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ASYMPTOTICS OF SUMS OF REGRESSION RESIDUALS

UNDER MULTIPLE ORDERING OF REGRESSORS

M.G. CHEBUNIN, A.P. KOVALEVSKII

Abstract. We prove theorems about the Gaussian asymptotics of an
empirical bridge built from residuals of a linear model under multiple
regressor orderings. We study the testing of the hypothesis of a linear
model for the components of a random vector: one of the components
is a linear combination of the others up to an error that does not
depend on the other components of the random vector. The independent
copies of the random vector are sequentially ordered in ascending order
of several of its components. The result is a sequence of vectors of
higher dimension, consisting of induced order statistics (concomitants)
corresponding to di�erent orderings. For this sequence of vectors, without
the assumption of a linear model for the components, we prove a
lemma of weak convergence of the distributions of an appropriately
centered and normalized process to a centered Gaussian process with
almost surely continuous trajectories. Assuming a linear relationship of
the components, standard least squares estimates are used to compute
regression residuals, that is, the di�erences between response values and
the predicted ones by the linear model. We prove a theorem of weak
convergence of the process of sums of of regression residuals under the
necessary normalization to a centered Gaussian process.
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1. Introduction

An extremely useful method for analyzing multivariate statistics is the study of
linear relationships between components. This analysis allows you to build a linear
prediction of one variable based on the others. The very existence of dependencies
is veri�ed by calculating sample correlations and developing tests based on them.
This class of tests is the subject of correlation analysis.

The construction of models for the linear dependence of one variable (response)
on other variables (regressors), the estimation of the parameters of the linear
dependence, and testing of their signi�cance are the subject of regression analysis.
However, standard regression analysis methods do not include methods of detecting
that the proposed linear model is incorrect entirely. If the model is incorrect, then
it must either be completely discarded or substantially modi�ed.

Methods for testing linear models, as a rule, use functionals as statistics from
random processes built according to the sequence of observations. If the observations
are ordered by one of the regressors, then such statistical tests are often called
tests discord detection. In the papers of Rao (1950), Page (1954), observations are
ordered by time, and the alternative hypothesis is that the distribution changes
at some time (the change point). In this case, the distribution before the change
is assumed to be known, and the tests are focused on the fastest detection of the
change. Moustakides (1986) proved that the CUSUM procedure proposed by Page
(1954) is optimal in terms of Lorden (1971). Shiryaev (1996) generalized this result
to a continuous-time analogue of CUSUM. Brodsky and Darkhovsky (2005) proved
the asymptotic optimality of the adaptive CUSUM test for compact sets of unknown
distribution parameters.

In situations where the distribution before the disorder is not described by a
set of parameters from a compact set, and also for more complex linear models,
the process of sums of regression residuals is used, see Shorack and Wellner (1986).
MacNeill (1978) proposed such a test for time series, and Bisho� (1998) signi�cantly
relaxed the assumptions of MacNeill. An analysis of results in this direction can
be found in Csorgo and Horv�ath (1997, Chapters 2 and 3) and MacNeill et al.
(2020). Kovalevskii and Shatalin (2015, 2016), Kovalevskii (2020) proposed tests
for matching of regression models using data ordering by one of the regressors. We
o�er a statistical test that uses multiple ordering of data across multiple regressors.

The rest of the work is organized as follows. We prove a lemma extending
the functional central limit theorem by Davydov and Egorov (2000) for the
multidimensional case (convergence to a Gaussian �eld) in Section 2. This lemma
is based on the general result of Ossiander (1987) and allows one to obtain a limit
theorem for multiple ordering. Section 3 contains this limit theorem for a general
linear regression model. Proofs are in Section 4, a discussion is in Section 5.

2. Induced order statistics

Let (Xi,Yi), i = 1, 2 . . . , be the independent copies of a random vector
(X,Y) such that X = (X(1), . . . , X(d1)) takes values in [0, 1]d1 , Y takes values
in Rd2 . The distribution function (copula) of X is C(u) = P(X ≤ u) =
P
(
X(1) ≤ u(1), . . . , X(d1) ≤ u(d1)

)
, u = (u(1), . . . , u(d1)) ∈ [0, 1]d1 .
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We assume that there is copula density c(u), that is,

(1) C(u) =

∫
v≤u

c(v)dv, v ∈ [0, 1]d1 .

