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POSITIVE SOLUTIONS OF p-LAPLACIAN FRACTIONAL
DIFFERENTIAL EQUATIONS WITH FRACTIONAL
DERIVATIVE BOUNDARY CONDITION
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ABSTRACT. In this paper, we show some results about the existence and
uniqueness of the positive solution for a p-Laplacian fractional differential
equations with fractional derivative boundary condition. Our results are
based on Krasnosel’skii’s fixed point theorem, the nonlinear alternative of
Leray-Schauder type and contraction mapping principle. Three examples
are given to illustrate the applicability of our main results.
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1. INTRODUCTION

Fractional derivatives and integrals are proved to be more useful in the modeling
of different physical and natural phenomena. The p-Laplacian fractional boundary
value problems related to nonlocal conditions have many applications in various
fields, such as in the theory of heat conduction in materials with memory, nonlinear
elasticity and glaciology, non-Newtonian mechanics, combustion theory, population
biology, nonlinear flow laws and so on. For instance, when studying the steady-state
turbulent flow with reaction, Bobisud (cf.[1]) introduced the differential equation

/!
(p(u'(1)) = flt,u(t),u'(1)
with an operator ¢,(z) = |z[P~'z. This problem appears in the study of non-
Newtonian fluids. It yields the usual problem for diffusion in a porous medium
when p = 1, i.e., ¢,(x) = x. The current analysis of these problems has a great
interest and many methods are used to solve such problems. Recently, the study
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of existence of positive solution to p-Laplacian fractional boundary value problems
has gained much attention and is rapidly growing field. There are many papers
concerning fractional differential equations with the p-Laplacian operator, see [8,
10, 16, 32, 17, 31, 33, 6, 28, 23|.

In 2013, S. Ying et al. [29] considered the existence criteria for positive solutions
of the nonlinear p-Laplacian fractional differential equation

(ep(Du(t))) = oM (L. ult). (1), t € (0.1),
kou(0) = k1u(1), mou(0) = myu(1), u((0) =0, r=2,3,...,[a],

where ¢, is the p-Laplacian operator, i.e., p,(s) = |s|P72s, p > 1, and ¢, = cp;l,
%Jr% = 1. D? is the standard Caputo derivative and f : [0, 1] x [0, 00) X (—00, 00) —
[0, 00) satisfies the Carathéodory type condition, o > 2 is real and [a] denotes the
integer part of the real number o, A > 0, k;,m; (i = 0,1) are constants satisfying
0 < k1 < kg and 0 < my < mg. They used the nonlinear alternative of Leray-
Schauder type and the fixed-point theorems in Banach space to investigate the
existence of at least single, twin, triple, n or 2n — 1 positive solutions.

In 2019, T. Xiaosong et al. [26] considered the following mixed fractional resonant
boundary value problem with p(¢)-Laplacian operator

{CDﬁ (v (Dou(®) ) = £(t,u(t), Dou(t)), t € [0,7),
tu(t)],_, = 0, Du(0) = D*u(T),

where 0 < o, 6 < 1,1 < a+ 3 < 2, °DP is Caputo fractional derivative and D is
Riemann-Liouville fractional derivative, y,)(.) is p(t)-Laplacian operator, p(t) > 1,
p(t) € C0,T] with p(0) = p(T), f : [0,T) x R? — R. Under the appropriate
conditions of the nonlinear term, the existence of solutions for the above mixed
fractional resonant boundary value problem is obtained by using the continuation
theorem of coincidence degree theory.

In 2019, Z. Li et al. [14] considered the existence of nontrivial solutions for a
certain p-Laplacian fractional differential equation

{D%p((m (p(tw'(®)) ) + F(tu(®) = 0, L€ (0,1),
au(0) — bp(0)u/(0) = 0, cu(1) +dp(1)u'(1) = 0, D*(p(t)u'(t))|,_, = O,

where a, b, ¢, d are constants with 0 < ad + bc + ac fol ﬁds < oo, p(.) 1 [0,1] —
(0,00) is continuous, and ¢, is the p-Laplacian operator, 0 < «,8 < 1, D* is
the standard Caputo derivative. Under the assumption that f(¢,u) is a continuous
function, and by the use of some fixed point theorems in cones, they studied the
existence and uniqueness results.

