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Introduction

This paper studies the relationship between the equation in convolutions of the
2nd kind on a �nite interval (which is also called the truncated Wiener�Hopf
equation) and the factorization problem (which is also called the Riemann�Hilbert
boundary value problem or the Riemann boundary value problem). In works [1]�
[2], we proposed a new approach to solving the Riemann boundary problem in the
Wiener algebra of order 2. This approach (method) ì the Riemann problem to the
truncated Wiener�Hopf equation. In this article, the method is further developed.
Here in the factorization problem, we study the matrix function of a su�ciently
general form with an arbitrary total index and �nd more general formulas of
relationship between solutions of the factorization problem and the corresponding
truncated Wiener�Hopf equation. Moreover, new results are obtained in the theory
of equations in convolutions on the basis of the established relationship between the
considered problems.

It is well known that to study the truncated Wiener�Hopf equation, boundary
value problems for analytical functions of Riemann type (for the history of the
question, see [3]) are applied, however, the results of such application are only
obtained for some special classes of kernels of integral operator of the convolution
(see [4]�[7]). On the other hand, it is well known that the factorization problem
can be reduced to the Fredholm integral equation or singular integral equation
with Cauchy kernel (for the historical information, see [8]�[11]). Along the way,
classical results in the boundary value problem theory for analytical functions have
been obtained. However, in the general case these integral equations did not turn
out to be less complex than the original boundary value problems. Although the
truncated Wiener�Hopf equation is one of the most studied among the Fredholm
integral equations of second kind, the question of solving the factorization problem
with the help of this equation was not studied prior to works [1]�[2].

Before turning to the exact formulations of the studied problems, recall the
notion of a Wiener algebra. For integer 2 ≥ n, l ≥ 1, we suppose that Ln×l is a
space of n × l matrix functions with elements from L1(R), Ff is a Fourier image
of the matrix function f ∈ Ln×l:

Ff(x) =

∞∫
−∞

f(t)eixt dt, x ∈ R,

where R is the extended real line (R is the real line); Wn×n is a Wiener algebra of
continuous matrix functions of the form C + Ff , where C is a constant matrix of
order n and f ∈ Ln×n;Wn×n

+ (Wn×n
− ) is a subalgebra inWn×n, consisting of matrix

functions of the form C + Ff , such that f(t) = 0 when t < 0 (when t > 0). We
denote by Wn×1, Wn×1

± the groups consisting of column vectors of matrix functions

from the algebras Wn×n, Wn×n
± respectively.

If A is some algebra, then we denote by GA the group of invertible elements in
A. When n = 1, we will drop the superscript n× n for W.

Consider the factorization problem on the extended line R, on which it is required
to �nd the vector functions Φ± ∈ W2×1

± (given the restriction Φ+
2 (∞) = 0) by the

boundary condition:

Φ+(x) = G(x) Φ−(x), x ∈ R, (0.1)



SOME QUESTIONS ON THE RELATIONSHIP OF THE FACTORIZATION PROBLEM 1617

where

G(x) =

(
1 + g11(x) g12(x)
g21(x) 1 + g22(x)

)
∈ GW2×2,

(0.2)

gjl ∈W, gjl(∞) = 0, j, l = 1, 2.

When speaking of a solution of factorization problem (0.1)�(0.2), we mean a non-
trivial solution.

We will provide the fundamental result of the theory of matrix function factoriza-
tion in the Wiener algebra of order 2 (see, for example, [8, Ch. 6], [9], [10, §7]).

Theorem 1. Let G ∈ GW2×2. Then the matrix G(x) admits standard (left) factori-
zation, that is, it can be represented in the form of the following matrix product:

G(x) = G+(x)D(x)G−(x), x ∈ R, (0.3)

where G± ∈ GW2×2
± (G± are multiplier factors), D(x) is a diagonal matrix function,

D(x) =
{(x− i

x+ i

)κ1

,

(
x− i
x+ i

)κ2}
,

κ1 ≥ κ2 are partial indices of the matrix G (integers),

κ := Inddet G(t) ≡ 1

2π
∆R arg det G(t) = κ1 + κ2

is the total index of the matrix G.

If κj = 0, j = 1, 2, then the standard factorization (0.3) is said to be canonical.
The factorization problem is one of the mostly sought after among the problems

of complex analysis due to its broad application in di�erent areas of mathematics
and natural science. To date, the factorization problem (of the Riemann problem)
is far from over. The main unsolved results in the factorization problem theory
include the problem of �nding (calculating) the invariants of the problem � the
private indices of the matrix G(x) and the problem of constructing (calculating)
the elements of the matrix functions G±(x) in the decomposition (0.3).

Now consider the equation in convolutions of second kind on the �nite interval
(0, τ), to which we will reduce factorization problem (0.1)�(0.2):

u(t)−
τ∫

0

k(t− s)u(s) ds = f(t), t ∈ (0, τ), (0.4)

where
k ∈ L1(R), f ∈ L1(0, τ), τ > 0. (0.5)

It is easy to see that the values of the function k(t) outside the interval (−τ, τ) do
not in�uence the solution of equation (0.4) (we will search for the latter in L1(0, τ)).

§1. Preliminary statements, additional constructions and assumptions

Given C=0, we will supply the corresponding algebras, subalgebras, and groups
with the subscript 0 (Wn×l

0 , Wn×l
0± , l ∈ {1, n}). On the algebra W0, we de�ne the

projectors P+
0 and P−0 that are complementary to each other by the formulas

P±0 : W0 → W0±, P
±
0 Fg(x) =

∞∫
−∞

eixtg(t)θ(±t) dt, x ∈ R,
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where θ is a Heaviside step function.
Note the following properties of the linear operators P±0 :

P+
0 + P−0 = I, F−1{P±0 Fg(x)}(t) = g(t)θ(±t), t ∈ R,

where I is a unit operator, F−1 is the inverse Fourier transform.
We will list the restrictions on the elements of the matrix G in (0.2). In the work,

we will assume the existence of the parameter τ ∈ (0,∞), such that

g11(x) =

τ∫
−τ

µ11(t)eixt dt, g12(x) =

τ∫
−∞

µ12(t)eixt dt,

(1.1)

g21(x) =

∞∫
−τ

µ21(t)eixt dt
(
g22(x) =

∞∫
−∞

µ22(t)eixt dt
)
,

where µjl ∈ L1(R), j, l = 1, 2.
It is easy to see that, given τ = ∞, the matrix C G(x) has a general form in the
group of all non-special matrix functions from the Wiener algebra W2×2, where C
is a constant non-special matrix of order 2.

The �rst condition in (0.2) implies that the determinant of the matrix G(x)
admits e�ective factorization (see, for example, [8, § 38]):

det G(x) = d+G(x) pκd−G(x), x ∈ R,
where

d±G ∈ GW±, d
±
G(∞) = 1, p =

x− i
x+ i

.

We have the following

Lemma 1. The solution of factorization problem (0.1)�(0.2) under restriction (1.1)
possesses the following property:

P+
0 {e−ixτ

(
Φ+

1 (x)− C1

)
} = 0, P−0 {eixτpκ0d−G(x)Φ−2 (x)} = 0, (1.2)

where

x ∈ R, C1 = Φ±1 (∞); κ0 = κ for κ ≥ 0, κ0 = 0 for κ < 0.

Proof. From (0.1), given x =∞, we obtain

Φ+
1 (∞) = Φ−1 (∞) = C1, Φ+

2 (∞) = Φ−2 (∞) = C2 = 0.

We will de�ne the linear projector operators P± on the functions e±ixτ by the
formulas:

P±{e±ixτ} = e±ixτ , P±{e∓ixτ} = 0.

For functions from the algebra W0, we assume that on such the operators P± and
P±0 are identically equal respectively, in other words,

P±F (x) = P±0 F (x), F ∈W0.

Multiplying left and right-hand sides of the �rst equality from system of equalities
(0.1) by the multiplier e−ixτ and applying the operator P+ to the obtained equality
(to its left and right-hand sides), taking into account (1.1) and the properties of
the operators P± and P±0 , we obtain the �rst equality in (1.2) due to the fact that

P+{e−ixτg1l(x)} = P+
0 {e−ixτg1l(x)} = 0, l = 1, 2,
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by the condition of Lemma 1.
It remains to prove that the second equality in (1.2) holds. Multiplying on the

left the left and right-hand sides of boundary condition (0.1) by the multiplier
eixτ pκ0d−G(x)G−1, where

G−1(x) =
p−κ

d+G(x) d−G(x)

(
1 + g22(x) −g12(x)
−g21(x) 1 + g11(x)

)
, (1.3)

we obtain

eixτ pκ0d−G(x)G−1(x) Φ+(x) = eixτ pκ0d−G(x) Φ−(x), x ∈ R. (1.4)

We apply the operator P− to the left and right-hand sides of the second equality of
system of equalities (1.4), taking into account (1.1), the properties of the projecting
operators P− and P−0 and the following obvious inclusions

eixτgj1 ∈W0+ (j = 1, 2),

we obtain the second equality in (1.2). �

From Lemma 1, it follows that the functions Φ+
1 and Φ−2 have the following

general form:

Φ+
1 (x) =

τ∫
0

α1(t)eixt dt+ C1, Φ−2 (x) =
p−κ0

d−G(x)

0∫
−τ

α2(t)eixt dt,

where α1 ∈ L1(0, τ), α2 ∈ L1(−τ, 0).
Now consider the transform of the Riemann problem (0.1)�(0.2),(1.1). It is easy

to see that the boundary condition (0.1) can be written in the following equivalent
form:

Ψ+(x) = Mτ (x) Φ−(x), x ∈ R, (1.5)

where

Mτ (x) =

(
1 + g11(x) g12(x) + eixτ pκ0d−G(x)
g21(x) 1 + g22(x)

)
, (1.6)

Ψ+
1 (x) = Φ+

1 (x) + eixτpκ0 d−G(x) Φ−2 (x) ∈W+, Ψ+
2 (x) = Φ+

2 (x). (1.7)

We put

w−τ (x) := d−G(x) + e−ixτ p−κ0g12(x), w+
τ (x) := d+G(x)− eixτpκ0−κg21(x). (1.8)

From (1.8), (1.6), and (1.1), it follows that

w±τ ∈W±, det Mτ (x) = d−G(x)pκ w+
τ (x).

We will assume that

w±τ (x) 6= 0, x ∈ R. (1.9)

Note that the case when condition (1.9) is not ful�lled is considered in [2, inequality
(1.19)].

By the uniqueness theorem for analytical functions, the number of zeros of the
functions w±τ (z) on the semiplanes ± Im z > 0, respectively, is �nite. We denote by
z±j (j = 1, ..., J±) the zeros of the functions w±τ (z) on the semiplanes ± Im z > 0
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respectively. Consider two following rational functions with poles at the points
z+j , j = 1, ..., J+ and z−j , j = 1, ..., J−, respectively:

Q±(x) :=

J∓∑
j=1

n∓
j∑

l=1

c∓lj(x− z
∓
j )−l, (Q± = 0, J∓ = 0), (1.10)

where n∓j is multiplicity of the z∓j � th zero, c∓lj (l = 1, ..., n∓j , j = 1, ..., J∓) are
some constants de�ned by the inclusions:

Φ+
2

w+
τ
−Q− ∈W0+,

Φ−1 − C1

w−τ
−Q+ ∈W0−, (1.11)

where Φ± is the solution (assuming its existence) of factorization problem (0.1)�
(0.2) under restrictions (1.1), (1.9). By the condition, Φ+

2 (z),Φ−1 (z) are regular
analytic functions on the semiplanes± Im z > 0 respectively, therefore, the constants
c∓lj (l = 1, ..., n∓j , j = 1, ..., J∓) can be de�ned from (1.11) by the Laurent theorem
on decomposition of an analytic function in the neighbourhood of its poles.

§2. The method of reducing factorization problem (0.1)�(0.2)
to truncated Wiener�Hopf equation (0.5)

We set

k̂(x) := 1− p−κ 1 + g22(x)

w+
τ (x)w−τ (x)

. (2.1)

From (2.1) and (1.9), by Wiener theorem we have k̂ ∈ W0, since k̂(∞) = 0.
Therefore,

k(t) := F−1{k̂(x)}(t) ∈ L1(R). (2.2)

The factorization problem (0.1)�(0.2) with restrictions (1.1) and (1.9) will be
associated with the Wiener�Hopf equation (0.4) with condition (0.5). We will de�ne
the right-hand side of the equation by the formulas:

f(t) = F−1{f̂(x)}(t), t ∈ (0, τ), f(t) = 0, t /∈ (0, τ), (2.3)

where

f̂(x) = C1

(
k̂(x) + e−ixτg12(x)

p−k0

w−τ (x)

)
+d−G(x)Q+(x)− eixτQ−(x) ∈W0. (2.4)

The following theorem on the relationship of factorization problem (0.1)�(0.2)
and truncated Wiener�Hopf equation (0.4) holds.

Theorem 2. Suppose that for factorization problem (0.1)�(0.2), restrictions (1.1),
(1.9) hold, and for the coe�cients (k and f) of the equation in convolutions (0.4),
equalities (2.1)�(2.4) hold.