Denote X
(k)
n,1 ≤ X

(k)
n,2 ≤ · · · ≤ X

(k)
n,n, 1 ≤ k ≤ d1, the order statistics of the k-

th column of matrix X, and Y
(k)
n,1,Y

(k)
n,2, . . . ,Y

(k)
n,n the corresponding values of the

vectors Yi. The random vectors
(
Y

(k)
n,i , i ≤ n

)
are called induced order statistics

(concomitants).
We study the asymptotic behavior of the random �eld

Qn(u) =

n∑
j=1

Yj1 (Xj ≤ u) =

n∑
j=1

Yj1
(
X

(1)
j ≤ u(1), . . . , X(d1)

j ≤ u(d1)
)
, u ∈ [0, 1]d1 .

Using the asymptotics ofQn(u), we study the asymptotics of d1×d2-dimensional
process of sums of induced order statistics under di�erent orderings

Zn(t) =

 [nt]∑
j=1

Y
(1)
n,j ,

[nt]∑
j=1

Y
(2)
n,j , . . . ,

[nt]∑
j=1

Y
(d1)
n,j

 , t ∈ [0, 1].

Let m(u) = E(Y | X = u), u ∈ [0, 1]d1 , and f(u) =
∫ u

0
m(v)c(v)dv.

Let

σ2(u) = E
{

(Y −m(X))T (Y −m(X)) | X = u
}

be the conditional covariance matrix of Y and σ(u) be the positive de�nite matrix
such that σ(u)Tσ(u) = σ2(u).

Let ek,t = (1, . . . , 1, t, 1, . . . , 1) the vector in [0, 1]d1 with k-th coordinate being t
and other coordinates being 1.

All our limit �elds and processes are continuous, so we use the uniform metric.
Let ‖·‖ denote the Euclidean norm in the corresponding space. Our random �eldQn

takes values in the space B([0, 1]d1 ; Rd2) of bounded measurable functions with the
Borel σ-algebra B. This space is not separable, so we note that the random �eld
Qn takes values in its subset D with the smaller σ-algebra D. This σ-algebra is
generated by the d1-dimensional analog of Skorohod metrics, see Straf (1972). So,
let D be the uniform closure, in the space B([0, 1]d1 ; Rd2), of the vector subspace
of simple functions (that is, linear combinations of step functions).

For x,y ∈ D, let the �Skorohod� distance be

d(x,y) = inf{min(||x− yλ||S , ||λ||S) : λ ∈ Λ},

where

||x− yλ||S = sup{||x(t)− y(λ(t))||, t ∈ [0, 1]d1},
||λ||S = sup{||λ(t) − t||, t ∈ [0, 1]d1}, Λ is the group of all transformations λ of
the form λ(t1, . . . , td1) = (λ1(t1), . . . , λd1(td1)), where each λi : [0, 1] → [0, 1] is
continuous, strictly increasing, and �xes 0 and 1.

With respect to the corresponding metric topology, D is complete and separable,
and it's Borel σ-algebra D coincides with the σ-algebra generated by coordinate
mappings, see Section 3 of Bickel & Wichura (1971) for details.

The process Qn takes values in D. So, it is D-measurable.
We de�ne the weak convergence as follows (cf. Dudley, 1967): limn→∞Ef(Qn) =

Ef(Q) for every bounded, continuous, and D-measurable function f : D → Rd2 .
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Davydov & Zitikis (2008) in their Proposition 1 have proved that the limitation
of the class of functions f to the uniform continuity (instead of the continuity)
gives the same de�nition of the weak convergence (that is, these de�nitions are
equivalent).

We use the symbol ⇒ to denote the weak convergence of random �elds in
the sense that has been mentioned above. We use the same symbol for the weak
convergence of random variables and the weak convergence of stochastic processes
in the uniform topology.

The following Lemma 1 generalizes the result of the �rst part of Theorem 2.1(1)
by Davydov and Egorov (2000) to random �elds.