In 2017, T. Yuansheng et al. [30] considered a class of four-point boundary value
problem of fractional differential equations with p-Laplacian operator

{Dv (wn(Du(®))) = F(tu®), € (0,1),
u(0) = D*u(0) = 0, Dﬂu(l) = Mu(§), Du(1) = uDu(n),

where a, 8,y e R, 1 < a,7 <2, 8>0,1+8 < a,and &n € (0,1), \,u €
[0,00), (1 —B)(a) > Al'(a — B)E*72, 1 — uP~17=2 > 0 and ¢, is the p-Laplacian
operator, D” (v € {a, 8,7}) is the standard Riemann-Liouville differentiation and
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f € C([0,1] x [0,00) — [0,00)). By the use of the Leggett-Williams fixed-point
theorem, the multiplicity results of positive solution are obtained.

And in the same year, L. Xiping et al. [27], studied the following four-point
boundary value problem of fractional differential equation with mixed fractional
derivatives and p-Laplacian operator

D (i, (“DPu(t) ) = f(t,u(t).c DPu(t)), t € (0,1],
e DBu(0) = u'(0) = 0,
u(1) = riu(n), <DPu(1) = ry ¢DPu(§),

where 1 < a, 8 < 2, 71,79 > 0, D® is the Riemann-Liouville fractional derivative
operator, and °D” is the Caputo fractional derivative operator, p > 1, ¢p is the
p-Laplacian operator and f € C([0,1] x [0, +00) X (—00,0],[0,+00)). By means a
method of lower and upper solutions, the authors established some new results on
the existence of positive solutions.

In 2018, W. Han et al. [5] investigated the multiple positive solutions for the
following nonlinear fractional differential equations coupled with the p-Laplacian
operator and infinite-point boundary value conditions

D% (9 (Du(t) = Mu(t)) ) = f(t,u(t)), t€ (0,1],
limy o+ 1 7%u(t) = 350, piu(&),
limg_yo+ £29 (%(Dau(t) - )\u(t))) = gp(Du(1) — Mu(1)) =0,

where 0 < @ < 1,1 < B<2,A<0, 4, >0,0<& <1,i€NF, % et <1,
f € C([0,1] x [0,00) — [0,00)), ¢, is the p-Laplacian operator and D%, D are
the Riemann-Liouville fractional derivatives. By means of the properties of Green’s
function and fixed point theorems, they established the suitable criteria to guarantee
the existence of positive solutions.

In 2018, J. Tan, M. Li [24], studied the solutions for the following nonlinear
fractional differential equations with p-Laplacian operator nonlocal boundary value
problem in a Banach space F

—D? (g (D) ) (t) = f(t,u(t)), t€ (0,1),
u(0) =6, D*u(0) =4,
Dru(1) = S s DVul&y),

where D D D7 are the standard Riemann-Liouville fractional derivatives,  is
the zero element of £, 1 < <2,0< p,v<1l,a—y>1,1=1[0,1], f: IXE —
E is continuous, o; > 0 (i = 1,2,...,.m—2), 0 < & < & < ... < &2 < 1,
22212 aifiafﬁ’fl < 1, pp is the p-Laplacian operator. By means of the technique of
the properties of the Kuratowski noncompactness measure and the Sadovskii fixed
point theorem, they established some new existence criteria.

For some other results on p-Laplacian fractional boundary value problems, we
refer the reader to the papers [25, 18, 19, 22, 2, 7, 15, 11, 3, 21].

Motivated by these works, in this paper, we are concerned with the following
three-point boundary value problem of fractional differential equations with p-
Laplacian operator

(1.1) (ep(D*u(t))) +alt) (1, u(e)) =0, 1 (0,1),
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(1.2) D*u(0) = u/(0) = u"(0) =0, u(l) +u'(1) = (),

where 2 < a < 3, n € (0,1), ¢, is the p-Laplacian operator, D® is the standard
Caputo derivative.
Throughout this paper, we assume the following conditions:

(H1) f e C([0,1] x [0,00),[0,00)), and f(t,.) # 0 on [0,1];

(H2) a € C([0,1],]0,00)) and a(t) # 0 on any subinterval of [0, 1].

This paper is organized as follows. In section 2, we recall some special definitions,
theorems and lemmas that will be used to prove our main results. In section 3, we
discuss the existence and uniqueness of positive solution for (1.1)-(1.2). Finally, we
give some examples to illustrate our results in section 4.

2. PRELIMINARIES

In this section, we introduce first the following preliminary facts that will be
used throughout this article.
At first, let B be the Banach space C([0,1],R) when equipped with the usual
supremum norm,

[ull = suprepo,ylu(t)].
Definition 1. Let E be a real Banach space. A nonempty, closed, convex set K C E
is a cone if it satisfies the following two conditions:
(i) x € K, A\>0 imply \x € K;
(ii) z € K, —x € K imply x = 0.
Definition 2. An operator T : E — E is completely continuous if it is continuous
and maps bounded sets into relatively compact sets.

Definition 3. A function u(t) is called a positive solution of (1.1) and (1.2) if
u € C([0,1]) and u(t) > 0 for all t € (0,1).

Definition 4. The Riemann-Liouville fractional integral of order « for a continuous
function f is defined as

A B LR
0=t ) et @ >0

provided the integral exists, where T'(.) is the gamma function, which is defined by
[(z) = [ t" e dt.

Definition 5. For at least n-times continuously differentiable function f : [0,00) —
R, the Caputo derivative of fractional order « is defined as

¢ 1 EEPAC)
D f(t):F(n—oz)/O (t_s)ail_nds, n—1l<a<n, n=[a]+1,

where [a] denotes the integer part of the real number a.

Lemma 1 ([12]). For a > 0, the general solution of the fractional differential
equation “D*x(t) = 0 is given by

z(t) =co+crt + ..+ cp1t"
where ¢; € R, i =0,1,....n—1 (n=[a] +1).
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According to Lemma 1, it follows that
I% °Dx(t) = x(t) + co + crt + .. + cp1t" 1,
for some ¢; €R,i=0,1,...,n—1 (n=[a] +1).
Lemma 2 ([20], [12]). If 8> a > 0 and x € L1[0, 1], then
(i) ¢D* IPx(t) = IP~“x(t), holds almost everywhere on [0,1] and it is valid at any
point t € [0,1] if x € C[0,1]; °D* I%x(t) = x(t), for all t € [0,1].

(i) cD* ! = F(F;i)a) A== X >[a] and <Dt 1 =0, )< |[al.

Definition 6. Let p > 0, ¢ > 0, the Euler beta function is defined by

1
B(p,q) :/ P71 — t)7 .
0

The basic properties of the I" and 9B functions which will be used in the following
studies are listed below.

Proposition 1. Let « >0, p > 0, ¢ > 0 and n a positive integer. Then

MNa+1) =al(a), F(n—l— %) = %,F(n—l— 1) =nl,

L'(p)I'(q)
Lip+q)’

B(p,q) = B(g,p), Bp+1,9) =B(p,q)

B(p,q) = B(p,q) =B(p,g+1)+B(p+1,9),

p+q
In particular,
1 1
To prove our results, we need the following three well-known fixed point theorems.

Theorem 1. [13]| Let E be a Banach space, and let K C E, be a cone. Assume
that Q1 and Q0 are bounded open subsets of E with 0 € Q1, Q1 C Qo and let

ALK N (Q\Q) = K

be a completely continuous operator such that

(a) [|Au|| < ||lu|l, uw € KN, and ||Au|| > |jul], v € K NOQs; or
(b) || Au|l > |lu|l, v e KN Oy, and ||Aul| < ||ull, u € K NOQs.

Then A has a fized point in K N (Q2\Q1).

