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ERROR-TOLERANT ZZW-CONSTRUCTION

YU.V. KOSOLAPOV, F.S. PEVNEV

Abstract. In 2008 Zhang, Zhang, and Wang proposed a steganographic
construction that is close to upper bound of e�ciency. However this
system and many other are fragile to errors in the stegocontainer. Such
errors can occur for example during the image processing. In this paper
the ZZW-construction is modi�ed for extracting data if errors and erasu-
res occur in stegocontainer. It is shown that the correction is possible
when linear codes in projective metrics (such as Vandermonde metric and
phase rotating metric) are used. The e�ciency of proposed construction
is better than one for the well-known e�cient combinatorial stegosystem.

Keywords: combinatorial steganography, projective metrics, Vander-
monde metric, linear code, ZZW-construction.

1. Introduction

1.1. Actuality. Steganographic methods are used to hide the fact of data transmis-
sion unlike cryptography aims to hide the content of transmitted data. One can
embed information into an image, audio, video or other �le with slight modi�cation
and then transmit this �le via the public channel. In this way a container is a
bit sequence obtained from the carrier signal with some deterministic way, e.g. the
sequence of the least signi�cant bits of a signal, and a stegocontainer is a container
with embedded message.

However, stegosystems are not usually resistant to errors occurred in the stego-
container. If one or more errors occur then the extracted message can di�er a lot
from the embedded one (see [1]). This problem has a great actuality. For example,
images are very widespread containers and these images can be modi�ed or re-
compressed during the upload to social networks.
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If we say about combinatorial steganography the quality of the embedding
method is measured with embedding e�ciency e = L/T and embedding rate α =
L/n, where L(6 n) is the bit-length of embedding message and T is average count of
embedding changes (see [2]). In [3] authors obtained the upper bound of embedding
e�ciency with respect to a given embedding rate

(1) e(α) 6
α

h−1
2 (α)

, 0 6 α 6 1,

where −h2(x) = x log2 x+(1−x) log2(1−x). In [2] authors proposed a construction
with embedding e�ciency close to the upper bound (1). This stegosystem is usually
called ZZW-construction by the �rst letters of its authors. However this construction
is not resistant to errors and erasures in a stegocontainer. In this paper we modify
ZZW-construction to make data extraction possible when errors and erasures occur
in a stegocontainer. The modi�ed construction is based on codes in projective
metrics such as Vandermonde metric and phase rotating metric.

1.2. Related work. Note that correction errors in a stegocontainer is a well-known
problem. In [3] authors proved that in combinatorial steganography this problem
is equivalent to designing a centered error-correcting code (see [4]) and proposed a
construction based on Hamming codes and Reed�Solomon codes.

In [5] the scheme based on cyclic codes was described. These codes are also
used for preliminary encoding data so the error correction in the stegocontainer
becomes possible. The embedding e�ciency is not greater than 1.72. The optimality
of construction is not discussed.

The paper [6] is devoted to embedding information into JPEG images with
error correction. The method is based on the Hamming [7, 4, 3]2 code and Repeat-
Accumulate codes. The decoder for this construction is described in the great part
of the paper. Other codes and containers are not discussed in this paper.

A construction based on matrix embedding with trellis-codes was proposed in [7].
It is also shown that trellis-codes lead to increase the errors count in the extracted
data even if the noise in the channel is low. So authors think that trellis-codes are
not suitable for the noisy channels and should be avoided. If it is impossible to
avoid such codes authors provide a method for decreasing the number of errors in
the extracted data.

1.3. Organization. The rest of the paper is organized as follows. In Section 2.1
we recall necessary information about codes in projective metrics and prove the
su�cient conditions for correction up to l − k errors in Vandermonde metric with
a linear [l, k]q code. In Section 3 this result is used to correct erasures and errors
in a stegocontainer. ZZW-construction and its underlying methods such as matrix
embedding and writing on wet paper are discussed in Section 2.2. Section 4 is
devoted to results and discussion. Section 5 concludes the paper.