Lemma 1. If E‖Y‖2 <∞ then Q̃n = Qn−f√
n
⇒ Q, a centered Gaussian �eld with

covariance

K(u1,u2) = EQT (u1)Q(u2) =

∫ min(u1,u2)

0

σ2(v)c(v)dv

+

∫ min(u1,u2)

0

mT (v)m(v)c(v)dv −
∫ u1

0

mT (v)c(v)dv

∫ u2

0

m(v)c(v)dv,

u1, u2 ∈ [0, 1]d1 .

Lemma 2 generalizes the result of Theorem 2.1(2) by Davydov and Egorov (2000)
to multiple ordering but under additional assumption m ≡ 0.

Lemma 2. If E‖Y‖2 < ∞, m ≡ 0 then Z̃n = Zn√
n
⇒ Z, a centered Gaussian

(d1 × d2)-dimensional process with covariance matrix function EZT (t1)Z(t2) =

(K(ek1,t1 , ek2,t2))d1k1,k2=1,

K(ek1,t1 , ek2,t2) = EQT (ek1,t1)Q(ek2,t2) =

∫ min(ek1,t1
,ek2,t2

)

0

σ2(v)c(v)dv.

3. Main result

Let (Xi, ξi, ηi) = (Xi1, . . . , Xid1 , ξi1, . . . , ξi,d2−1, ηi) be independent and
identically distributed random vector rows, i = 1, . . . , n. All components of a raw
can be dependent and Xi1, . . . , Xid1 have copula (so their marginal distributions
are uniform on [0, 1]) and (1) is true.

Rows (Xi, ξi, ηi) form matrix (X, ξ, η).
We assume a linear regression hypothesis H0:

(2) ηi = ξiθ + εi =

d2−1∑
j=1

ξijθj + εi,

{εi}ni=1 and {(Xi, ξi)}ni=1 are independent, E ε1 = 0, Var ε1 > 0.
Vector θ = (θ1, . . . , θd2−1)T and constant Var ε1 are unknown. We consider d1

orderings of rows of the matrix (X, ξ, η) in acsending order of columns of X.
The result of d1 orderings is a sequence of d1 matrices (X(j), ξ(j), η(j)) with rows

(X
(j)
i , ξ

(j)
i , η

(j)
i ) = (X

(j)
i1 , . . . , X

(j)
id1
, ξ

(j)
i1 , . . . , ξ

(j)
i,d2−1, η

(j)
i ), j = 1, . . . , d1.

Let θ̂ be LSE:
θ̂ = (ξT ξ)−1ξT η.

It does not depend on the order of rows.
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Let h(j)(x) = E{ξ1|X1j = x} be conditional expectations, L(j)(x) =
x∫
0

h(j)(s) ds

be induced theoretical generalised Lorentz curves (see Davydov and Egorov (2000)),

b2j (x) = E
(

(ξ1 − h(j)(x))T (ξ1 − h(j)(x)) | X1j = x
)

be matrices of conditional covariances.
Let G = EξT1 ξ1. Then∫ 1

0

(
b2j (x) + (h(j)(x))Th(j)(x)

)
dx = G

for any j = 1, . . . , d2 − 1.

Let ε̂
(j)
i = η

(j)
i − ξ

(j)
i θ̂ be regression residuals, ∆̂

(j)
k =

k∑
i=1

ε̂
(j)
i be its partial sums,

∆̂
(j)
0 = 0.

Let Ẑ
(j)
n = {Ẑ(j)

n (t), 0 ≤ t ≤ 1} be a piecewise linear random function with nodes(
k

n
,

∆̂
(j)
k√

nVarε1

)
, k = 0, 1, . . . , n.

From Theorem 1 (Kovalevskii, 2020) we have

Theorem 1. If matrix G exists and is non-degenerate and H0 is true then

Ẑ
(j)
n =⇒ Ẑ(j) for any j = 1, . . . , d1. Here Ẑ(j) is a centered Gaussian process

with continuous a.s. sample paths and covariance function

K̂jj(s, t) = min(s, t)− L(j)(s)G−1(L(j)(t))T , s, t ∈ [0, 1].

We prove that the d1-dimensional process Ẑn = (Ẑ
(j)
n , j = 1, . . . , d1) has a

Gaussian limit.

Theorem 2. If matrix G exists and is non-degenerate and H0 is true then

Ẑn =⇒ Ẑ. Here Ẑ is a centered d1-dimensional Gaussian process with continuous

a.s. sample paths and covariance matrix function K̂(s, t) =
(
K̂ij(s, t)

)d1
i,j=1

,

K̂ij(s, t) = P(X1i ≤ s,X1j ≤ t)− L(i)(s)G−1(L(j)(t))T , s, t ∈ [0, 1].

4. Proofs

Proof of Lemma 1.
For simplicity, we consider the case d1 = 2 since the construction of the proof

given below can be easily extended to the case d1 > 2. Now let d2 = 1, we will
generalize it to d2 ≥ 1 using the Cramer-Wold theorem.

Thus, we consider a random �eld

Qn(u) =

n∑
j=1

Yj1
(
X

(1)
j ≤ u(1), X(2)

j ≤ u(2)
)
, u ∈ [0, 1]2.

Let us de�ne the partition of the unit square [0, 1]2 into N2 parts as follows. Let

u
(1)
0 = 0 < u

(1)
1 < u

(1)
2 < . . . < u

(1)
N = 1 be a partition of the interval [0,1], such

that ∫ (u
(1)
i ,1)

(u
(1)
i−1,0)

(
E
(
Y 2 | X = v

)
+ EY 2

)
c(v)dv = 2EY 2/N, i = 1, 2, . . . , N,
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and for any �xed i = 1, 2, . . . , N let u
(2)
i,0 = 0 < u

(2)
i,1 < u

(2)
i,2 < . . . < u

(2)
i,N = 1 be

another partition of the interval [0,1] (see Pic.1) such that∫ (u
(1)
i ,u

(2)
i,j )

(u
(1)
i−1,u

(2)
i,j−1)

(
E
(
Y 2 | X = v

)
+ EY 2

)
c(v)dv = 2EY 2/N2, j = 1, 2, . . . , N.

-

6
u(2)

u(1)0 u
(1)
1 u

(1)
2 u

(1)
3 = 1

u
(2)
1,1

u
(2)
1,2

u
(2)
1,3 = 1

Pic. 1. An example of the partition of [0, 1]2 for N = 3.

So we haveN+1 points u
(1)
i in the �rst coordinate and not greater then (N−1)2+

1 di�erent points u
(2)
i,j in the second coordinate. For any u = (u(1), u(2)) ∈ [0, 1]2,

there are indexes i(1), i
(2)
1 , i

(2)
2 , j

(2)
1 , j

(2)
2 ∈ {0, 1, . . . , N} such that u

(1)

i(1)−1 ≤ u(1) ≤
u
(1)

i(1)
and

u
(2)

i
(2)
1 ,j

(2)
1

= max
i,j
{u(2)i,j ≤ u

(2)},

u
(2)

i
(2)
2 ,j

(2)
2

= min
i,j
{u(2)i,j ≥ u

(2)},

so u
(2)

i
(2)
1 ,j

(2)
1

≤ u(2) ≤ u(2)
i
(2)
2 ,j

(2)
2

.

Denote ul = (u
(1)

i(1)−1, u
(2)

i
(2)
1 ,j

(2)
1

) and uu = (u
(1)

i(1)
, u

(2)

i
(2)
2 ,j

(2)
2

) (Pic. 2).

De�ne the metric entropy with bracketing for the special separable pseudometric
space (S, ρ), where

S =
{
hu(x, y) = y1(x ≤ u), u ∈ [0, 1]2

}
ρ2 (hu1 , hu2) = E (hu1(X, Y )− hu2(X, Y ))

2
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Let S(δ) = {s1, s2, . . . , sM} ⊆ S be such that for some random variables f l (si)
and fu (si) , i ≤ M, the following conditions are valid. For any s ∈ S there exists
si ∈ S(δ) such that

ρ (s, si) ≤ δ,

f l (si) ≤ f(s,X, Y ) ≤ fu (si) a.s.,

ρ
(
fu(si), f

l(si)
)
≤ δ, i ≤ n.