Theorem 2. [4] Let E be a Banach space, Ey a closed, convex subset of E, U an
open subset of E1 and 0 € U. Suppose that A : U — Ej is a continuous, compact
(that is A(U) is a relatively compact subset of E1) map. Then either

(i) A has a fized point in U, or
(ii) Thereis aw € U (the boundary of U in E1) and X € (0,1) with u = AA(u).

Theorem 3. (Banach’s fixed point theorem) Let (X, d) be a non-empty complete
metric space with a contraction mapping T : X — X. Then T admits a unique
fized-point v* in X (i.e. T(u*) =u*).
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Counsider the fractional boundary value problem
!
(2.1) (%(Dau(t))> Y R(t) =0, te(0,1),
(2.2) D%u(0) = v/ (0) = 4" (0) =0, u(1l) +u'(1) = u'(n),
where o € (2,3] and h € C[0,1].

Lemma 3. Suppose that h € C([0,1],]0,00)), then the boundary value problem
(2.1)-(2.2) has a unique solution which can be expressed by

u(t) = /01 K(t,s)gaq(/os h(T)d7'> ds,

where

(2.3) K(t,s) = G(t, s) + H(n,s),
T s<t<l1
g(t,s) = {(l_s)afl‘(a) ) sts 1
T(a) <t<s<1,
(1=8)*"2—(t—s)*"2 0<s<t<l
(24) H(t,s) = (1_€)a1:(20‘*1) ’ =2 =Y="
Ta—1) 0<t<s<L

Proof. By integrating the equation (2.1), it follows that

wp(D“u(t)) — gop(DO‘u(O)) = _/0 h(s)ds,

and so,

From Lemma 1 , we get
t
U(t) = —Ia30q</ h(s)ds) + CO + Clt + Cgtz.
0

where Cy, C1,Cs € R are constants. Using the boundary conditions (2.2), we have

C;=C=0
So,
(2.5) u(t) = -— /Ot (lfr(so);l%</os h(T)dT) ds + Co,

<
~
—~
~
=

- /ot m%</j h(T)dr) ds.

By the boundary condition u(1) + u/(1) = u/(n), we have

T oo [ e [
7/0 %8_)1)%(/0 h(T)dT>ds.

Inserting Cy into (2.5), we get
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ma 4. The functions G(t,s) and H(t,s) defined by (2.4) are continuous on
[O 1] and satisfy the following properties

(t s) >0, ’H(t s) >0, for all t,s € [0,1];
“1G(s,8) <G(t,s) <G(s,s), forall (t,s)€[0,1] x [0,1];
T H(s,s) < H(t,s) < H(s, s) for all (t,s) €[0,1] x [0,1],

where G(s, s) = (1_8)(!71 , H(s,s) = G0

I'(a) I(a 1)

Proof. G and ‘H are continuous by definition.
(i) If0 < s < t, then

For s > t, we have G(t,s) = a

So,

Glt,s) = <1—s>"“F(—a)<t—s) -
. (=9t = (-9t
- ')
= 0.
>0,

G(t,s) >0, for all ¢, s € [0, 1].
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By a similar argument, we show that H(t,s) > 0, for all ¢,s € [0,1].
(ii) If 0 < s < ¢, then

(1—s)2t—(t—s)>!

o= @
> (1- S)a1 Flé;;u)l(l - t)al
> U9 _I‘Ea) :11_ .
= (1- tal)(llj(soé)).

On the other hand, we have G(t, s) < (1}2;71

Notice that

Thus,
(1—t*"1)G(s,s) <G(t,s) <G(s,s), forallt,s € [0,1].
Now, if s =0, then

1 tafl

o0 = T
< 1
()
= §(0,0)

On the other hand,
a—1
G(1.0) =+ > (1= 7)6(0.0),

Therefore, item (ii) holds.
(iii) It follows directly from (ii). O
Lemma 5. Let p € (0,1) be fized. K(t,s) defined by (2.3) satisfies the following
properties

(i) K(t,s) >0, for all t,s € [0,1].

(i) (1—n""2)(1—t*"1)D(s) < K(t,s) < D(s), forall (t,s)€[0,1] x [0,1].