2. Preliminaries

2.1. Projective metrics. To decode a vector z = (z1, ..., zn) one can usually �nd
a codeword c = (c1, ..., cn) such that c is the closest to z in some metric. Perhaps,
the most frequently used metric is the Hamming metric ρH(c, z) = |{i : ci 6= zi}|.
Note that the Hamming metric is a special case of projective metric (see [8]). To
de�ne a projective metric suppose Fnq is a linear space and F = (fi)

N
i=1 is n × N
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matrix, where n 6 N and the set of columns fi contains a basis for Fnq . The F-norm
NF (x) of a vector x(∈ Fnq ) is corresponded to F and is de�ned as

NF (x) = min
a∈FN

q :

Fa=x

NH(a),

where

NH(a) = wt(a) = ρH(a,0)

is also called the Hamming weight (or weight) of the vector a. In other words, since
x can be considered as a linear combinations of vectors fi by some di�erent ways
we see that the F-norm of a vector x is equal to the least number of vectors fi
in such linear combination. A vector is called an elementary error if its F-norm is
equal to 1, so vectors fi are elementary errors. The F-distance for vectors a and b
is de�ned as NF (a− b).

It is worth noting that the projective metric corresponds to the distance in some
Cayley graph on the set of all vectors with the set of generators consists of all
columns of the matrix F and all collinear vectors to them (see [9]). Cayley graphs
are related to some classical problems in pure mathematics and many practical
problems in various �elds of science (see survey [10]). Particularly Cayley graphs
are used in steganography to construct e�cient stegosystems without active warden
assumption [11].

The Hamming metric corresponds to an identity n×n matrix In. Let us consider
phase rotation invariant codes as an example of codes in non-Hamming projective
metric (see [12]). This metric is called phase rotating metric (PR-metric) and cor-
responds to the matrix F = [In|1T ], where 1T is a transposed all-one vector of
the length n. Thus the elementary errors set for PR-metric include the similar set
for the Hamming metric and the all-one vector in addition. These codes can be
simply designed basing on usual codes in the Hamming metric. In fact, the next
proposition can be proved (see [12]).

Proposition 1. Suppose the [n, k, d]2 code in the Hamming metric contains the
all-one vector; then there exists a [n − 1, k − 1]2 code with minimum PR-distance
equal to d.

Another important special case of projective metric is Vandermonde metric
(see [13]). Let F be a Vandermonde matrix over Fq:

(2) F =


α1 α2 . . . αm
α1u1 α2u2 . . . αmum
α1u

2
1 α2u

2
2 . . . αmu

2
m

...
...

. . .
...

α1u
l−1
1 α2u

l−1
2 . . . αmu

l−1
m

 ,

where l 6 m, αi 6= 0, ui 6= uj . The generator matrix of an error correcting code in
this metric is a transposed Vandermonde matrix over Fq:

(3) GT =


β1 β2 . . . βk
β1v1 β2v2 . . . βkvk
β1v

2
1 β2v

2
2 . . . βkv

2
k

...
...

. . .
...

β1v
l−1
1 β2v

l−1
2 . . . βkv

l−1
k

 ,
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where k < l, βi 6= 0, vi 6= vj , vi 6= uj . It is clear that

(4) k +m 6 q.

The code spanned by the rows of matrix G is [l, k]q code and is able to correct
errors of weight b(l − k)/2c in Vandermonde metric. It takes polynomial time to
reduce decoding of such codes to decoding of generalized Reed�Solomon codes
(see [13]).

Let us show that the correction ability of codes in Vandermonde metric can be
improved if an additional information about error's structure is given. The error
locator of an error vector e ∈ Flq is the vector eloc ∈ Fm2 such that

(5) ∃a : supp(a) ⊆ supp(eloc), FaT = eT ,

where supp(x) = {i : xi 6= 0}.

Lemma 1. Suppose C is an [l, k]q code in Vandermonde metric with corresponded
matrix of the form (2), the generator matrix of code C has the form (3),

(6) z = c+ e, c ∈ C,

eloc is error locator of e, NH(eloc) = t 6 l − k. Then the error e can be found in
polynomial time.

Proof. Firstly let us construct a matrix Gext

(7) GText = (GT |fi1fi2 . . . fit), {i1, . . . , it} = supp(eloc).