-

6
u(2)

u(1)0 u
(1)
1 u

(1)
2 u

(1)
3 = 1

u
(2)
1,1

u
(2)
1,2

u
(2)
1,3 = 1

u

ul

uu

Pic. 2. An example of upper and lower points for N = 3.

Then HB(δ, S, ρ) = min{M : S(δ) ⊆ S} is called the metric entropy with
bracketing.

According to Ossiander's (1987) theorem, to prove Lemma for Q̃n we must show
that ∫ 1

0

(
HB(t, S, ρ)

)1/2
dt <∞.

To prove it we show that

HB(δ, S, ρ) ≤ C log

(
1

δ

)
.

First notice that f (hu,X, Y ) = hu(X, Y ) − Ehu(X, Y ),u ∈ [0, 1]2 is a separable
random process satisfying the conditions (2.1)−(2.3) of Ossiander's work, moreover

Q̃n = n−1/2
∑n
i=1 f (hu,Xi, Yi). Then write f(hu,x, y) as follows

f(hu,x, y) = y+1(x ≤ u)− y−1(x ≤ u)−
∫ u

0

m+(v)c(v)dv +

∫ u

0

m−(v)c(v)dv
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Let

fu = Y+1(X ≤ uu)− Y−1(X ≤ ul)−
∫ ul

0

m+(v)c(v)dv +

∫ uu

0

m−(v)c(v)dv,

f l = Y+1(X ≤ ul)− Y−1(X ≤ uu)−
∫ uu

0

m+(v)c(v)dv +

∫ ul

0

m−(v)c(v)dv.

Then

fu − f l = |Y |1(ul ≤ X ≤ uu) +

∫ uu

ul

|m(v)|c(v)dv.

We use the Cauchy-Bunyakovsky and Jensen inequalities, as well as simple
algebraic inequalities, and obtain that (see Davydov and Egorov (2000) for details)(

E
(
fu − f l

)2)1/2 ≤ (∫ uu

ul

E
(
Y 2 | X = v

)
c(v)dv

)1/2

+

(
EY 2

∫ uu

ul

c(v)dv

)1/2

≤ 2

(∫ uu

ul

(
E
(
Y 2 | X = v

)
+ EY 2

)
c(v)dv

)1/2

≤ 2
√

2N · 2EY 2/N2 = 4
√
EY 2/N = δ.

In the last inequality, we used the fact that the region of integration is included
in 2N rectangles from the constructed partition of the unit square.

Summing up these equalities we get

M < (N + 1)3 ≤
([

16EY 2

δ2

]
+ 2

)3

.

Hence by Ossiander's theorem

Q̃n ⇒ Q

where Q is the Gaussian �eld, EQ(u) = 0,E(Q(u1), Q(u2)) = K(u1,u2).
Elementary calculations show that

K(u1,u2) = E(Y 21(X ≤ u1,X ≤ u2))−
∫ u1

0

m(v)c(v)dv

∫ u2

0

m(v)c(v)dv.

This construction of the proof can be easily extended to the case d1 > 2
by splitting the corresponding integral into pieces of size 2EY 2/Nd1 . So we use
Theorem 3.1 of Ossiander (1987) and get the weak convergence Qn ⇒ Q for d2 = 1.

From the tightness of Qn for d2 = 1 we get the tightness of Qn because the
tightness is coordinatewise. According to the Cramer-Wold theorem since Qn(u) is
linear, we obtain the convergence of �nite-dimensional distributions for any d2 ≥ 1.

The proof is complete.
Proof of Lemma 2.
Note that

Zn(t) =

(
Qn

(
e
1,X

(1)

n,[nt]+1

)
, Qn

(
e
2,X

(2)

n,[nt]+1

)
, . . . , Qn

(
e
d1,X

(d1)

n,[nt]+1

))
, t ∈ [0, 1].

Hence, due to Lemma 4.1 by Davydov and Egorov (2000), for all i = 1, . . . , d1

sup
0<t<1

∣∣∣∣Q̃n(ei,X(i)

n,[nt]+1

)
− Q̃n (ei,t)

∣∣∣∣ p→ 0.
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We assume m ≡ 0, so

1√
n

sup
0<t<1

∣∣∣∣Qn(ei,X(i)

n,[nt]+1

)
−Qn(ei,t)

∣∣∣∣ p→ 0.

