СИБИРСКИЕ ЭЛЕКТРОННЫЕ МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

Siberian Electronic Mathematical Reports

http://semr.math.nsc.ru

CHARACTERIZATION OF GROUPS $E_{6}(3)$ AND ${ }^{2} E_{6}(3)$ BY GRUENBERG-KEGEL GRAPH

A.P. KHRAMOVA, N.V. MASLOVA, V.V. PANSHIN, A.M. STAROLETOV

Abstract

The Gruenberg-Kegel graph (or the prime graph) $\Gamma(G)$ of a finite group G is defined as follows. The vertex set of $\Gamma(G)$ is the set of all prime divisors of the order of G. Two distinct primes r and s regarded as vertices are adjacent in $\Gamma(G)$ if and only if there exists an element of order $r s$ in G. Suppose that $L \cong E_{6}(3)$ or $L \cong{ }^{2} E_{6}(3)$. We prove that if G is a finite group such that $\Gamma(G)=\Gamma(L)$, then $G \cong L$.

Keywords: finite group, simple group, the Gruenberg-Kegel graph, exceptional group of Lie type E_{6}

1. Introduction

Given a finite group G, denote by $\omega(G)$ the spectrum of G, that is the set of all its element orders. The set of all prime divisors of the order of G is denoted by $\pi(G)$. The Gruenberg-Kegel graph (or the prime graph) $\Gamma(G)$ of G is defined as follows. The vertex set is the set $\pi(G)$. Two distinct primes r and s regarded as vertices of $\Gamma(G)$ are adjacent in $\Gamma(G)$ if and only if $r s \in \omega(G)$. The concept of prime graph of a finite group was introduced by G.K Gruenberg and O. Kegel. Now this graph is known as Gruenberg-Kegel graph. They also gave a characterization of finite groups with disconnected prime graph but did not publish it. This result can be found in [1], where J.S. Williams started the classification of finite simple groups with disconnected Gruenberg-Kegel graph.

[^0]Denote the set of orders of maximal abelian subgroups of G by $M(G)$. Note that if $\omega(G)=\omega(H)$ or $M(G)=M(H)$, then $\Gamma(G)=\Gamma(H)$. Consider alternating groups $A l t_{5}$ and $A l t_{6}$ of degrees 5 and 6 , respectively. Then $\Gamma\left(A l t_{5}\right)=\Gamma\left(A l t_{6}\right)$ but $\omega\left(A l t_{5}\right)=\{1,2,3,5\}=\omega\left(A l t_{6}\right) \backslash\{4\}$ and $M\left(A l t_{5}\right)=\{1,2,3,4,5\}=M\left(A l t_{6}\right) \backslash\{9\}$.

We say that a finite group G is recognizable by $\Gamma(G)(\omega(G)$ or $M(G))$ if for every finite group H the equality $\Gamma(H)=\Gamma(G)(\omega(H)=\omega(G)$ or $M(H)=M(G)$, respectively) implies that H is isomorphic to G. Clearly, if G is recognizable by $\Gamma(G)$, then it is also recognizable by $\omega(G)$ and $M(G)$. The converse is not true in general: the group $A l t_{5}$ is known to be uniquely determined by spectrum [2], while there are infinitely many groups with the same spectrum as $A l t_{6}$ [3]. The modern state of the study on characterization of simple groups by Gruenberg-Kegel grpah can be found, for example, in the recent work by P. J. Cameron and the second author [4]. In particular, in [4] the authors have proved that if a finite group L is recognizable by $\Gamma(L)$, then L is almost simple, that is its socle is a nonabelian simple group.

If p is a prime and $q=p^{k}$ is its power, then by $E_{6}^{+}(q)$ and $E_{6}^{-}(q)$ we denote the simple exceptional groups $E_{6}(q)$ and ${ }^{2} E_{6}(q)$, respectively. Finite groups G such that $\omega(G)=\omega(L)$, where $L \cong E_{6}^{ \pm}(q)$, were described in [5, 6, 7, in particular, if $p \in\{2,11\}$, then the equality $\omega(G)=\omega(L)$ implies $G \cong L$. In [8] it is proved that if G is a finite group with $M(G)=M(L)$, where $L \cong E_{6}(q)$, then G has a unique nonabelian composition factor and this factor is isomorphic to L. Nevertheless, there are few results about groups having Gruenberg-Kegel graph as simple groups $E_{6}^{ \pm}(q)$. In [9] and [10] it is proved that if $L \cong E_{6}^{ \pm}(2)$ and $\Gamma(G) \cong \Gamma(L)$, then $G \cong L$. The purpose of this paper is to show that groups $E_{6}^{+}(3)$ and $E_{6}^{-}(3)$ are recognizable by their Gruenberg-Kegel graphs.

We prove the following theorem.
Theorem 1. Suppose that $L \cong E_{6}^{\varepsilon}(3)$ with $\varepsilon \in\{+,-\}$. If G is a finite group such that $\Gamma(G)=\Gamma(L)$, then $G \cong E_{6}^{\varepsilon}(q)$.
Remark 1. This result was obtained during The Great Mathematical Workshop 11.

2. Preliminaries

Recall that a subset of vertices of a graph is called a coclique if every two vertices of this subset are nonadjacent. Suppose that G is a finite group. Denote by $t(G)$ the maximal size of a coclique in $\Gamma(G)$. If $2 \in \pi(G)$, then $t(2, G)$ denotes the maximal size of a coclique containing vertex 2 in $\Gamma(G)$.

Lemma 1 ([12]). Suppose that G is a finite group with $t(G) \geq 3$ and $t(2, G) \geq 2$. Then the following statements hold.
(1) There exists a nonabelian simple group S such that $S \unlhd \bar{G}=G / K \leq$ $\operatorname{Aut}(S)$, where K is the solvable radical of G.
(2) For every cocliue ρ of $\Gamma(G)$ such that $|\rho| \geq 3$, at most one prime of ρ divides $|K| \cdot|\bar{G} / S|$. In particular, $t(S) \geq t(G)-1$.
(3) One of the following two conditions holds:

- every prime $p \in \pi(G)$ nonadjacent to 2 in $\Gamma(G)$ does not divide $|K|$. $|\bar{G} / S|$. In particular, $t(2, S) \geq t(2, G)$;
- $S \cong A_{7}$ or $L_{2}(q)$ for some odd q, and $t(S)=t(2, S)=3$.

Lemma 2. 13. Lemma 1] Suppose that N is a normal elementary abelian subgroup of a finite group G and $H=G / N$. Define an automorphism $\phi: H \rightarrow A u t(N)$ as follows: $n^{\phi(g N)}=n^{g}$. Then $\Gamma(G)=\Gamma\left(N \rtimes_{\phi} H\right)$.
Lemma 3. Suppose that $L=E_{6}^{\varepsilon}(q)$, where $\varepsilon \in\{+,-\}$. Then the following statements hold.
(1) $\pi\left(E_{6}^{-}(3)\right)=\{2,3,5,7,13,19,37,41,61,73\}$ and $\Gamma\left(E_{6}^{-}(3)\right)$ is the following:

(41)
(2) $\pi\left(E_{6}^{+}(3)\right)=\{2,3,5,7,11,13,41,73,757\}$ and $\Gamma\left(E_{6}^{+}(3)\right)$ is the following:

Proof. Apply a criterion of adjacency of two vertices in $\Gamma\left(E_{6}^{ \pm}(q)\right)$ [14, Prop 2.5, Prop 3.2, and Prop 4.5].

3. Proof of Theorem

Consider a finite group G such that $\Gamma(G)=\Gamma(L)$, where $L=E_{6}^{\varepsilon}(3)$ with $\varepsilon \in$ $\{-,+\}$. Using Lemma 3 we find that $t(G)=t(L)=5$ and $t(2, G)=t(2, L)=3$. It follows from Lemma 1 that $S \unlhd \bar{G}=G / K \leq \operatorname{Aut}(S)$, where K is the solvable radical of G and S is a nonabelian simple group. Denote by Ω the set of primes in $\pi(L)$ nonadjacent to 2 in $\Gamma(L)$. Then $\Omega=\{19,37,73\}$ if $\varepsilon=-$ and $\Omega=\{73,757\}$ if $\varepsilon=+$. Lemma 1 implies that $t(S) \geq 4$, and primes from Ω belong to $\pi(S)$ and do not divide $|G| /|S|$. The proof of the theorem is split into several lemmas.
Lemma 4. K is nilpotent.
Proof. Consider the action of G on K by conjugation. Denote $r=37$ if $\varepsilon=-$ and $r=757$ if $\varepsilon=+$. Then $r \notin \pi(K)$. Take an element $x \in G$ of order r. Since r is nonadjacent to all the vertices of $\pi(K)$, the action of x on K is fixed-point free. By Thompson's theorem, K is nilpotent.

Lemma 5. If $\varepsilon=-$, then $S \cong L$.
Proof. Observe that 73 is the largest prime in $\pi(S)$. Inspecting groups from [15, Table 1], we find that $U_{4}(27)$ and $E_{6}^{-}(3)$ are the only simple groups whose order is divisible by $19 \cdot 37 \cdot 73$ and is not divisible by primes greater than 73 . According to [16, Table 2], $t\left(U_{4}(27)\right)=3$ and hence $S \cong E_{6}^{-}(3)$, as claimed.

Lemma 6. If $\varepsilon=+$, then $S \cong L$.
Proof. Note that 757 is the largest prime in $\pi(S)$. By [15, Table 3], S is either an alternating group of degree $n \geq 757$, or $L_{2}(757)$, or a group from the following list:

$$
\begin{array}{r}
L_{3}(27), L_{4}(27), L_{2}\left(3^{9}\right), G_{2}(27), L_{2}\left(757^{2}\right), S_{4}(757), E_{6}(3), L_{3}\left(3^{6}\right), S_{6}(27), O_{7}(27) \\
O_{8}^{+}(27), U_{6}(27)
\end{array}
$$

If S is an alternating group of degree at least 757 , then $17 \in \pi(S) \backslash \pi(G)$. In other cases if $S \not \not E_{6}(3)$, then $t(S) \leq 3$ according to [16, Tables 2-4]. Therefore, $S \cong E_{6}(3)$, as claimed.

Lemma 7. $G / K \cong L$.
Proof. Note that $|\operatorname{Aut}(L): L|=2$, so either $G / K \cong L$ or $G / K \cong \operatorname{Aut}(L)$. Suppose that $G / K \cong \operatorname{Aut}(L)$. Let γ be a graph automorphism of order 2 of L. By 17 , Proposition 4.9.2.], we have $C_{L}(\gamma) \cong F_{4}(3)$. Since $73 \in \pi\left(F_{4}(3)\right)$ and vertices 2 and 73 are nonadjacent in $\Gamma(G)$, we arrive at a contradiction.

Lemma 8. If $\varepsilon=-$, then $\pi(K) \subseteq\{3,7\}$ and if $\varepsilon=+$, then $\pi(K) \subseteq\{3,13\}$.
Proof. Take any prime $p \in \pi(K)$. Since K is nilpotent, we can assume that K is a p-group. Factoring G by $\Phi(K)$, we arrive at a situation where K is an elementary abelian p-group. According to [18, