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ON REPRESENTATIONS AND SIMULATION OF

CONDITIONED RANDOM WALKS ON INTEGER LATTICES

A. SAKHANENKO, S. FOSS

Abstract. We consider a random walk on a multidimensional integer
lattice with random bounds on local times. We introduce a family of
auxiliary �accompanying� processes that have regenerative structures and
play key roles in our analysis. We obtain a number of representations for
the distribution of the random walk in terms of similar distributions of
the �accompanying� processes. Based on that, we obtain representations
for the conditional distribution of the random walk, conditioned on the
event that it hits a high level before its death. Under more restrictive
assumptions a representation of such type has been obtained earlier by
the same authors in a recent paper published in the Springer series on
Progress in Probability, 77 (2021), where a certain �limiting� process was
used in place of �accompanying� processes of the present paper.

Keywords: conditioned random walk, bounded local times, regenerative
sequence, potential regeneration, separating levels, skip-free distributions,
accompanying process.

1. Introduction

Consider a d-dimensional random walk

(1) St = (St[1], . . . , St[d]) = S0 +

t∑
j=1

ξj , t = 0, 1, 2, . . . ,

on the integer lattice Zd, where ξj = (ξj [1], . . . , ξj [d]) ∈ Zd, j = 1, 2, . . . , are i.i.d.
random vectors that do not depend on the initial value S0 ∈ Zd. We assume that,
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for each x ∈ Zd and at any time t = 0, 1, 2, . . . , the number of possible/allowed
visits to state x is limited above by a counting number Ht(x) > 0. Let

(2) T∗ = inf{t > 0 : Ht(St) = 0} 6∞

be the �rst time when the walk visits a state with zero number of possible/allowed
visits to it.

We assume also that, at any time t < T∗, the random walk jumps from St−1 to St
and changes the environment at point St−1 by decreasing the number of remaining
allowed visits by 1, so that

Ht(x) := Ht−1(x)− 1{St−1 = x} for all x ∈ Zd, for 0 6 t 6 T∗.

If T∗ is �nite, we assume that the random walk �freezes� at the time instant T∗ (or it
�dies�, or �is killed� at time T∗). Thus, we consider a multidimensional integer-valued
random walk in a changing random environment.

Consider, as a natural example, a model of a random walk on atoms of a
�harmonic crystal� (see, e.g., [2] and [3]). An electron jumps from one atom to
another, taking from a visited atom for the next jump a �xed unit of energy, that
cannot be recovered. Thus, if St is a position of the electron at time t, then it takes
a unit of energy to make the next jump to position St+1 = St+ ξt+1, which may be
in any direction from St since the ξ's are signed random variables. We interpret the
�rst coordinate St[1] of St as its height and assume further that the height cannot
increase by more than one unit:

(3) ξt[1] 6 1 a.s., t = 1, 2, . . . .

When the electron arrives at an atom with insu�cient energy level, it �freezes�
there.

We may formulate two natural problems. Firstly, to �nd exact or approximate
formulas for the probability of the event Bn that our random walk reaches the level
n before it �freezes�, i.e.

(4) Bn := {α(n) < T∗}

with α(n) being the hitting time of the level n:

(5) α(n) := inf{t > 0 : St[1] > n} = inf{t > 0 : St[1] = n},

where the latter equality follows from the skip-free property (3). Secondly, given
that the random walk is still active by the time of hitting level n, a question of
interest is to �nd exact or approximate formulas for the conditional distribution of
its sample path.

To clarify the presentation, we will use the low-case �star� in the probability
P∗(·) in order to underline the in�uence of the random environment. We omit the
�star� in P(·) if the environment is not involved.

In the previous paper [1] on random walks with local constraints, we show that,
under a number of technical assumptions,

P∗(Bn) ∼ c0qn∞ as n→∞, where 0 < q∞ 6 1, 0 < c0 <∞.(6)

Based on that, we prove convergence of the conditional distributions:

(7) P∗((S0, . . . , SK) ∈ A | Bn)→ P((S0, . . . , SK) ∈ A),
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for any k = 0, 1, 2, . . . and all A ⊂ Z(K+1)×d, where Z(K+1)×d denotes the space
of vectors ~x = (x0, x1, . . . , ~xK) having d-dimensional vectors as their components.
Further, we �nd that the limiting sequence {Sk} in (7) has a regenerative structure
with an in�nite sequence of random regenerative levels {νi} (see De�nition 1 below
for details) and increases to in�nity with a linear speed, i.e.

Sn[1]/n→ a1 ∈ [0, 1] a.s. as n→∞.(8)

Our proofs of results (6) � (8) in [1] are based on establishing a number of representa-
tions for the distribution of the random walk {St} in random environment {Ht(x)},
that is linked to the distribution of the limiting sequence {St}. For example, it is
shown in [1] that, under some technical assumptions,

(9) P∗(Bn) = ψ0q
n
∞P(Bn), where Bn := ∪nm=0{νm = n},

for a well-de�ned positive constant ψ0 and for q∞ as in (6); and that

(10) P∗((S0, . . . , SK) ∈ A | Bn) = P((S0, . . . , SK) ∈ A | Bn),

for any n > K = 0, 1, 2, . . . and all A ∈ Z(K+1)×d. Here event Bn occurs if (and
only if) n is one of the regenerative levels of the limiting random walk.

