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Abstract. The gas dynamics equations with pressure being of the
sum of density and entropy functions are considered. The admissible
group of transformations is expanded due to the pressure translation.
The Lie algebra corresponding to the group is 12-dimensional. Invariant
submodels of rank 1 generated by 3-dimensional 4-parameter subalge-
bras consisting of all translations in space and pressure translation are
constructed. Three families of exact solutions are found which describe
the motion of particles with a linear velocity �eld with inhomogeneous
deformation. The moment of time of the presence or absence of collapse
of particles for each family of solutions are found. In a particular case,
the trajectories of particles motion are constructed. The volume of par-
ticles at the initial moment of time restricted by the sphere is isolated.
It is proved that at any other time moments the volume turns into an
ellipsoid and the particles volume value does not change with time.
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1. Introduction

The expediency of studying the equations of continuum mechanics by means of
group analysis was substantiated in the work of outstanding scientist L.V. Ovsyan-
nikov ¾The �podmodeli� program. Gas dynamics¿ [1]. The gas dynamics equations
are considered within the framework of this program

(1) D~u+ ρ−1∇p = 0, Dρ+ ρdiv~u = 0, Dp+ ρfρdiv~u = 0,

where D = ∂t + (~u · ∇) is the total di�erentiation operator; t is the time; ∇ = ∂~x
is the gradient by spatial independent variables ~x; ~u is the velocity vector; ρ is the
density; p is the pressure. In the Cartesian coordinate system we have

~x = x~i+ y~j + z~k, ∇ =~i∂x +~j∂y + ~k∂z, ~u = u~i+ v~j + w~k,

where ~i, ~j, ~k is an orthonormal basis.
It is known that the system (1) with a general equation of state

p = f(ρ, S)

admits an 11-dimensional Lie algebra L11. The equations of state for which an
extension of the 11-dimensional Lie algebra occurs were listed in [1]. All non-
isomorphic Lie algebras of the group classi�cation according to the equation of
state were given in [2], for each of which the method of enumerating nonsimilar
subalgebras was �nally formulated in [3]. Invariant submodels of rank 3, 1 [4, 5],
and 2 [6, 7] were constructed for an 11-dimensional Lie algebra.

In this article we consider the system (1) with the special equation of state [1]

(2) p = f(ρ) + h(S), f = ρ2F ′(ρ).

In this case , the thermodynamic parameters of the ideal medium of speci�c internal
energy and temperature are given by the formulas

ε = F (ρ)− ρ−1h(S) + g(S), T = g′(S)− ρ−1h′(S).

The system (1), (2) admits an equivalence transformation for the function h(S).

Let the transformation act so that S̃ = h(S). For the inverse function S = h̃(S̃)
the following formulas are valid

S̃ = h(h̃(S̃)), T (ρ, S) = T (ρ, h̃(S̃)) = T̃ (ρ, S̃),

ε(ρ, S) = ε(ρ, h̃(S̃)) = ε̃(ρ, S̃), g(S) = g̃(S̃),

p(ρ, S) = p(ρ, h̃(S̃)) = p̃(ρ, S̃).

We obtain the equations of state

p̃ = f(ρ) + S̃, ε̃ = F (ρ)− ρ−1S̃ + g̃(S̃), T̃ =
g̃′(S̃)

h̃′(S̃)
− 1

ρh̃′(S̃)
.

The entropy S is determined from the equality (2). The last equation of the
system (1) can be replaced by an equation for entropy

DS = 0.
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The equations (1) with a general equation of state are invariant under the action
of the Galilean group extended by uniform dilatation [4]:

(3)

1o. ~x ∗ = ~x+ ~a (space translations),
2o. t∗ = t+ a0 (time translation),
3o. ~x ∗ = O~x, ~u ∗ = O~u,OOT = E,detO = 1 (rotations),

4o. ~x ∗ = ~x+ t~b, ~u ∗ = ~u+~b (Galilean translations),
5o. t∗ = ct, ~x ∗ = c~x (uniform dilatation).

The system (1), (2) is also invariant under the action of the pressure translation [4]:

(4) 6o. p∗ = p+ p0.

Each solution of the system (1), (2) up to transformations (3), (4) is a solution
again. Therefore, in what follows, the solutions are considered up to the transfor-
mations (3), (4).

The 12-dimensional Lie algebra L12 corresponds to the transformation group
(3), (4). The basis operators of L12 in the Cartesian coordinate system have the
form [1]

X1 = ∂x, X2 = ∂y, X3 = ∂z,

X4 = t∂x + ∂u, X5 = t∂y + ∂v, X6 = t∂z + ∂w,

X7 = y∂z − z∂y + v∂w − w∂v, X8 = z∂x − x∂z + w∂u − u∂w,

X9 = x∂y − y∂x + u∂v − v∂u, X10 = ∂t,

X11 = t∂t + x∂x + y∂y + z∂z, Y1 = ∂p.

All subalgebras of the Lie algebra L12 up to internal automorphisms were listed
in the optimal system of nonsimilar subalgebras in [8]. Using one-dimensional, two-
dimensional and three-dimensional subalgebras, it is possible to construct invariant
submodels of the system (1), (2) of rank 3, 2, 1, respectively. The rank of the
submodel is the number of independent variables. Two two-dimensional subalgebras
of the Lie algebra L12 de�ne partially invariant submodels of rank 3 of defect 1.
Their reduction to invariant submodels was proved in [9]. Invariant submodels of
rank 2 in canonical form for the remaining two-dimensional subalgebras of the Lie
algebra L12 were constructed in [10, 11]. An example of a description of particles
motion for solution from invariant submodel of rank 2 is given in [12]. Invariant
submodels of rank 1 are constructed from 3-dimensional subalgebras 3.N of Lie
algebra L12, where N is the number of the subalgebra.

For two rank 1 submodels constructed from 3-dimensional subalgebras 3.42 (a 6=
0, b = 0) and 3.47 from L12, exact solutions were obtained [13].

Invariant submodels of rank 1 were constructed in [14, 15] for the gas dynamics
equations with the equation of state with the density separated into a product. In
the case of a polytropic gas, the invariants of three-dimensional subalgebras were
calculated and the submodels were classi�ed [16], 37 of which were investigated
in [17], and 95 invariant submodels were considered in [18]. For gas dynamics
equations with the equation of state in the form of pressure being equal to the
sum of the power density function and the entropy function, invariant submodels of
rank 1 were classi�ed in [19]. In the case of a monatomic gas, all three-dimensional
subalgebras containing the projective operator were considered in [20, 21]. For 9
of them, invariant submodels of rank 1 were constructed, which are systems of
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ordinary di�erential equations. For the remaining 3 subalgebras, regular partially
invariant submodels were constructed and their compatibility was investigated.

This article is devoted to the study of invariant submodels of rank 1 constructed
from a three-dimensional 4-parameter subalgebra 3.30 of the Lie algebra L12 [8],
containing all translations in space and pressure translation. Submodels de�ne solu-
tions with a linear velocity �eld with inhomogeneous deformation. In [22] submod-
els of particles motion with a linear velocity �eld, including with a time-dependent
density, were written, but explicit representation of solutions wasn't obtained.

2. Invariant submodel of rank 1 for the subalgebra 3.30

The basis operators of the subalgebra 3.30 [8] in the Cartesian coordinate system
t, x, y, z, u, v, w have the form

(5)

aX1 +X2 = a∂x + ∂y, X3 +X4 = t∂x + ∂z + ∂u,

Y1 + bX1 + cX3 + dX5 + eX6 =

= ∂p + b∂x + dt∂y + (et+ c)∂z + d∂v + e∂w,

b2 + c2 + d2 + e2 = 1.

Invariants are functions that are vanished by the action of subalgebra operators [23].
The invariants of the subalgebra 3.30 (5) for b2 + e2 + (ad+ c)2 6= 0 are as follows

(6)
t, u+

(et+ c)(x− ay) + (adt− b)z
b− t(et+ ad+ c)

, v +
d(x− ay − tz)

t(et+ ad+ c)− b
,

w +
e(x− ay − tz)

t(et+ ad+ c)− b
, ρ, p+

x− ay − tz
t(et+ ad+ c)− b

.