Then given κ ≥ 0, the solution of the equation in convolutions (0.4) exists, as
well as the solution of factorization problem (0.1)�(0.2), and can be expressed in
terms of the solution of the factorization problem by the formula:

u(t) = F−1{Φ+
1 (x)− C1 + eixτpκ0d−G(x)Φ−2 (x)}(t), t ∈ (0, τ). (2.5)

If κ < 0 and the solution of factorization problem (0.1)�(0.2) exists, then the
solution of the equation in convolutions (0.4) also exists, the latter is expressed
in terms of the solution of the factorization problem by formula (2.5).
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Proof. Assume that the solution of factorization problem (0.1)�(0.2) exists.
Multiplying on the left the left and right-hand sides of system (1.5) by the matrix

M−1τ , we obtain

p−κ

w+
τ (x)d−G(x)

(
1 + g22(x) −g12(x)− eixτpκ0d−G(x)
−g21(x) 1 + g11(x)

)
Ψ+(x) = Φ−(x). (2.6)

Dividing the left and right-hand sides of the �rst equality from system (2.6) by
w−τ /d

−
G, taking into account the equalities

w−τ (x)eixτ = p−κ0g12(x) + eixτd−G(x), Ψ+
2 = Φ+

2 ,

we have

p−κ
(1 + g22(x))Ψ+

1 (x)

w+
τ (x)w−τ (x)

− Φ+
2 (x)

w+
τ (x)

eixτ = d−G(x)
Φ−1 (x)

w−τ (x)
.

Taking into account formula (2.1) and the inclusions in (1.11), we write the obtained
equality in the following equivalent form:(

1−Fk(x)
)(

Ψ+
1 (x)− C1

)
+
(Φ+

2 (x)

w+
τ (x)

−Q−(x)
)
eixτ+

C1

(
1−Fk(x)

)
+ eixτQ−(x) =

= d−G(x)
(Φ−1 (x)− C1

w−τ (x)
−Q+(x)

)
+ C1

d−G(x)

w−τ (x)
+ d−G(x)Q+(x). (2.7)

Now consider the expression Ψ+
1 (x) − C1. From the �rst equality in (1.7) and

Lemma 1, we have

Ψ+
1 (x)− C1 ∈W0+, e

−ixτ(Ψ+
1 (x)− C1

)
∈W0−.

Therefore, there exists a function u ∈ L1(R), u(t) = 0, t /∈ (0, τ), such that

Fu(x) = Ψ+
1 (x)− C1. (2.8)

Now we return to equation (2.7). From (2.7), taking into account (2.8) and (2.4),
we obtain (

1−Fk(x)Fu(x) +
(Φ+

2 (x)

w+
τ (x)

−Q−(x)
)
eixτ =

= d−G(x)
(Φ−1 (x)− C1

w−τ (x)
−Q+(x)

)
+ f̂(x). (2.9)

Left and right-hand sides of equality (2.9) belong to the algebraW0 by construction.
Applying to the left and right-hand sides of equality (2.9) the inverse Fourier
transform, we obtain the required integral equation (0.4) due to the fact that

F−1
{(Φ+

2 (x)

w+
τ (x)

−Q−(x)
)
eixτ

}
= 0, t < τ,

F−1
{
d−G(x)

(Φ−1 (x)− C1

w−τ (x)
−Q+(x)

)}
(t) = 0, t > 0,

F−1
{(

1−Fk(x)
)
Fu(x)

}
(t) =

= u(t)−
∫ τ

0

k(t− s)u(s) ds, t ∈ R.

To complete the proof of the theorem 2, we will prove the following lemma.
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Lemma 2. Suppose that the total index is κ ≥ 0, then a non-trivial solution to
Riemann problem (0.1)�(0.2) certainly exists.

If Φ+
1 (∞) = 0, then the dimension of the solution space of Riemann problem

(0.1)�(0.2) equals q = κ1 for κ2 ≤ 0, q = κ1 + κ2 for κ2 > 0. In this case, the
problem only has a trivial solution when κ1 = κ2 = 0.

Proof. Indeed, we multiply on the left the left and right-hand sides of boundary
condition (0.1) by G−1+ and, taking into account (0.3), we obtain

G−1+ (x)Φ+(x) = {pκ1 , pκ2}G−(x) Φ−(x), x ∈ R, (2.10)

where κ1 + κ2 ≥ 0, κ2 ≤ κ1 ≥ 0 by condition.
The left-hand (right-hand) side of equation (2.10) is an analytic function on the
upper (lower) semiplane and is continuous up to the boundary. Then from equation
(2.10) by (generalized) Liouville's theorem, we obtain the following chain of equalities
to solve the problem:

G−1+ (x)Φ+(x) =
(
Q+

1 (x), Q+
2 (x)

)T
= {pκ1 , pκ2}G−(x) Φ−(x), (2.11)

where Q+
j (j = 1, 2) are rational functions. Moreover,

Q+
1 (x) = (x+ i)−κ1Pκ1

(x),

(2.12)

Q+
2 (x) = (x+ i)−κ2Pκ2

(x) given κ2 ≥ 0, Q+
2 (x) = 0 given κ2 < 0,

where Pm is a polynomial of degree at most m with arbitrary coe�cients.
From (2.12), it follows that

Q+
1 (∞) = c1; Q+

2 (∞) = c2 given κ2 > 0, Q+
2 (∞) = 0 given κ2 < 0, (2.13)

where cj are arbitrary constants, j = 1, 2.
From the �rst equation of the chain of equations (2.11), given x =∞ and condition
(2.13), follows the existence of constants c1, c2

(
for any matrix G+(∞)

)
, such that

Φ+
1 (∞) = 0. The �rst part of Lemma 2 is proved, and its second part follows from

the chain of equalities (2.11), and is a well-known result (see, for example, [8, Ch.
6]). �

Thus the theorem 2 is proved.
�

It is easy to see that

f(t) = C1k(t), t ∈ (0, τ)

given that the condition

|w±τ (z)| > 0, ±Im z ≥ 0 (2.14)

is ful�lled. Indeed, from (2.14) by de�nition of functions Q±, we have Q± = 0.
Then, applying to the left and right-hand sides of equality (2.4) the projector P+

0 ,
we obtain

P+
0 {f̂(x)} = C1P

+
0 {k̂(x)},

since

e−ixτg12(x)
p−k0

w−τ (x)
∈W0−.

Note that Theorem 2, in fact, contains the method of reducing factorization
problem (0.1)�(0.2) to truncated Wiener�Hopf equation (0.4).
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§3. Applying Theorem 2 to the study of equation (0.4)

We set

k(t) := 0, t /∈ (−τ, τ), k±(t) := θ(±t)k(t), t ∈ R, Λ±(x) := 1−Fk±(x).

Consider the case when

f(t) = C1 k(t), t ∈ (0, τ), C1 ∈ {1, 0}. (3.1)

We have the following

Theorem 3. Suppose that condition (3.1) is ful�lled and

Λ±(x) 6= 0, x ∈ R, IndΛ±(x) = 0. (3.2)

Then at least one of two following statements holds:
(i) given C1 = 1, equation (0.4) is unconditionally solvable in L1(0, τ);
(ii) given C1 = 0, equation (0.4) has a non-trivial solution in L1(0, τ).

Proof. With the integral equation (0.4) we associate the factorization problem
(0.1)�(0.2), where

G(x) =

(
1 eixτm−(x)

e−ixτm+(x) 1 +m+(x)m−(x)

)
, m± ∈W0±. (3.3)

We set

m+(x) := −Fk+(x)

Λ+(x)
, m−(x) :=

Fk−(x)

Λ−(x)
,

and, taking into account (3.2), directly obtain

1

1−m+(x)
= Λ+(x) ∈ GW+,

1

1 +m−(x)
= Λ−(x) ∈ GW−. (3.4)

We check that the conditions of Theorem 2 are ful�lled. From (3.3)�(3.4), we have

det G(x) = 1, d±G(x) = 1, κ = 0,

g22(x) = −Fk+(x)Fk−(x)

Λ+(x)Λ−(x)
, w±τ (x) =

1

Λ±(x)
∈ GW±. (3.5)

Then from (2.1) and (2.5), taking into account (3.5), we obtain respectively:

k̂(x) = Fk−(x) + Fk+(x), f̂(x) = C1

(
Fk+(x) + Fk−(x)

)
. (3.6)

From (3.1)�(3.6), it follows that all conditions of Theorem 2 are satis�ed. By
Theorem 2 and Lemma 2, given κ2 6= 0, we obtain that statements (i),(ii) from
Theorem 3 hold, given κ1 = κ2 = 0, the homogeneous equation (0.4) (when C1 = 0)
only has a trivial solution, therefore, only statement (i) of Theorem 3 holds. �

Note that given

||k±||L1
< 1,

condition (3.2) (the condition of Theorem 3) will be apriori ful�lled.
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