In the present paper, we �nd that the limiting process is not the only one for
which such representations do exist. We show that there exist random sequences
{St}, that are called �accompanying� sequences, or processes, and are such that the
representation (10) takes place (for any �xed n), together with the formula:

(11) P∗(Bn) = ψn(q)q
nP(Bn), for all q > qn > 0,

where 0 < qn 6 1 and 0 < ψn(q) < ∞ are well-de�ned constants. We have
to underline that in Theorem 1 below and in its corollaries we obtain several
representations that are more general than (10) and (11).

There are several advantages in studying accompanying and limiting processes
(rather than the initial sequence {St} and corresponding constraints). We show
that the structure of {St}:
(a) does not involve any counting constraints,
(b) does not involve an environment,
(c) is regenerative;
(d) limiting and accompanying processes with optimal q = qn operate with proper
distributions only (see (19) for the de�nition).

There are further advantages in using representations based on accompanying
processes with comparison to that based on the limiting process:
(e) these representations take place under less restrictive assumptions,
(f) it is easier to determine the values of parameters in these representations
(to determine qn or ψn(q), we need to know only either n or n + 1 values of
probabilities, whereas for determining q∞ and ψ0 we need to use two in�nite
sequences of probabilities(see Subsection 3.1 where these sequences are introduced),
(g) they are more stable in calculation.

The latter means that, for example, if we have a problem with evaluation of qn,
then we may take instead any value q > qn (preferably, as close to qn as possible).

There is a number of papers dealing with random walks having constraints on
local times. We have already mentioned papers [2] and [3]. In [3], a simple symmetric
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one-dimensional random walk on the integers (�one-dimensional atoms�) has been
considered under the assumptions that

P(ξ1 = 1) = 1/2 = P(ξ1 = −1), S0 = 0 and H0(x) = L0 = const > 2

for all x ∈ Z. The latter means that initially each atom has a �xed (the same for
all) amount of energy L0. Paper [3] has motivated us to study the model, and, prior
to [1], we have made a number of preliminary observations in [4] where we consider
a reasonable one-dimensional generalisation of the discrete-time model in [3] with
non-random boundary constraints.

In papers [5] and [6], the authors consider a random walk on the line (see also
[7] for a generalisation onto a class of Markov processes), assuming that the initial
energy level H0(x) of a point x > 0 is a deterministic function of x that increases to
in�nity with x, and analyse various recurrence/transience properties of the random
walk that depend on the shape of the function H0(x). A generalisation of the model
onto random trees may be found in [8]. See also [1] for further references on related
topics.

We have to add that a number of known results for conditioned random walks
that do not have local-time constraints (see, e.g. [9] and [10]) may be represented,
in some particular cases, as corollaries of our results.

To the best of our knowledge, representations of type (9) � (11) do appear only
in our past and present papers.

The paper is organized as follows. In Section 2, we introduce the main assumptions
on the model and the notions of separating and regenerative levels. In Section 3,
we �rst describe accompanying random sequences and their structure, and, �nally,
formulate the Representation Theorem and limiting results as its Corollaries. Then
Section 4 is devoted to the proofs.

Note that, in (2), (5) and throughout the paper, we follow the standard conventions
that

inf ∅ =∞, sup ∅ = −∞ and
∑
k∈∅

ak = 0.(12)

For n ∈ Z, introduce the following subsets of Zd:

Zdn := {x = (x[1], x[2], . . . , x[d]) ∈ Zd : x[1] = n}, Zdn+ := {x ∈ Zd : x[1] > n}.

In particular, Zdn+ is a half-space in Zd.

2. Main Assumptions and Definitions

2.1. Basic Assumptions. The following assumptions (A1)− (A3) are supposed
to hold throughout the paper.

(A1). The increments {ξt : t > 1} of the random walk {St} from (1) are i.i.d.
random vectors taking values in Zd, and their �rst components have a skip-free
distribution:

1∑
k=−∞

P(ξ1[1] = k) = 1 and P(ξ1[1] = 1) > 0.

(A2). The random constraints {Ht(x), x ∈ Zd} are non-negative integer-valued
random variables which may take the in�nite value: for any x ∈ Zd and each
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t = 0, 1, 2, . . . ,
∞∑
l=0

P(Ht(x) = l) +P(Ht(x) =∞) = 1.

Moreover, the next three families of random variables

{S0; H0(x), x /∈ Zd0+}, {ξi, i > 1} and {H0(x), x ∈ Zd0+}

are mutually independent, S0[1] 6 0 a.s. and P∗(B0) > 0.
(A3). The family {H0(x) : x ∈ Zd0+} consists of i.i.d. random variables with

(13) P(0 6 H0(0) 6∞) = 1 and P(H0(0) = 0) < 1.

We say that Assumption (A) holds if Assumptions (A1), (A2) and (A3) take
place.

Remark 2.1. The �rst added value of the present paper in comparison with [1]
is that we do not use any additional assumptions in the rest of the paper, including
our main results. For example, we do not suppose that EH0(0) < ∞ in the case
where our random walk (1) is recurrent.

Remark 2.2. The second added value is that our Assumption (A3) is weaker
than a similar assumption in [1]. Namely, we allow the event {H0(0) = 0} to have
a positive probability in (13).

2.2. Further Notation and Comments. We have a certain �exibility in the
initial value S0 and in the random environment {H0(x)} outside the set Zd0+. Recall
that we use notation P∗(·) for probabilities of events when the environment is
involved. We will also use a special notation, P0, instead of P∗ for a particular
environments where S0 = 0 and H0(0) > 0. For any event B, let

P0(B) := P∗(B |S0 = 0, H0(0) > 0, H0(y) = 0 ∀y /∈ Zd0+).(14)

In (14), it is prohibited for the random walk to visit any states y /∈ Zd0+.
De�nition (14) di�ers from an analogous de�nition in [1] since we use Assumption

(A3) that is weaker than a similar assumption in [1].

Remark 2.3. We may interpret Assumption (A3) as follows: at time t = 0,
the environment in Zd0+ is stochastically homogeneous (in other words, �virgin�).
Further, condition P∗(B0) > 0 in Assumption (A2) may be read as �the random
walk St arrives at the virgin domain of the random environment with a positive
probability.�

Remark 2.4. Assumptions (A1)�(A3) yield that, for any n > 0,

P∗
(
Bn
)
> P∗

(
α(0) < T∗, ξα(0)+j [1] = 1, H0(Sα(0)+j) > 0, j = 1, . . . , n

)
= P∗

(
B0

)
Pn
(
ξ1[1] = 1

)
Pn
(
H0(0)

)
> 0,

where the events Bn were introduced in (4). In particular,

P0(B0) = 1 and P0(Bn) > Pn
(
ξ1[1] = 1

)
Pn
(
H0(0)

)
> 0 ∀n > 0.

Thus, for any n > 0, the event Bn occurs with a positive probability. Hence, as we
can see later, all conditional probabilities in all our main assertions are well-de�ned.
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2.3. Regenerative and n-separating Levels. Recall that we have introduced
d-dimensional random vectors

St = (St[1], . . . , St[d]) ∈ Zd, t = 0, 1, 2, . . . ,

on the integer lattice Zd; and let α(n) be the hitting time of level n:

α(n) := inf{t > 0 : St[1] > n}, n = 0, 1, 2, . . . .

In what follows, a �block� is any collection of random variables that may contain a
random number of these variables.

De�nition 1. A random sequence S = (S0, S1, . . . ) is regenerative with regenerative
levels ν0 < ν1 < . . . < νn < . . ., if {νi} is an in�nite sequence of integer-valued
random variables such that, �rstly, the following �blocks� of random variables

{νi− νi−1, α(νi)−α(νi−1),
(
Sα(νi−1)+t−Sα(νi−1), t = 1, 2, . . . , α(νi)−α(νi−1)

)
},

where i = 1, 2, . . . , are i.i.d. and do not depend on the following initial �block�
{ν0, α(ν0),

(
St; t 6 α(ν0)

)
}; and, secondly,

inf
t>α(νi)

St[1] = Sα(νi)[1] = νi > sup
06t<α(νi)

St[1], i = 0, 1, 2, . . . .

We then say that α(νi) is the regenerative time that corresponds to regenerative
level νi.

Note that analogous constructions of �blocks� do appear (however, in �non-
conditional� settings) in a variety of stochastic processes, see e.g. [11] or [12] or [13].

De�nition 2. A number k ∈ {0, 1, . . . , n} is an �n-separating level� of the sequence
{S0, S1, S2, . . . } if

Sα(k)[1] 6 inf
α(k)<t<α(n)

St[1] and n > 0.

It is useful to recall that sup06t<α(k) St[1] < k = Sα(k)[1], for all k > 0.

For any n > 0 such that α(n) < T∗(n), let η∗(n) count the number of n-separating
levels, excluding n itself. And we let η∗(n) = −1 when T∗(n) 6 α(n). Since n is the
last n-separating level, the variable η∗(n) + 1 counts the number of n-separating
levels in the case when the event Bn = {η∗(n) > 0} = {α(n) < T∗(n)} occurs.
Remark 2.5. One can see that if k is an n-separating level, then it may not

be an N -separating level for some N > n. For example, k = n is always the
last n-separating level if α(n) is �nite, but it is not an (n + 1)-separating level if
Sα(n)+1[1] < 0.

These levels play an important role in our analysis. One can view n-separating
levels as �potential candidates� for regenerative levels and talk about �potential
regeneration�.

2.4. Random Blocks and Vector Notation. For n > 0 with η∗(n) > 0, let

0 6 ν0(n) < . . . < νη∗(n)(n) = n

be the sequence of all n-separating levels (where ν0(n) = νη∗(n)(n) = n if η∗(n) = 0).
For n > 0 with η∗(n) > i > 1, we let

λi(n) := νi(n)− νi−1(n), Ti(n) := α(νi(n)), τi(n) := Ti(n)− Ti−1(n).
We need more notation. Introduce the random vectors

(15) ~SK = (S0, . . . , SK), ~SK,N = (SK,K+1, . . . , SK,N ), N > K > 0,
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where

(16) SK,K+t := SK+t − SK =

t∑
j=1

ξK+j , t = 0, 1, . . . .

On the eventBn = {η∗(n) > 0}, introduce a random block (ν0(n), T0(n), ~ST0(n)).
This is the initial block of our random walk. Further, if η∗(n) > 1, then we may
introduce consecutive blocks of random variables:

(17) (ν0(n), T0(n), ~ST0(n)), (λi(n), τi(n), ~STi−1(n),Ti(n)), i = 1, 2, . . . , η∗(n),

where λi(n) is the height of the i-th block and τi(n) its duration. Property 1 below
shows that there is a certain conditional independence of each block in (17) from
the previous blocks. This property is the base for the proof of our main Theorem 1
below.

3. Main Results

3.1. Technical Conditions. We say that Assumption (B) holds if Assumption
(A) takes place and, in addition, we are given a real number q and an integer M
such that

0 < M, q <∞ and PM (q) :=

M∑
l=1

P0(η∗(l) = 1)/ql 6 1.(18)

In this case

0 < ψM (q) :=

M∑
k=0

P∗(η∗(k) = 0)/qk <∞.

It is easy to see that (18) may be rewritten in the following form:

0 < M <∞ and q > qM > 0, where PM (qM ) = 1.(19)

It is clear, that such a qM exists and is unique, for each �nite M .
For N =∞, we say that Assumption (B∞) takes place if Assumption (A) holds

and we are given a real number q > 0 such that

P∞(q) :=

∞∑
l=1

P0(η∗(l) = 1)/ql 6 1 and ψ∞(q) :=

∞∑
k=0

P∗(η∗(k) = 0)/qk <∞.

(20)

Then (20) may be rewritten in the following form:

M =∞ and q > q∞ > 0, where P∞(q∞) 6 1 6 P∞(q∞ + 0).

Such a q∞ exists, but, in general, it may appear that P∞(q∞) < 1.

Remark 3.1. It is proved in [1] that, under more restrictive assumptions than
(A), there exists a unique number q∞ ∈ (0, 1] such that

P∞(q∞) = 1, 0 < ψ0 := ψ∞(q∞) <∞,(21)

and that

0 < µ :=

∞∑
n=1

nP0(η∗(n) = 1)/qn <∞.(22)

We conjecture that this result may not hold under Assumption (A) on its own.
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3.2. Transformed Distributions of Random Blocks. Suppose that either As-
sumption (B) or Assumption (B∞) takes place. We will introduce an in�nite
sequence

(23) (ν0, T 0, S̃T 0
) and (λi, τ i, Ỹi,τ i

), i = 1, 2, . . . ,

of mutually independent random blocks with special distributions, where

(24) S̃T 0
= (S0, . . . , ST 0

) and Ỹi,τ i
= (Y i,1, . . . , Y i,τ i

)

are random vectors of random lengths. We determine their distributions step by
step. First, we let

P(ν0 = k) = P∗(η∗(k) = 0)/(ψN (q)qk), k = 0, 1, . . . ,M ;(25)

P(λi = l) = P0(η∗(l) = 1)/ql, l = 1, . . . ,M.(26)

Thus, we have determined the distributions of random vectors ν0 and λi as the
Cram�er-type transforms of the characteristics of the initial random walk {St}. It
follows from (25) that the random vector ν0 has a proper distribution, whereas the
distribution of λi may be improper and

P(λ1 = 1) = P0(η∗(1) = 1)/q > P(ξ1[1] = 1)/q > 0.

We determine next the distributions of other components of the vectors in (23).
We let

(27) P(T 0 = K, S̃K = ~yK |ν0 = k) := P∗(α(k) = K < T∗, ~SK = ~yK |η∗(k) = 0),

for any K > k + 1 > 1 and ~yK := (y0, . . . , yK) ∈ Z(K+1)×d; and then

(28) P(τ i = L, Ỹi,L = ~xL|λi = l) := P0(α(l) = L < T∗, ~S0,L = ~xL|η∗(l) = 1),

for any L > l > 1 and ~xL := (x1, . . . , xL) ∈ ZL×d.
Remark 3.2. We have introduced all joint distributions of random elements

from (23). The distribution of the initial block (ν0, T 0, S̃T 0
) is proper, since it is

determined by proper distributions from (25) and (27). By the construction, with
probability 1,

ν0 > 0, T 0 > 0, and τ i > λi = Ỹi,τ i
[1] > 1, for all i > 1.

Moreover, the random vectors {(λi, τ i, Ỹi,τ i
), i = 1, 2, . . .} are i.i.d., but they may

have improper distributions when PM (q) < 1.

3.3. Sample-path construction of accompanying random sequences. Using
mutually independent random blocks introduced in (23), we may de�ne random
variables

νm = ν0 +

m∑
i=1

λi > νm−1, Tm = T 0 +

m∑
i=1

τ i > Tm−1, m = 1, 2, . . . .

Now we introduce random vectors Sj for all j > 0 using the induction argument. For

j 6 T 0, the vectors are given in (24). Suppose we have de�ned Sj for all j 6 T i−1.
Then we let

(29) ST i−1+j
:= ST i−1

+ Y i,j , j = 1, . . . , τ i = T i − T i−1.

Thus, we have de�ned Sj for all j 6 T i. Repeating this procedure for all i = 1, 2, . . .

we de�ne random vectors Sj for all j > 0.
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Similarly to (15), we introduce vectors with multivariate components:

S̃N = (S0, . . . , SN ), S̃K,N = (SK+1 − SK , . . . , SN − SK), N > K > 0.

Consider now the random blocks

(30) (ν0, T 0, S̃T 0
) and (λi, τ i, S̃T i−1,T i

), i = 1, 2, . . . ,

and note that, by (29), the i-th block in (30) coincides with the i-th block in (23).
Thus, all blocks in (30) are mutually independent and all of them are i.i.d. (apart
from the initial block).

3.4. Representation Theorem. We are now ready to present our main results.
The following statement summarises the main structural properties of the accompa-
nying random sequences and provides an inverse formula for the distributions of
the random walk in terms of the accompanying processes.

Let Zd∗ := ∪∞n=1Zn×d. We consider Zd∗ as the state space for random sequences
of random lengths.

Theorem 1. Suppose that either Assumption (B) or Assumption (B∞) takes place
and that n <∞. Then, for any set A ⊂ Zd∗ and for each M > n > m > 0,

P∗(α(n) < T∗, η∗(n) = m, (S0, . . . , Sα(n)) ∈ A)(31)

= ψM (q)qnP(ν(m) = n, (S0, . . . , Sα(n)) ∈ A).

Remark 3.3. As it follows from the theorem, when n 6 M and 0 < n < ∞,
the distribution of the part (S0, . . . , Sα(n)) of the trajectory of each accompanying
random sequence has the same support with the distribution of the corresponding
part (S0, . . . , Sα(n)) of the trajectory of the initial random walk (any �nite sample
path of this type has positive probabilities to occur simultaneously for the accompa-
nying sequences and for the random walk, however these probabilities may di�er).
In particular, for all j = 1, 2, . . ., the following inequalities hold with probability 1:

ξj [1] 6 1 and Sj [1] 6 j, where ξj = Sj − Sj−1.

Since Bn = {α(n) < T∗} = {0 6 η∗(n) 6 n}, we have from (31) that, for any set
A ⊂ Z(k+1)×d ,

P∗((S0, . . . , Sk) ∈ A, Bn) =
n∑

m=0

P∗((S0, . . . , Sk) ∈ A, η∗(n) = m)(32)

=

n∑
m=0

ψM (q)qnP((S0, . . . , Sk) ∈ A, ν(m) = n) = ψM (q)qnP((S0, . . . , Sk) ∈ A, Bn)

Now (11) follows from (32) with A = Z(k+1)×d. Equating the ratio of the left-hand
sides of (32) and (9) to the ratio of the right-hand sides leads to (10). Thus, we
have proved

Corollary 1. Suppose that either Assumption (B) or Assumption (B∞) takes place
and that n <∞. Then relations (10), (11) and (32) hold for any set A ⊂ Z(k+1)×d

when M > n > k > 0.
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3.5. Limiting Results. Assume that, for a �xed n, we are going to evaluate one
of the probabilities in the left-hand sides of formulas (10), (11), (31) or (32). Then
it makes sense to use Assumption (B) with M = n and q = qM ; and to take some
q > qM if we have problems with determining qM . On the other hand, if we like to
investigate the asymptotic behavior of these probabilities, we have to take M =∞
and use a �xed q > q∞. However, we can proceed only in the case where q = q∞ and
conditions (21) and (22) take place, since this is the only case where the random
variable λ1 has a proper distribution with 0 < Eλ1 <∞. For example, in this case
we can see from (32) that

P(B(n) | ν0 = 0) = P(νm = n for some m > 0 | ν0 = 0)

=

n∑
m=0

P(νi = n | ν0 = 0) = Vn := I{n = 0}+
n∑

m=1

P
(∑m

i=1
λi = n

)
is the renewal function of the undelayed renewal process with i.i.d. increments
{λi, i = 1, 2, . . . }. Then, by the local renewal theorem, as n→∞,

Vn → 1/µ, P(Bn)→ 1/µ and P∗(Bn)/q
n → c0 := ψ0/µ.(33)

Repeating now the elementary arguments used in Subsection 3.5 of [1], we obtain
that

P∗((S0, . . . , SK) ∈ A, Bn)/qn → c0P((S0, . . . , SK) ∈ A)(34)

as n→∞. Thus, we have proved the following result.

Theorem 2. Suppose that Assumption (B∞) and conditions (21) and (22) take

place. Then 0 < q∞ 6 1 and, for all K > 0 and any A ⊂ Z(K+1)×d, the convergences
(34), (33) and (7) hold as n → ∞, together with the asymptotics (6). In addition,
by the Strong Law of Large Numbers, (8) holds with a1 := µ/Eτ1 ∈ [0, 1].

Remark 3.4. Formally, the presented Theorem 2 is a more general result than
Theorem 3 in [1], which was the main result there. However, that Theorem 3 from [1]
has an evident advantage: its conditions are simpler and easier to be veri�ed.

4. Proofs

4.1. Properties of Trajectories and Additional Notation. For a �nite or
in�nite sequence ~y = (y0, y1, y2, . . .) of Zd-valued vectors and for any n > 0, we let

α(n|~y) := inf{t > 0 : yt[1] > n} 6∞,

where yt[1] is the �rst coordinate of yt, for t = 0, 1, . . . . Recall that we follow the
standard conventions (12).

De�nition 3. A number k ∈ {0, 1, . . . , n} is an �n-separating level� of the sequence ~y
if

sup
06t<α(k|~y)

yt[1] < k = yα(k|~y)[1] 6 inf
α(k|~y)<t<α(n|~y)

yt[1] and α(n|~y) <∞.

For n > 0, let η(n|~y)+1 count the number of n-separating levels; and let κ(n|~y)
be the supremum of all k < n such that k is an n-separating level.
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For any vector of a form ~yN = (y0, . . . , yN ), we use below notations of the
following type:

~yK = (y0, . . . , yK), ~yK,N = (yK+1 − yK , . . . , yN − yK), when N > K > 0.

(35)

Note that all notations and de�nitions introduced in this subsection are similar to
those introduced earlier in (15) for the vector ~St.

We need a number of additional notation that allow us to clarify the role of the
changing random environment used in our probabilities P∗(·). Note that

{T∗ > N} = {h(~SN ) > 0}, where h(~SN ) := min
06j6N

Hj(Sj).(36)

In what follows, we consider a random walk that starts at time t > 0 from a
state x, rather that at time t = 0 from the state S0. The following notation will be
helpful:

αt(l) = inf{j > 0 : St,t+j [1] = l}, s(K,N) := inf
06j6N−K

SK,K+j [1],(37)

ht(x,K,N) := inf
06j6N−K

Ht+j(x+ SK,K+j),(38)

for N > K, t, l > 0, where notation St,j := Sj − St for t > j was introduced earlier
in (16). Note that

∀ l > 0 α0(l) = α(l) i� S0 = 0.

Later on we will use the following properties of notation from (37) and (38):

{SK = x, T∗ > N} = {SK = x, h(~SN ) > 0}(39)

= {SK = x, h(~SK−1) > 0, hK(x,K,N) > 0} if N > K > 0.

In what follows, we use notation P(·) instead of P∗(·) in the cases where we describe
the role of the environment by using more explicit characteristics h(·) or h•(·, ·, ·)
introduced in (36) and (38) instead of T∗.

4.2. Important Property of n-Separating Levels. In this subsection we �x
integers:

N > n > k > 0, N > K > k > 0 and ~yN = (y0, . . . , yN ) ∈ Z(N+1)×d,(40)

and use notation (35). Our aim is to �nd a convenient formula for the probability
of the following event

DK,N := {α(k) = K < α(n) = N < T∗, sK,N > 0, ~SN = ~yN}.(41)

It is clear that k is an n-separating level if DK,N occurs.

Property 1. Under Assumption (A),

P∗(DK,N ) = P∗(α(k) = K < T∗, ~SK = ~yK)(42)

·P0(α(n− k) = N −K < T∗, ~S0,N−K = ~yK,N )

for all integers that satisfy (40).

The proof of this statement is carried out in several steps. For any t > 0 and
x ∈ Zd introduce events:

Ak,K := {h(~SK−1) > 0, α(k) = K, ~SK = ~yK},(43)

Ct(x, k,K, n,N) := {ht(x, ~SK,N ) > 0, αK(n− k) = N −K, sK,N > 0, ~SK,N = ~yK,N}.
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Lemma 1. Under the assumptions of Property 1,

P∗(DK,N ) = P(Ak,K) ·P(C0(yK , k,K, n,N)).(44)

In addition,

P∗(α(k) = K < T∗, ~SK = ~yK) = P(Ak,K) ·P(H0(0) > 0).(45)

Proof. Using property (39), we obtain from de�nitions (41) and (43) that

DK,N = Ak,K ∩ CK(yK , k,K, n,N).(46)

Random variables α(k), ~SK and h(~SK−1) that de�ne the event Ãk,K are functions
only of random variables from the following two families:

{ξj : j 6 K} and {H0(y) : y /∈ Zdk+}.(47)

On the other hand, all random variables that determine the event CK(yK , k,K, n,N),
are functions only of random variables from the following two families:

{ξj : j > K} and {HK(y) : y ∈ Zdk+}.

Note that if the event Ak,K occurs, then the environment in the half-space Zdk+
remains virgin at time K. Hence,

∀ y ∈ Zdk+ HK(y) = H0(y) and hK(yK , ~SK,N ) = h0(yK , ~SK,N ).

Here we have used de�nition (38). Thus, CK(yK , k,K, n,N) = C0(yK , k,K, n,N)
by (43) when Ak,K occurs, and we may rewrite (46) in the following way:

DK,N = Ak,K ∩ CK(yK , k,K, n,N) = Ak,K ∩ C0(yK , k,K, n,N).(48)

Now, all random variables that determine the event C0(yK , k,K, n,N), are functi-
ons only of variables from the following two families:

{ξj : j > K} and {H0(y) : y ∈ Zdk+}.(49)

Since the families in (49) and (47) do not overlap, they are independent. Hence,

events Ãk,K and C0(yK , k,K, n,N) are independent too. This independence allows
us to obtain (44) from (48).

Next, it is not di�cult to see from (39) and (43) that

P∗(α(k) = K < T∗, ~SK = ~yK) = P(Ak,K , HK(yK) > 0).

Here random variable HK(yK) = H0(yK) belongs to the second family in (49).
Hence, events Ak,K and {H0(yK) = 0} are independent too. Thus, (45) follows
since P(H0(yK) > 0) = P(H0(0) > 0). �

Lemma 2. Under the assumptions of Property 1,

P(C0(yK , k,K, n,N)) = P(C0(0, 0, 0, n− k,N −K)).(50)

Proof. Note that, by (16), families of random variables

{SK,K+t =

t∑
j=1

ξK+j , t = 1, . . . , N −K} and {S0,t =

t∑
j=1

ξj , t = 1, . . . , N −K}

are identically distributed. Hence, random vectors ~SK,N and ~S0,N−K have the same
distributions. For the �xed environment, the indicator of the event C0(yK , k,K, n,N)
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is a function of ~SK,N . Thus it is identically distributed with the indicator of the
event C0(yK , 0, 0, n− k,N −K), and we have:

P(C0(yK , k,K, n,N)) = P(C0(yK , 0, 0, n− k,N −K)).(51)

Now note that the probability in the right-hand side of (51) does not depend on
the choise of the point yK in the virgin environment. For example, we may choose
the �standard� point 0 instead of yK to obtain

P(C0(yK , 0, 0, n− k,N −K)) = P(C0(0, 0, 0, n− k,N −K)).

The latter fact and (51) imply (50). �

Proof of Property 1. Substituting (45) and (50) into (44), we obtain that

P∗(DK,N ) = P∗(α(k) = K < T∗, ~SK = ~yK) · P(C0(0, 0, 0, n− k,N −K))

P(H0(0) > 0)
.(52)

Note that the �rst component of the vector ~SK,N equals to zero by (16). Hence

P(C0(0, 0, 0, n− k,N −K)) = P(C0(0, 0, 0, n− k,N −K)|S0 = 0)

= P(H0(0) > 0) ·P0(α0(n− k) = N −K < T∗, ~S0,N−K = ~yK,N ).

Then, the latter fact and equality (52) imply the assertion (42) of Property 1 because
α0(n− k) = α(n− k) under probability P0(·). �

4.3. Properties of Transformed Distributions. In the rest of the paper we
suppose that either Assumption (B) or Assumption (B∞) takes place.

Lemma 3. For arbitrary numbers

N > n > 0 and M > n,(53)

suppose that we are given a vector ~yN = (y0, . . . , yN ) ∈ Z(N+1)×d such that

α(n|~yN ) = N > 0 and η(n|~yN ) = 0.(54)

Then

P∗(~SN = ~yN ) = ψM (q)qnP(ν(0) = n, α(n) = N, S̃N = ~yN ).(55)

Proof. Using conditions (53) and (54), it is easy to see that

P∗(~SN = ~yN ) = P∗(α(n) = N < T∗, η∗(n) = 0, ~SN = ~yN )(56)

= P∗(η∗(n) = 0) ·P∗(α(n) = N < T∗, ~SN = ~yN |η∗(n) = 0).

Substituting now (25) and (27) with k = n andK = N into (56), we obtain (55). �

Lemma 4. For arbitrary numbers

L > l > 1 and M > l,(57)

suppose that we are given a vector ~xL = (x1, . . . , xL) ∈ Z(L+1)×d such that

α
(
l|(0, ~xL)

)
= L and κ

(
l|(0, ~xL)

)
= 0,(58)

where we use vector (0, ~xL) := (0, x1, . . . , xL). Then

P0(~S0,L = ~xL) = qlP(λ1 = l, τ1 = L, Ỹ1,L = ~xL)(59)

= qlP(λm ≡ νm − νm−1 = l, τm ≡ Tm − Tm−1 = L, S̃Tm−1,Tm
= ~xL),(60)

for all m = 1, 2, . . . .
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Proof. Note that condition κ
(
l|(0, ~xL)

)
= 0 from (58) means that there are no n-

separating levels between 0 and l. Hence η
(
l|(0, ~xL)

)
= 1, and it follows from (57)

and (58) that

P0(~SL = ~xL) = P0(α(l) = L < T∗, η∗(l) = 1, ~SL = ~xL)(61)

= P0(η∗(l) = 1) ·P0(α(l) = L < T∗, ~SL = ~xL|η∗(l) = 1).

Substituting now (26) and (28) for i = 0 into (61), we obtain (59).
Recall that, by the construction (see Subsection 3.3), all independent random

blocks (λm, τm, S̃Tm−1,Tm
) from (30) are identically distributed with the block

(λ1, τ1, Ỹ1,τ1
) from (23). Therefore, (60) follows from (59). �

4.4. Main Lemma. In the proof of the following lemma we use the description of
the accompanying random sequences that have been introduced in Subsection 3.3.

Lemma 5. For arbitrary numbers

N > n > m > 0 and M > n > 0,(62)

suppose that we are given a vector ~yN = (y0, . . . , yN ) ∈ Z(N+1)×d such that

α(n|~yN ) = N > 0 and η(n|~yN ) = m > 0.(63)

Then

P∗(~SN = ~yN ) = P∗(α(n) = N < T∗, η∗(n) = m, ~SN = ~yN )(64)

and

P∗(~SN = ~yN ) = ψM (q)qnP(ν(m) = n, α(n) = N, S̃N = ~yN ).(65)

Moreover, all random variables in the right hand-side of (65) are deterministic
functions of random variables from the initial block and from the �rst m blocks in
(30) only.

Proof. The �rst assertion (64) of the lemma follows immediately from the assumption
(62) and (63).

We prove now the second assertion (65) by the induction in m. For m = 0, (65)
follows from Lemma 3. Let m be a strictly positive integer and suppose that (65)
holds for each possible ~yN and all numbers from (62) in the case when η(n|~yN ) =
m−1 > 0. Now take numbers and a vector satisfying (62) and (63). Then, for some
integers k and K,

M > κ(n|~yN ) = k ∈ [0, n− 1] and α(k|~yN ) = K ∈ [0, N − 1],(66)

where the value κ(·|·) was de�ned after De�nition 3. We will use notations introduced
in (35). Clearly, η(k|~yK) = m− 1 by (66). So, by the induction base, we have that

P∗(~SK = ~yK) = ψM (q)qkP(S̃K = ~yK , α(k) = K, νm−1 = k).(67)

Ir follows from the de�nition of κ(·|·) and from (66) that k is an n-separating

level. Hence, on the event {~SN = ~yN} we have sK,N > 0. Thus,

{~SN = ~yN} = {~SN = ~yN , sK,N > 0} = DK,N ,

where the event DK,N was introduced in (41). Hence, by Property 1,

P∗(~SN = ~yN ) = P∗(DK,N ) = P∗(A) ·P0(C),(68)
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where

A := {α(k) = K < T∗, ~SK = ~yK} = {~SK = ~yK},(69)

C := {α(n− k) = N −K < T∗, ~S0,N−K = ~yK,N} = {~S0,N−K = ~yK,N}.(70)

Next, we are going to apply Lemma 4 with l = n−k, L = N−K and ~xL = ~yN,K .
Note that the condition κ(n|~yN ) = k from (66) implies that κ

(
n−k|(0, ~yN,K)

)
= 0.

Hence we have from Lemma 4 that

P0(~S0,N−K = ~yK,N )(71)

= qn−kP(λm ≡ νm − νm−1 = n− k, τm ≡ Tm − Tm−1 = N −K, S̃Tm−1,Tm
= ~yK,N ).

Substituting (67) and (71) into (69) and (70), we obtain from (68) that

P∗(~SN = ~yN ) = ψM (q)qkP(S̃K = ~yK , α(k) = K, νm−1 = k)(72)

×qn−kP(νm − νm−1 = n− k, Tm − Tm−1 = N −K, S̃Tm−1,Tm
= ~yK,N ).

Notice that the m-th block in (30) is independent of the previous ones. Hence, (72)
may be represented as

P∗(~SN = ~yN )

= ψM (q)qk+(n−k)P(νm = n, Tm = α(νm) = N,

S̃Tm−1
= ~yK , S̃Tm−1,Tm

= ~xL = ~yK,N )

= ψM (q)qnP(ν(m) = n, α(n) = N, S̃N = ~yN ).

Therefore, we have completed the induction step. This ends the proof of Lemma 5.
�

4.5. Proof of Theorem 1. Let us notice that any set A ∈ Zd∗ may be represented
as

A = ∪∞N=0AN , where AN ⊂ Z(N+1)×d, N = 0, 1, 2, . . . .

In addition, all vectors ~yN = (y0, . . . , yN ) from AN satisfy (64) and (65).
Then summing up the LHS's and RHS's of (64) and (65) over all N and all

~yN ∈ AN leads to (31). This completes the proof of Theorem 1. �

Let us make a concluding remark.

Remark 4.1. Recall that de�nition (14) of the probability P0(·) is essentially
di�erent from the analogous de�nition in [1] since we use Assumption (A3) that is
weaker than a similar assumption in [1]. Correspondingly, our proof of Property 1 is
based on fresh ideas that are not used in [1]. On the other hand, in the proof of our
main Lemma 5, we have decided to follow the structure of the proof of Lemma 9
in [1]. However, we provide more details here, in order to show that Theorem 1 take
place under weaker assumptions than were used in [1].
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