(iii) (1—n*"2)(1—p*H)P(s) < IC(t,,s) < ®(s), forall (t,s)€0,p] x [0,1],

where ®(s) = %

Proof. Notice that (i) holds trivially. Next, we show (ii) holds. First, notice that
(1 _ S)oc—l (1 _ S)a—Q

Gls,8) +Hlsis) = 50 T(a—1)

Il

A
—

®
NS

From Lemma 4 and (2.3), we have
K(t,s) = G(t,s)+H(n,s)
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On the other hand, from Lemma 4, we get
K(t,s) = G(t,s)+Hn,s)

> (1=t*"NG(s,8) + (1 —n* %) H(s,s)
> (1=t (1 =n""?)[G(s,s) + H(s,s)]
(e - ).
Therefore, (ii) holds.
(iii) It follows directly from (ii). O

Lemma 6. Let p € (0,1) be fized. If h € C([0,1],[0,00)), then the unique solution
of the fractional boundary value problem (2.1)-(2.2) is nonnegative and satisfies

in w(t) >
IE%D]U( ) > |lull,

where v = (1 - 770‘*2) (1 — p"‘*l).

Proof. The positiveness of u(t) follows immediately from Lemma 3 and Lemma 5.
For all ¢ € [0, 1], we have

u(t) = /01 lC(t,s)goq</os h(T)dT) ds
< /01 @(s)goq(/os h(T)dT) ds
Then

(2.6) ul| < /01 @(s)@q</os h(T)dT> ds.

On the other hand, Lemma 3, Lemma 5 and (2.6) imply that, for any ¢ € [0, p],

we have
u(t) = /01 K(t,s)goq(/os h(T)dT) ds
2.7) > (1 — 77“_2) (1 — p“_l) /01 @(s)goq(/os h(T)dT) ds
_ 7/01 @(s)wq(/os h(T)dT)dS
> Yull
Therefore,

min u(t) > vy||ull.
min u(t) >y

Let p € (0,1) be fixed. Introduce the cone that we shall use in the sequel.

P= {u €B: u(t) >0, tel0,1], min u(t) > ’y|u||},

" t€[0,p]
and define the operator A : P — B by

(2.8) Au(t) = /01 K(t,s)¢q</08 a(r)f(r,u(r))dr) ds,
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where K(t, s) is defined by (2.3).

Remark 4. By Lemma 3, the fized points of the operator A in P are the nonnegative
solutions of the boundary value problem (1.1)-(1.2).

The following properties of the p-Laplacian operator will play an important role
in the rest of the paper.

Lemma 7 ([9], Lemma 1.3). Let ¢, be a p-Laplacian operator. Then
(i) Ifl<p<2,zy>0, and |z|,|y| > m >0, then
lop(@) = pp(y)] < (p— 1)mP 2|z — y.
i) 1fp>2, |al,lyl < M, then

lop(2) = ()] < (p = 1)MP 2|z — y].

Lemma 8. The operator A defined in (2.8) is completely continuous and satisfies

A(P) CP.

Proof. From Lemma 6 and under assumption (H1), it follows that A(P) C P.
In view of the assumption of nonnegativeness and continuity of f(¢,u(t)), K(t, s)
and Lebesgue’s dominated convergence theorem, we conclude that A : P — P is
continuous. Let D be an arbitrary bounded set in P. Then, there exists M > 0
such that D C {u € P : ||u|| < M}. Set

L = max{f(t,u)/ t € [0,1],u € D}.

From Lemmas 3 and 5, for any v € D, we have

Au(t) = /01 K(t,s)goq(/os a(T)f(T,u(T))dT> ds

/01 K(t,s)gaq(/ol a(T)LdT> ds
L’11<pq</01 a(T)dT) /01 ®(s)ds.

IN

IN

Thus,

| Au| < qugoq(/ola(r)dT) /O1 B(s)ds.
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Hence, A(D) is uniformly bounded. On the other hand, let u € D, ¢1,t5 € [0,1]
with #; < t5. Then, from Lemmas 3 and 4, we have

/01 K(t1,5)pq < /OS a(7) f(r, u(T))dT> ds
1

- [ Kt [ st atmar )as

/01 [K(tl, s) — K(t2, s)] ©q < /O a(r) f(r, u(T))dT> ds

[Au(ti) — Au(ta)]

/O 1 [6(t1,5) — G (ta, s>}soq( /0 Ca(r) f(T,u(T))dT> ds

a1 /01 1G(t1, ) — Gta, s)\¢q</os a(T)dT> ds.

The continuity of G implies that the right-side of the above inequality tends to zero
if to — t1. That is to say, A(D) is equicontinuous. Thus, the Arzela-Ascoli theorem
implies that A : P — P is completely continuous. |

IN

3. EXISTENCE OF POSITIVE SOLUTIONS

Set,

A = (goq(/ola(r)dT) /01<I>(s)ds)1, Ay = <7/0p¢>(s)<pq(/osa(7')dr>ds>1.

Then we find that 0 < Ay < As. In fact,

J 'y/op@(s)@q(/osa(T)dT)ds
/Opq)(s)g0q</osa(7')d7>ds
<pq(/01a(7)d7') /OltI)(s)ds

= A7L

N

IN

Theorem 5. Assume that (H1)-(H2) hold. If there exist constants p; > 0, p2 > 0,
M, € (O,Al}, and M, € [AQ,OO), where p; < p2 and Msp; < Mjps, such that f
satisfies

(i) f(t,u) < @p(Mips) for all u € [0, po] and t € [0,1], and

(i) f(t,u) > pp(Mapy) for all u € [yp1,p1] and ¢ € [0, p],
then the problem (1.1)-(1.2) has at least one positive solution u € P satisfying
p1 < [lull < pe.

Proof. Define the open set
Qp, = {u € B Jul] < pa}.
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Let u € P N 0Q,,. Then, from assumption (i) and Lemma 5, we have

Au(t) = /0 1/C(t,s)<pq< /Osa(f)f(T,u(T))dT)ds
</ K, ea( [ atrreyonpaiar )
< Mip /OllC(t,s)goq</01a(7')dT)ds
< Mlpgcpq</01a(7')d7'> /Olcb(s)ds
< MATM
= P2

which implies that
(3.1) | Au| < [Ju|| for all w € PN OKQ,.

Next, define the open set Q,, = {u € B: ||u| < p1}.
For any v € P N 09, , by using (H1)-(H2), assumption (ii) and Lemma 5, for
t € [0, p], we then get

Au(t) = /ICts

vV
??
H~
&
/\/\\/—\
h
2
\‘
S~—
=
N
=
\‘
N~—
S~—
=%
\1
~_
QL
»

Vv
B
*9*
—
»
S~—
S
=)
N
2
\‘
S~—
=
I
=
\]
S~—
S~—
ISH
\]
~_
QL
&

IV Y
e}
> 5
o e}
) =
i)
O\b O\h
= =&
s =z
S 3
Ve P
= 2
2 &)
S5
SN— ~__
& L
® @

which implies that
(3.2) [l Aul| > ||u|| for all w € P N0OQ,,.

Therefore by (b) in Theorem 1, A has at least one fixed point in P N (Q,, \ 2,,).
So there exists at least one solutlon of (1.1)-(1.2) with p; < |jul| < pa. O

By a closely similar way, we can obtain the following result.

Theorem 6. Assume that (H1)-(H2) hold. If there exist constants p; > 0, pg > 0,
M; € (0,A4], and My € [Ag,0), where vps < p1 < po, and My1p1 > Msps, such
that f satisfies

(i) f(t,u) > @p(Maps) for all u € [yps, p2] and t € [0, p], and

(i) f(t,u) < pp(Mipy) for all u € [0, p1] and ¢ € [0, 1],
then the problem (1.1)-(1.2) has at least one positive solution u € P satisfying
p1 < lull < pe.
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Theorem 7. Assume that (H1)-(H2) hold. Further, assume that there exists a
constant v > 0 such that

(3.3) V> Lq—lwq( /0 la(T)dT> /O " b(s)ds,

where L = max{f(t,u)/ (¢t,u) € [0,1] x [0, v]}.
Then the fractional boundary value problem (1.1)-(1.2) has at least one positive
solution.

Proof. Let
U={ueP:|ul| <v}

By virtue of Lemma 8, the operator A : U — P is completely continuous. Assume
that there exist u € U and A € (0,1) such that v = \Awu. Then we have

lC(t,s)gaq( / Ca(r) f(T,u(T))dT) ds

0 0

01 K(t, 5)p4 ( A ) a(T)LdT> ds

Lq1<pq< /0 1 a(T)dT) A " b(s)ds.
wnsml%([fﬂﬂm>4ﬂmg@_

Thus from (3.3), we have that ||u|| < v, which means that u ¢ 0U. Hence, it follows
that there is no u € OU such that u = AAu for some A € (0,1). Therefore by
Theorem 2, we conclude that the fractional boundary value problem (1.1)-(1.2) has
at least one positive solution. O

1

MM=NMWN=‘A

IN

IN

So,

Theorem 8. Assume that (H1)-(H2) hold, and 1 < p < 2. In addition, we assume
that the following assumptions hold:

(C1) There exists a nonnegative function k € C[0, 1] such that
(3.4) f(t,u) < k(t), for any (¢,u) € [0,1] x [0, c0).
(C2) There exists a constant L with

0<L< (ai((f)?ql_)u(/ol a(t)dt)_l(/ol a(t)k(t)dt)2_q

such that
(3.5) |f(t,u) — f(t,v)| < Llu — |, for any ¢ € [0,1] and u,v € [0, 0).
Then the boundary value problem (1.1) and (1.2) has a unique solution.
Proof. By (3.4), for ¢t € [0, 1], we get

/wwmmmws/awwmww
0 0
S/O a(s)k(s)ds = M.
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From (ii) in Lemma 7 and (3.5), for any u,v € B, we have

/ s [t
- [ e [ atmsioter)as
[ K <</>q ([ st atrar)
ol Sa(T)f(T,v(T))dT>>ds

| Au(t) — Av(t))|

< [ xs)eo [ atrrsrutmnar)
—goq(/os a(r)f(7’,v(7))d7‘> ds
< [ K- v ( | a|struto
—f(T,v(T))‘dT>ds
< Lju—oll(g— 1>Mq2< / 1 a(T)dT> ( / 1 @(s)ds>
= Liflu—sl,

where

Ly = L(q— 1)M~2 (/01 a(T)dT> (/01 (I)(s)ds)

_ Lg-1)MI2(a+1) !
= Tat D /0 a(T)dr.

By definition of L, we have 0 < L; < 1. Then
[ Au — Av|| < Ly|ju — v||.

By virtue of Theorem 3, it follows that there exists a unique fixed point for the
operator A, which corresponds to the unique solution for problem (1.1) and (1.2).
([l

Theorem 9. Assume that (H1)-(H2) hold, and p > 2. In addition, we assume that
there exist constants > 0,0 < o < ﬁ such that

(3.6) a(t) f(t,u) > pot® ", for any (t,u) € (0,1] x [0, 00),
and

(3.7) |f(t,u) — f(t,v)] < k|lu — |, for any ¢ € [0,1] and u,v € [0, c0),
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where

(O’(Q72)+OZ)F(O£71) 1a7' .
0<k<(q—1)uq—2(a(q—2)+a+1)‘B(a—La(q—2)+1)(/0 ()d>

Then the boundary value problem (1.1) and (1.2) has a unique solution.

-1

Proof. By (3.6), we get

/0 a(s)f(s,u(s))ds > pt®, for any (t,u) € [0, 1] x [0, 00).

By (i) in Lemma 7 and (3.7), for any u,v € B, we have

[ ki) (@( [ atnrstautmar)
el [ a(T)f(T,v(T))dT»ds
[ e [ atrrsrutryar )
—eu( [ atrpratoyr)

/ ) — 1) (s ( / “a(m)| 7 u(r)

[Au(t) — Av(t)] =

IN

ds

IN

—f(T,’U(T))‘dT) ds

IN

(a = 1) kllu — ||

([
(¢ = Dp*?kllu— v (/0 a(q—)d7>
([ )

IN

+H(s, s)]s"(q’Q)ds
= (¢ 1)p" ?k|lu— |

%(Q,J(Q72)+1)
8 () T(a—1)
_ le=Dpk(olg =2 +atl) (ot
- ey (] )
xB(a—1,0(q—2)+1)[Ju—|
= Llju—vl,

where

(g = Du'%k(o(g —2) +a+1

— ) 1
b (O—(q72)+a)r(a71) </0 a(T)dT>%(0é—1,0'(q—2)+1).
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By definition of k, we have 0 < L < 1. Then
[Au — Av|| < Lilu — v]|.
This implies that A : B — B is a contraction mapping. By Theorem 3, we get
that A has a unique fixed point in B, which is a solution of the problem (1.1) and
(1.2). O
4. EXAMPLES

Example 4.1. Consider the nonlinear boundary value problem

)l + ite'In(u+1) =0, t € (0,1),
0) = u"(0) = 0, u(l) + /(1) = u'(n),

tln(u+ 1), a(t) =€, a =2, p=3n¢€(0,1), and then
0,00)). By taking v = 1, we obtain

(4.1) v3

where f(t,u) =
g=3, feC([o,1

L= max{f(t,u)/ £ € 0,1 u € [0,1]) = £ n(2)

1 1
Lq1<»0q</ a(T)dT) / D(s)ds = 0.372 < v =1.
0 0

By means of Theorem 7, the boundary value problem (4.1) has at least one positive
solution.

and

Example 4.2. As a second example we consider the following boundary value
problem

(4.2)

where f(t,u) = e tsin’u, a(t) =t, a = 1—;’, p= %,77 €(0,1), and theng=3, f €
C([0,1] x [0,00), [0, 0)).
Taking the nonnegative function k(t) = e, then k € C[0,1] and f(t,u) < k(t).
Choosing L = 2, for any t € [0,1] and u,v € [0,00), we have
|f(t,u) — f(t,v)| = e !|sin? u — sin® v|

< 2lu — |

= Llu — v|,
and

T(a+1) 1 !
(oz+1)(q1)</0 a(t)dt> (/0 a(t)k(t)dt)

2—q

18F<153> (1—2eH)7"

3.90744
> 2=1L.

Q

From Theorem 8, the boundary value problem (4.2) has a unique solution.
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Example 4.3. Let the following boundary value problem

(4.3) ( %(D%“(t)))/+ﬁtﬁ(348+\/ﬂ+t) —0, te(0,1),
D 0) = u”(0) = 0, u(1) +u'(1) = u'(3),

where f(t,u) = 555348 + Vu + t),a(t) = 3tvt,a = 3,p = L,n = 3, and then
q= %, f€C([0,1] x [0,00),[0,00)). By a simple computation, we obtain

A= <30q</01a(7')d7> /01q><s)ds>
(

Ay = (fy/op@(s)goq(/osa(ﬂdr)ds)

Choosing My = Ay, My = Ay, p1 = ﬁ and py = 1. With the use of the

Mathematica software, we easy to check that Map; = 11\720 < Mipy = 152‘5{77 for all

5 /15,5
‘51]. By a simple computation, we obtain M} = 225157678“ ~ 0.87855, and

-

< 0.86233 for all p € [%7 g] Again, we see that f satisfies the following

pe|

(35)

[
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relations:
348 + Ju+t 5
ft,u) =0 < 0.875 < ¢z (Mip2) = M? ~0.87855,¢ € [0,1],u € [0, 1],
348 4+ Vu+t My 5 voo1
=Y >0. = (== L.
f(t,w) 00 2 087> ez (Map) (120) te0plue o5 g

So, all the assumptions of Theorem 5 are satisfied. With the use of Theorem 5, the
fractional boundary value problem (4.3) has at least one positive solution u such

that 135 < ||ul < 1.
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