To decode zT we need to solve the system of equations

GTextm̃
T = zT

for the vector m̃. On the one hand this system has a solution because the z is a
linear combination of columns of matrix GText. On the other hand there exists only
one solution of the system because rank(GText) = k + t 6 l. The �rst k coordinates
of m̃ are equal to information vector m corresponding to codeword c. To complete
the proof let us note that e = z−mG. �

Using (5), we obviously have NF (e) 6 NH(eloc). Combining this inequality with
Lemma 1 we can conclude that it is able to correct up to l−k errors in Vandermonde
metric in some special cases if the error locator is given. A more general lemma can
be proved.

Lemma 2. Suppose C is an [l, k]q code in Vandermonde metric with corresponding
matrix of the form (2), the generator matrix of code C has the form (3), the error
vector e in (6) is the sum of two vectors e1 and e2 such that

supp(e1
loc) ∩ supp(e2

loc) = ∅,

NH(e1
loc) = v, NH(e2

loc) = t, v + 2t 6 l− k, m− v > l, and e1
loc is given. Then the

error e can be found in polynomial time.

Proof. Firstly let us construct a matrix

Fext = (fj1fj2 . . . fjm−v
),

where {j1, . . . , jm−v} = {1, ..., n}\supp(e1
loc). In [13], authors prove that [l, (k+v)]q

code Cext spanned by the columns of matrix (7), where eloc = e1
loc, is able to correct
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no more than b(l − (k + v))/2c errors in Fext-metric in polynomial time. Any z from
(6) can be considered as a sum

z = c+ e1 + e2 = c̃+ e2,

where c̃ ∈ Cext, and e2 is error vector. Since

NFext
(e2) 6 NH(e2

loc) = t 6

⌊
l − (k + v)

2

⌋
,

it follows that c̃ can be e�ciently obtained. The �rst k coordinates of m̃ correspon-
ding to codeword c̃(∈ Cext) are equal to information vector m. To complete the
proof let us note that e = z−mG. �

2.2. ZZW-construction. To begin with let us brie�y describe the embedding
method called writing on wet paper (see [14]) so far as this method is used in
ZZW-construction. Suppose c is an empty container and m is the message to
be embedded. Some coordinates of the container are forbidden to be changed.
These coordinates are called �wet� and others are called �dry�. We also assume
that the receiver can not di�er �wet� and �dry� coordinates but have to extract the
message anyway. In coding theory such �wet paper� channel is called as memory
with defective cells (see [15]).

Let ω be the set of �dry� coordinates for the container c. We denote the stego-
container with embedded message by z. The sender and receiver must choose the
same l ×m matrix D (l 6 m) and then the extracting rule is

(8) DzT = mT .

Let v = z− c, then D(c+ v)T = mT and

DvT = mT −DcT = m̃T .

Suppose vω is the vector containing the coordinates of the vector v belonging to ω
and vω̄ is the vector containing other coordinates of the vector v. Then

DvT = Dωv
T
ω +Dω̄v

T
ω̄ ,

where Dω is the matrix containing the columns of the matrix D corresponding to
ω. Since vω̄ = 0 then

(9) Dωv
T
ω = m̃T .

To embed the message one should solve (9) for vω, when D, ω, and m̃ are given.
Let us remark that it is a challenge to choose the same matrix D for the sender
and receiver when multiple data transmission occurred. In [14] authors propose
to generate a pseudo-random matrix using a shared secret key. The next problem
is to transmit the length of the embedded message since this length depends on
solvability of (9) and may di�er from one transmission to another. As follows
from [14] to �x this problem one can take L0 = dlog2Me coordinates in the
beginning of the message to put the information about the length into them, where
M is the greatest length of the message and is usually equal to the container's
length. Consider that the receiver can generate the matrix D row-by-row. Then he
or she generates the �rst L0 rows of the matrixD, extracts the length by multiplying
this submatrix by the received vector, generates all other rows of D, and �nally
extracts the whole message. The channel has negligible decrease of capacity and
the same asymptotic e�ciency.
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To describe ZZW-construction (see [2]) let an empty containerX(∈ Fn2 , n = m2r)
be a matrix 

x1,1 x2,1 . . . xm,1
x1,2 x2,2 . . . xm,2
...

...
. . .

...
x1,2r−1 x2,2r−1 . . . xm,2r−1

x1,2r x2,2r . . . xm,2r


=

[
xT1 xT2 . . . xTm
x1,2r x2,2r . . . xm,2r

]
.

