proved µ′(v) ≥ 0 for every v ∈ V and there is a vertex v with
µ′(v) > 0, which contradicts (1) and completes the proof of Theorem 7.
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