The representation of the invariant solution is chosen as follows. Invariants (6)
containing gas-dynamic functions are assigned new functions depending on the in-
variant of the independent variable. In the representation of the solution, the
coe�cient γ is introduced to distinguish the submodel from the well-known sub-
model of the Lie algebra L11 [5] (γ = 1 in the case of L12 and γ = 0 in the case
of L11). Representation of an invariant solution with a linear velocity �eld and
inhomogeneous deformation has the form

(7)

u = u1(t) +
(c+ et)(x− ay) + (adt− b)z

t(et+ ad+ c)− b
,

v = v1(t) +
d(x− ay − tz)

b− t(et+ ad+ c)
,

w = w1(t) +
e(x− ay − tz)

b− t(et+ ad+ c)
, ρ = ρ(t),

p = p1(t) + γ
x− ay − tz

b− t(et+ ad+ c)
, S = S1(t) + γ

x− ay − tz
b− t(et+ ad+ c)

,

p1 = f(ρ) + S1.
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Substituting the solution representation (7) into the system (1), (2) leads to an
invariant submodel 3.30 of rank 1

(8)

u1t =
1

m
[(c+ et)(u1 − av1)−m− t(c+ et)w1 − γρ−1],

v1t =
1

m
[−d(u1 − av1) + dtw1 + aγρ−1],

w1t =
1

m
[−e(u1 − av1) + etw1 + γtρ−1],

ρt = −ρmt

m
,

S1t = − γ
m

[u1 − av1 − tw1], p1 = f(ρ) + S1,

where m = b− t(et+ ad+ c).
The motion of the particles is given by the equation [24]:

(9)
d~x

dt
= ~u(~x, t).

Integral curves of the equation (9) are the world lines of particles in space R4(t, ~x),
the projections of which in R3(~x) are trajectories of particles.

3. Solution from an invariant submodel of rank 1 for e 6= 0

The system (8) for e 6= 0 has the following integrals

(10)

ρ =
ρ0
m
, ev1 − dw1 =

γ

ρ0

(
aet− dt

2

2

)
+ C0,

eu1 + (et+ c)w1 =
γt

ρ0

(
ct

2
+

(
t2

3
− 1

)
e

)
+ cC1,

etu1 − aetv1 + bw1 =
γt2

2ρ0

(
b− e(a2 + 1)

)
+ C2.

With e = 0 from each formula from (10) with C0 = −dC1, C2 = bC1 we obtain the

integral w1 =
γt2

2ρ0
+C1. Using Galilean translations 4o from (3) with~b = (0, 0,−C1)

we obtain C0 = C1 = C2 = 0 in integrals (10).
Thus, from the representation of the solution (7) for e 6= 0, from the equation for

S1 from (8) and integrals (10) the exact solution of the system of equations (1), (2)
has the form

(11)

u = − 1

m
((c+ et)(x− ay) + (adt− b)z)−

− γt

6ρ0

[
t2 + 6 + t(c+ et)

K

m

]
,

v =
d

m
(x− ay − tz) +

γt

6ρ0

[
6a+

dtK

m

]
,

w =
e

m
(x− ay − tz) +

γt2

6ρ0

[
3 +

eK

m

]
,

S =
γ

m
(x− ay − tz)+

+
γ2

6ρ0e3

[
(ad+ c)2 + be+ 3e2(a2 + 1) +

e3t2K

m

]
,

ρ =
ρ0
m
, p = S + f(ρ),
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where K = t2 + 3(a2 + 1), in the expression for pressure the constant is vanished
using (4).

The density from the solution (11) has a singularity at two moments of time
t = t− and t = t+:

t± =
ad+ c±

√
(ad+ c)2 + 4eb

−2e
.

The formulas (11) for (ad+c)2 +4eb > 0 de�ne 3 solutions: for t < t− with collapse
of particles, for t− < t < t+ with source and collapse of particles and for t > t+
with source of particles. For (ad + c)2 + 4eb = 0 we have t− = t+. Consequently,
the formulas (11) specify 2 solutions for t < t− with collapse of particles and for
t > t− with source of particles. For (ad + c)2 + 4eb < 0 there is one solution for
any t, motion of particles doesn't have singularities.

4. Solution from an invariant submodel of rank 1 for e = 0, c+ ad 6= 0

The system (8) for e = 0, c+ ad 6= 0 has the following integrals

(12)

du1 + cv1 =
γt

ρ0

(
ac− d− dt2

6

)
− dtC1 + C3,

(b− t(ad+ c))(u1 − av1) = −bC1t−

− γ

ρ0

[
b

6
t3 + t(a2 + 1)

(
b− t

2
(ad+ c)

)]
+ C4,

ρ = ρ0(b− t(ad+ c))−1, w1 =
γt2

2ρ0
+ C1.