(10)

It is proposed to form two stegochannels for any container of the form (10). First
of those channels is called the sum channel. The sum channel is a vector y =
(y1, . . . , ym), yi = ⊕2r

j=1xi,j for every i = 1, ...,m. To embed the message m1 =
(m1,1, . . . ,m1,m) into y it is necessary to �ip any (but only one) bit in the i-th
column of the matrix of the form (10) if m1,i 6= yi and do nothing otherwise. Let
us denote by τ the set of coordinates needed to be changed for embedding,

(11) τ = {i ∈ {1, . . . ,m} : m1,i 6= yi}, |τ | = µ.

It is possible to embed the message into a random container with changing m/2
bits in average.

To form the second channel the appropriately modi�ed vectors x1,...,xm are
multiplied by the parity-check matrix for the [2r − 1, 2r − r− 1, 3]2 Hamming code.
As a result we get the set of syndromes for appropriately modi�ed vectors x1,...,xm.
Since the covering radius for any Hamming code is equal to one then for any vector
si(∈ Fr2) there exists a vector ei such that H(xi + ei)

T = sTi and wt(ei) 6 1. In
other words it is possible to get any syndrome with changing no more than one bit
of vector xi. This fact can be used for embedding a message m2 into the second
channel using writing on wet paper. The second channel is further called the vector
channel. A container in this channel is a sequence of bits of syndromes si. If the
syndrome corresponds to the set τ (see (11)) then the bits of this syndrome are
�dry� (and the syndrome is called �dry�). Bits of other syndromes are �wet� (and
the syndromes are called �wet�). Finally, if xi corresponds to τ and has the exact
syndrome (so xi can not be changed) the bit xi,2r should be �ipped. Thus m1 and
m2 can be embedded into any container of the form (10).

The parameters of ZZW depend on the method of embedding information into
the sum channel (see [2]). There is also some indeterminacy in the capacity of
the vector channel since the count of �dry� positions depends on the sum channel.
Nevertheless it is possible to embed m + rm

2 bits in average into the container of
length n = m2r with changing m/2 bits in average.

3. Modified ZZW-construction

3.1. Single error correction. Let us point out that ZZW-construction can not
recover the message if errors occur in the stegocontainer. Suppose there is only one
corrupted bit in a stegocontainer of the form (10). It leads to one error in the sum
channel. One can use [m, k1]2 code Csum to �x this error. Note that the length of
the message embedding to the sum channel decreases to k1. Consider what a single
bit error in the vector channel leads to. Suppose there is a mapping of the linear
space Fr2 to the �nite �eld F2r then a stegocontainer in the vector channel can be
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considered as a vector z = (z1, . . . , zm) over the �eld F2r . Let us also assume the
l×m matrix D from (8) consists of elements from F2r and l 6 m. A single bit error
in the stegocontainer of the form (10) can lead to corruption of one coordinate of
the vector z. Thus the corrupted stegocontainer in the vector channel is denoted as
z̃ = z+ e, where wt(e) 6 1. If we combine this with the rule (8) we obtain

Dz̃T = D(z+ e)T = mT
2 + λd,

where d is a column of the matrix D. Since 0 6 wt(d) 6 l then it is quite hard
to use error-correcting codes in the Hamming metric. On the other hand this error
can be corrected if the vector m2 is a codeword of suitable [l, k]2r code Cvec in the
projective metric corresponding to matrix D. This code should be able to correct
elementary errors (in other words these errors are columns of the matrix D being
multiplied by scalar value and the D-norm of any those errors is equal to one).

Let us restrict ZZW-construction to use code Cvec in the projective metric.
Assume D is a Vandermonde matrix over F2r (see (2)). Then there exists a suitable
code Cvec spanned by the columns of matrix (3). The error locator for a single bit
error is obtained by decoding of code Csum in the sum channel. Since v = 1 and
t = 0 according to Lemma 2 so we get k = l − 1. Note that if |τ | = µ > l and D
is l ×m Vandermonde matrix then rank(Dτ ) = l so there exists a solution of (9)
for an arbitrary right part. Hence it is possible to embed lr bits with writing on
wet paper when there are at least l �dry� syndromes. Thus it is possible to embed
kr = (l − 1)r bits (and rm/2 − r bits in average since µ = m/2 in average and
l = µ) into the vector channel. Since

k +m = l − 1 +m 6 2m− 1 6 2r

it is enough to put 2m− 1 6 2r to �t the restriction (4). So m 6 2r−1.
Note that the receiver must obtain l to generate matrix D and extract informa-

tion. The method proposed in [14] and described above is useless since the bits
carrying the length of the message can be corrupted. One possible solution of this
problem is to choose �xed value l. Let us use the following technique. If µ(= |τ |)
is quite small then we �ip all bits of vector y. This leads to double �ipping of bits
from τ and single �ipping of other bits. Hence the set τ is changed and τnew =
{1, ...,m} \ τ , |τnew| = m− µ. It is clear that

max{|τ |, |τnew|} = max{µ,m− µ} > dm/2e .

Thus it becomes possible to �x l = dm/2e though the count of �dry� syndromes can
be larger in fact. To use this technique we need to restrict the code Csum. Since the
all-bit inversion can occur then phase rotation invariant codes are suitable if these
codes are able to correct up to two errors: the �rst one is an error in stegocontainer
and the second is an all-bit inversion. Surely the [m, k1]2 code Csum for the sum
channel must be shared between the sender and receiver. Since l = dm/2e and
k = l − 1 then matrices D and G can be generated in advance.

The embedding process contains two steps. The message is preliminary split into
two parts. In the �rst step one part of the message is encoded into the codeword
m1(∈ Csum) and is embedded into the sum channel y. The set τ of �dry� coordinates
is also de�ned in this step. In the second step another part of the message is encoded
with the (dm/2e − 1)× dm/2e matrix G of the form (3) and is embedded into the
vector channel with writing on wet paper using the dm/2e × m matrix D = F
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(see (2)). If yi is �ipped but xi is forbidden for changing then xi,2r should be
�ipped.

The extracting process also contains two steps. In the �rst step one part of the
message is extracted from the sum channel and decoded with the Csum decoder. If
any single error occurred then it is corrected and the error locator is obtained. In
the second step another part of the message is extracted from the vector channel
using the rule (8) and is decoded with the Cvec decoder. If any single error occurred
then it is corrected using the error locator obtained on the �rst step.

Thus the count of bits possible for embedding into a container of the form (10)
is equal to L = O(m) + (dm/2e − 1)r. Using the Stirling's approximation we get
the number of embedding changes

(12) T =

dm/2e−1∑
i=0

(m− i)Cim
2m

+
m∑

i=dm/2e

iCim
2m

=
m

2

(
1 +

C
b(m−1)/2c
m−1

2m−1

)
≈ m

2

(
1 +

√
2

πm

)
.

The embedding e�ciency is equal to

e =
Li
T
≈ O(m) + (dm/2e − 1)r

m/2 +
√

(m/2π)
.

3.2. Correction of multiple errors. The construction described above can be
generalized to correct up to t errors.

Theorem 1. Suppose C is [m + 1, k1 + 1, 2(t + 1) + 1]2 code containing the all-
one vector and there exists an e�cient decoder for this code. Then there exists a
polynomial-time algorithm of embedding k1 + (dm/2e − t)r bits into a container of
the form (10) and t or less errors in the stegocontainer can be corrected.

Proof. As it follows from Proposition 1 the phase rotation invariant [m, k1, 2(t +
1) + 1]2 code Csum can be designed based on the code C. The decoder of Csum

is simply obtained from the decoder of C (see [13]). The [l, k]2r code Cvec in the
Vandermonde metric can be also designed, where k = l − t, l 6 m. This means
that ZZW-construction can be modi�ed in the way described above using Csum

and Cvec. This modi�ed construction allows to embed k1 + (dm/2e − t)r bits into
a container of the form (10).

By t1 denote the count of stegocontainer columns such that odd number of errors
occurred in each such column. By t2 denote the count of stegocontainer columns
such that even non-zero number of errors occurred in each such column. It is clear
that 2t2 + t1 6 t = l− k. This leads to t1 errors in the sum channel. Since the code
Csum is able to correct t+1 > t1+1 errors, one can extract the message from the sum
channel and obtain the partial error locator e1

loc in the vector channel (NH(e1
loc) =

t1). The error e
2 in the vector channel occurs on account of stegocontainer columns

with even number of errors. To apply Lemma 2 the condition m − t1 > l must be
satis�ed. Since t1 6 t < l =

⌈
m
2

⌉
then t1 6

⌊
m
2

⌋
= m −

⌈
m
2

⌉
= m − l. Thus the

application of Lemma 2 yields a polynomial-time correction up to t errors. �
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It is obviously that the number of the embedding changes does not change
(see (12)). The count of bits possible for embedding is

(13) L = αm+ (dm/2e − t)r,
where α is information rate of the Csum. Thus the embedding e�ciency is equal to

(14) e =
L

T
≈ αm+ (dm/2e − t)r

m/2 +
√
(m/2π)

.

The similar theorem can be proved for the case of errors and erasures.

Theorem 2. Suppose the minimum PR-distance of a phase rotation invariant code
Csum satis�es the inequality dPR > 2t+v+3 and parameters of an [l, k]2r code Cvec

satis�es the equality k = l− (t+ v). Then there exists a polynomial-time algorithm
of correcting up to t errors and v erasures in a container of the form (10).

Proof. Suppose v1 is the count of stegocontainer columns with at list one erasures,
t1 is the count of stegocontainer columns such that odd number of errors and no
erasures occurred in each such column, and t2 is the count of stegocontainer columns
such that even non-zero number of errors and no erasures occurred in each such
column. It is clear that 2t2 + t1 + v1 6 t+ v = l− k. This leads to t1 errors and v1

erasures in the sum channel. Since v1 +2(t1 +1) 6 v+2t+2 6 dPR − 1 and phase
rotation can occur then it is able to extract the message from the sum channel and
to obtain the partial error locator e1

loc in the vector channel (NH(e1
loc) = v1 + t1).

The error e2 in the vector channel occurs on account of stegocontainer columns
with even number of errors and no erasures. To apply Lemma 2 the condition
m− l > t1 + v1 must be satis�ed. Indeed as

t1 + v1 6 t+ v = l − k < l =
⌈m
2

⌉
0 then

t1 + v1 6
⌊m
2

⌋
= m−

⌈m
2

⌉
= m− l.

Thus the application of Lemma 2 yields a polynomial-time correction up to t
errors and v erasures. �

4. Results and discussion

Let us provide the results of computation for t = 2. For the modi�ed ZZW-
construction we suppose base code for the sum channel as Reed�Muller code with
minimal distance equal to 8, so this code is able to correct up to three errors and
t = 2. For example, the base [16, 5, 8]2 Reed�Muller code is used to design [15, 4]2
code Csum. The stegosystem parameters calculated by (12), (13), (14) are listed in
Table 1. To compare with we use the stegosystem proposed in [3] since this one is
close to our modi�cation. The parameters of stegocontainer and e�ciency for this
system are listed in Table 2.

It is shown that modi�ed ZZW stegosystem is more e�cient than stegosystem
proposed in [3] for some parameters of stegocontainer (see and compare values in
the last row of each table). An actual problem is to design codes of large dimension
containing the all-one vector because these codes can be basic for phase rotation
invariant codes used in the sum channel. This codes are called self-complementary
(see [16] for details). Particulary these codes meet the Grey�Rankin bound and can
be either linear or not. In fact these code are related to Hadamard matrices and
SDP designs (designs with the symmetric di�erence property).
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Òàáëèöà 1. E�ciency of modi�ed ZZW for t = 2

m 15 31 63
r 5 6 7
stegocontainer length, n 480 1984 8064
l = dm/2e 8 16 32
k = l − t 6 14 30
Csum rate, α 4/15 5/31 6/63
embedded bits, L 34 99 251
average embedding changes, T 9.07 17.74 34.68
embedding e�ciency, e 3.75 5.58 7.24

Òàáëèöà 2. E�ciency of stegosystem [3] for t = 2

m 15 31 63
r 5 6 7
stegocontainer length, n 465 1953 8001
embedded bits, L 55 162 413
average embedding changes, T 14.53 30.52 62.51
embedding e�ciency, e 3.78 5.31 6.61

5. Conclusions

In this paper we have proposed a new technique for the code design of an error-
tolerant modi�cation of ZZW-construction. The e�ciency of proposed construction
is comparable with the e�ciency of construction from [3] for some �xed parameters
(see Tables 1, 2 for details). In despite of this we expect that the e�ciency can be
increased by using another codes in the sum channel. Designing of such codes is an
open problem. Particulary there is an actual problem to design self-complementary
codes of large dimension because these codes can be optimal for phase rotation
invariant codes used in the sum channel.