Therefore the limiting process for Z̃n is the same as for

1√
n

(Qn(e1,t), Qn(e2,t), . . . , Qn(ed1,t)) .

We have

K(ek1,t, ek2,t) = E(Y 21(X ≤ ek1,t,X ≤ ek2,t)).

The proof is complete.

Proof of Theorem 2.

Let ε
(j)
i = η

(j)
i − ξ

(j)
i θ be regression mistakes. From (2) we have {ε(j)i }ni=1 are

i.i.d. with ε1 and independent with {(X(j)
i , ξ

(j)
i )} for any j = 1, . . . , d1.

Let ε(j) = (ε
(j)
1 , . . . , ε

(j)
n )T . Note that

∆̂
(j)
k =

k∑
i=1

(η
(j)
i − ξ

(j)
i θ̂) =

k∑
i=1

(ξ
(j)
i (θ − θ̂) + ε

(j)
i )

=

k∑
i=1

(ξ
(j)
i (θ − (ξT ξ)−1ξT η) + ε

(j)
i )

=

k∑
i=1

(
ξ
(j)
i

(
θ − (ξT ξ)−1

(
ξ(j)
)T

(ξ(j)θ + ε(j))

)
+ ε

(j)
i

)

=

k∑
i=1

(
ε
(j)
i − ξ

(j)
i (ξT ξ)−1

(
ξ(j)
)T

ε(j)
)
.

Note that 
[nt]∑
i=1

ξ
(j)
i /n, t ∈ [0, 1]

→ L(j)

a.s. uniformely, and ξT ξ/n→ G a.s.
So we study process

[nt]∑
i=1

ε
(j)
i − L

(j)(t)G−1
(
ξ(j)
)T

ε(j), 1 ≤ j ≤ d1, t ∈ [0, 1]

 .

This process is a bounded linear functional of a d1 × d2-dimensional process
[nt]∑
i=1

(ξ
(j)
i ε

(j)
i , ε

(j)
i ), 1 ≤ j ≤ d1, t ∈ [0, 1]

 .

This is the process from Lemma 2 with m ≡ 0. So we have convergence to a
Gaussian process and calculate covariances using Lemma 2.

The proof is complete.
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5. Discussion

We now describe the application of this result to testing the hypothesis of linear
dependence. Let d2 − 1 = d1. Let (ξi, ηi) = (ξi1, . . . , ξi,d1 , ηi) be independent and
identically distributed random vector rows, i = 1, . . . , n. In addition, we assume
that the column ξi,d1 consists of ones:

(3) ξi,d1 ≡ 1.

We want to test the linear dependence (2). To do this we estimate the parameters
θ and Var ε1, sort the data in ascending order of each of the �rst d1− 1 columns of
the regressor and calculate processes of the sums of regression residuals. We use the
quantile functions F−1ξ1j

to apply Theorem 2. So we assume that ξij = F−1ξ1j
(Xij),

i = 1, . . . , n, j = 1, . . . , d1 − 1. If the matrix G exists and is non-degenerate then
under the true hypothesis H0 we are in the conditions of Theorem 2.

From (3) we have Ẑn(1) = 0. So we can use a statistics of omega squared type
and calculate its limiting distribution by lines of Chakrabarty et al. (2020):

ω2
n =

d1−1∑
j=1

∫ 1

0

(
Ẑ(j)
n (t)

)2
dt⇒ ω2 =

d1−1∑
j=1

∫ 1

0

(
Ẑ(j)(t)

)2
dt.

We estimate the covariance function in Theorem 2 from empirical data. An
estimate for P(X1i ≤ s, X1j ≤ t) is

1

n

n∑
k=1

1{ξki ≤ ξ(i)[ns],i, ξkj ≤ ξ
(j)
[nt],j}.

It converges to the probability uniformely on (s, t) in [0, 1]2. We estimate
functions L(j) and matrix G by their empirical counterparts.

Thus we construct a statistical test for accurate analysis of the data
correspondence to the linear regression model. This test allows one to use multiple
ordering of the initial multidimensional data and, due to this, to �nd non-obvious
di�erences of the investigated data from the model.
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