Using Galilean translations 4o from (3) with

~b =

(
−abC3 + cC4

b(c+ ad)
,
dC4 − bC3

b(c+ ad)
,−C1

)

we obtain C1 = C3 = C4 = 0 in the integrals (12). The exact solution of the
system of equations (1), (2) from the submodel 3.30 with e = 0, c + ad 6= 0 up to



INVARIANT SOLUTIONS OF THE GAS DYNAMICS EQUATIONS 1645

the transformation 6o from (4) has the form

(13)

u = −c(x− ay) + (adt− b)z
b− t(ad+ c)

+
γt

ρ0(c+ ad)
×

×
[
a

(
ac− d− dt2

6

)
− c

6

bt2 + (a2 + 1)(6b− 3t(ad+ c))

b− t(ad+ c)

]
,

v =
d

b− t(ad+ c)
(x− ay − tz) +

γt

ρ0(ad+ c)
×

×
[
d

6

bt2 + (a2 + 1)(6b− 3t(ad+ c))

b− t(ad+ c)
+ ac− d− dt2

6

]
,

w =
γt2

2ρ0
, ρ = ρ0(b− t(ad+ c))−1,

S =
γ

b− t(ad+ c)
(x− ay − tz)−

− γ2

6ρ0

[
t3

ad+ c
+

b

(ad+ c)2
t2 +

b2 + 3(ad+ c)2(a2 + 1)

(ad+ c)3
t−

−b
2(b2 + 3(ad+ c)2(a2 + 1))

(ad+ c)4(b− t(ad+ c))

]
,

p = S + f(ρ).

The density in (13) has a singularity at t = t0 =
b

ad+ c
. The formulas (13) specify

two solutions: for t < t0 with collapse of particles and for t > t0 with source of
particles.

The world lines of particles on the solution (13) are obtained by integrating (9)

(14)
x = − γt

2

2ρ0
+ (C3 − cC1) t+ aC2 + bC1,

y =
aγ

2ρ0
t2 + dC1t+ C2, z =

γ

6ρ0
t3 + C3,

where C1, C2, C3 are global Lagrangian coordinates. The Jacobian of the change
of variables (14) has the form

J = b− t(c+ ad).

Since the rank of the Jacobi matrix at the moment of collapse is 2, the manifold of
collapse of particles is the plane

x− ay − b

ad+ c
z = − γb2

2(ad+ c)2ρ0

[
1 + a2 +

b2

3(ad+ c)2

]
.

5. Solution on an invariant submodel of rank 1 for e = 0, c+ ad = 0

The integrals of the submodel 3.30 (8) for e = 0, c+ ad = 0 are as follows

(15)

ρ =
ρ0
b
, w1 =

γt2

2ρ0
+ C1,

u1 − av1 = − γt
3

6ρ0
− C1t−

γ

ρ0
(a2 + 1)t+ C5,

v1 =
γdt4

6bρ0
+
d

b

(
(a2 + 1)

γ

2ρ0
+ C1

)
t2 +

(
aγ

ρ0
− d

b
C5

)
t+ C6.
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Using Galilean translations 4o from (3) with ~b = (−C5−aC6,−C6,−C1) we obtain
C1 = C5 = C6 = 0 in the integrals (15).

The exact solution of the system of equations (1), (2) from the submodel 3.30
for e = 0, c+ ad = 0 up to the transformation (4) has the form

(16)

u =
1

b
(ad(x− ay)− (adt− b)z)+

+
γ

ρ0

[
ad

6b
t3 − 1

6
t2 +

ad

2b
(a2 + 1)t− 1

]
t,

v =
d

b
(x− ay − tz) +

γ

ρ0

[
d

6b
t3 +

d

2b
(a2 + 1)t+ a

]
t,

w =
γt2

2ρ0
, ρ =

ρ0
b
, S =

γ

b
(x− ay − tz) +

γ2t2

2bρ0

[
t2

3
+ a2 + 1

]
,

p = S + f(ρ).

The solution (16) is the solution with a linear velocity �eld with inhomogeneous
deformation and isochoric.

6. Trajectories of particles motion and the motion of particles

volume

The world lines of particles on the solution (16) are given by the formulas

(17)
x = − γt

2

2ρ0
+ C1t+ C2,

y = γ
at2

2ρ0
+
t

a
(C1 − C3) +

C2

a
− b

a2d
(C1 − C3), z = γ

t3

6ρ0
+ C3,

where C1, C2, C3 are global Lagrangian coordinates; C1 is the particle velocity
along x at t = 0; C3 is projection of a particle onto an axis z at t = 0; C2 is
projection of a particle onto an axis x at t = 0. The Jacobian of the change of
variables (17) is constant b/(a2d), therefore, there is no collapse of particles.

Proposition 1. The world lines of particles (17) do not intersect.

Proof. The world lines of particles (17) in vector form are as follows

~x = ~a(t) + Ω(t)~C, Ω =

∥∥∥∥∥∥
t 1 0

t/a− b/(a2d) 1/a b/(a2d)− t/a
0 0 1

∥∥∥∥∥∥ ,
~a =

−γt2/(2ρ0)
γat2/(2ρ0)
γt3/(6ρ0)

 , ~C =

C1

C2

C3

 ,

where Ω is the Jacobi matrix, |Ω| 6= 0,

Ω−1 =

∥∥∥∥∥∥
ad/b −a2d/b −adt/b+ 1

−adt/b+ 1 a2dt/b adt2/b− t
0 0 1

∥∥∥∥∥∥ .
Let for t = t0 the particles are at di�erent points in the space ~x1 and ~x2, ~x1 6= ~x2.
The coordinates of the points ~x1, ~x2 at the moment of time t = t0 have the form

~x1 = ~a(t0) + Ω(t0)~C1, ~x2 = ~a(t0) + Ω(t0)~C2,

from which follows
~Ci = Ω−1(t0)(~xi − a(t0)), i = 1, 2.
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World lines of particles passing at time t = t0 through points with coordinates ~x1
è ~x2, have the form

(18) ~xi(t) = ~a(t) + Ω(t)Ω−1(t0)(~xi − a(t0)), i = 1, 2.

Let the world lines of the particles (18) intersect at the time t = t1 6= t0, then the
following relation is valid

(19) Ω(t1)(Ω−1(t0)(~x1 − a(t0))) = Ω(t1)(Ω−1(t0)(~x2 − a(t0))).

Since |Ω| 6= 0 for any t, from (19) it follows that

~x1 = ~x2,

which contradicts the original assumption. This means that the world lines of the
particles (17) do not intersect. �

Let further b = d 6= 0, a = 1, ρ0 = 1/2, γ = 1. The initial conditions are as
follows x(0) = x0, y(0) = y0, z(0) = z0. The motion of particles is vortex, since
rot~u = (t, 1− t, 2). The trajectories (17) have the form

(20)
x = −t2 + (x0 − y0 + z0)t+ x0, y = t2 + (x0 − y0)t+ y0,

z =
t3

3
+ z0,

where x0, y0, z0 are local Lagrangian coordinates. The trajectories of motion of
particles (20) at t = 0 located on a square with a side of unit length are shown in
Figure 1.

Figure 1. A surface of trajectories of particles (20) for x0 = 1,
0 < y0 < 1, 0 < z0 < 1, t = 0..1.5

Let for t = 0 particles with trajectories (20) are on the sphere

(21) x20 + y20 + z20 = r2.

Proposition 2. For t > 0 the sphere (21) turns into an ellipsoid (Figure 2). Over
time, the value of the moving volume consisting of the same particles does not
change.
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Proof. On expressing x0, y0, z0 from (20) and substituting into the equation of the
sphere (21), we get a quadratic form specifying the location of particles for any
t. The invariants of the second-order surface [25] show that for t > 0 the location
of the particles is an ellipsoid. Since the Jacobian of the change of variables (20)
is equal to 1, over time, the value of the moving volume consisting of the same
particles does not change. �

Figure 2. The motion of the particles volume for r = 1, t =
0; 1.2; 1.5; 1.7; the curve is the location of centers of the ellipsoids
(20) for x0 = y0 = z0 = 0.

Calculations in the Maple 2018.2 computer mathematics system show that one
of the axes of the ellipsoid tends to zero (Figure 2).

7. Conclusion

In this work, for 4-parameter three-dimensional subalgebras consisting of all
translations in space and pressure translation 3.30 of a 12-dimensional Lie algebra
admitted by the gas dynamics equations with pressure being the sum of density and
entropy functions, invariants have been calculated, invariant submodels of rank 1
have been constructed, and three families of exact solutions have been obtained.
The solutions de�ne the motion of particles in a space with a linear velocity �eld
with inhomogeneous deformation. The �rst family of solutions have two moments
of time of density collapse. The second family of solutions has one moment of time
of collapse of particles onto a plane. The third family of solutions has no collapse,
the world lines of particles do not intersect. The spherical volume of the particles
isolated at the initial moment of time turns into an ellipsoid at subsequent moments
of time.
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