Acknowledgments

The authors are grateful to the reviewer for valuable comments and useful advice
on the direction of further research on the relationship between projective metrics
and Cayley graphs.

References

[1] G. Pan, Y.J. Wu, Z.H. Wu, A novel data hiding method for two-color images, Lect. Notes
Comput. Sci., 2229 (2001), 261�270. Zbl 1050.68552

[2] W. Zhang, X. Zhang, S. Wang, Maximizing steganographic embedding e�ciency by combining

Hamming codes and wet paper codes, Proc. 10th Int. Workshop Inf. Hiding, Lecture Notes in
Computer Science, 5284 (2008), 60�71.

[3] F. Galand, G. Kabatiansky, Information hiding by coverings, Proceedings 2003 IEEE
Information Theory Workshop, 2003, 151�154.

[4] L.A. Bassalygo, M.S. Pinsker, Centered error-correcting codes, Probl. Inf. Transm., 35:1
(1999), 25�31. Zbl 1014.94029

[5] X. Zhang, S. Wang, Stego-encoding with error correction capability, IEICE Trans.
Fundamentals, E88-A:12 (2005), 3663�3667.



1516 YU.V. KOSOLAPOV, F.S. PEVNEV

[6] A. Sarkar, U. Madhow, B. Manjunath, Matrix embedding With pseudorandom coe�cient

selection and error correction for robust and secure steganography, IEEE Transactions on
Information Forensics and Security, 5:2 (2010), 225�239.

[7] C. Kin-Cleaves, A.D. Ker, Adaptive steganography in the noisy channel with dual-syndrome

trellis codes, 2018 IEEE International Workshop on Information Forensics and Security
(WIFS), Hong Kong, Hong Kong, 2018, 1�7.

[8] E.M. Gabidulin, J. Simonis, Metrics generated by families of subspaces, IEEE Trans. Inf.
Theory, 44:3 (1998), 1336�1341. Zbl 0910.94025

[9] O. Ore, Theory of Graphs, American Mathematical Society, Colloquium Publications, 38,
(AMS), Providence, 1962. Zbl 0105.35401

[10] E.V. Konstantinova, Some problems on Cayley graphs, Linear Algebra Appl., 429:11-12
(2008), 2754�2769. Zbl 1148.05037

[11] J.-L. Kim, J. Park, S. Choi, Steganographic schemes from perfect codes on Cayley graphs,
Des. Codes Cryptography, 87:10 (2019), 2361�2374. Zbl 1419.94070

[12] E.M. Gabidulin, M. Bossert, Hard and soft decision decoding of phase rotation invariant

block codes, 1998 International Zurich Seminar on Broadband Communications. Accessing,
Transmission, Networking. Proceedings (Cat. No. 98TH8277), Zurich, Switzerland, 1998, 249�
251.

[13] E.M. Gabidulin, V.A. Obernikhin, Codes in the Vandermonde F-metric and their application,
Probl. Inf. Transm., 39:2 (2003), 159�169. Zbl 1162.94414

[14] J. Fridrich, M. Goljan, P. Lisonek, D. Soukal, Writing on wet paper, IEEE Trans. Signal
Process., 53:10 (2005), 3923�3935. Zbl 1370.94555

[15] A.V. Kuznetsov, B.S. Tsybakov, Coding in a memory with defective cells, Probl. Peredaci
Inform., 10:2 (1974), 52�60. Zbl 0311.94012

[16] G. McGuire, Quasi-symmetric designs and codes meeting the Grey-Rankin bound, J. Comb.
Theory, Ser. A, 78:2 (1997), 280�291. Zbl 0873.05011

Yuri Vladimirovich Kosolapov
Southern Federal Univercity,
105/42, Bol'shaya Sadovaya str.,
Rostov-on-Don, 344006, Russia
Email address: yvkosolapov@sfedu.ru

Fedor Sergeevich Pevnev
Southern Federal Univercity,
105/42, Bol'shaya Sadovaya str.,
Rostov-on-Don, 344006, Russia
Email address: pevnev@sfedu.ru


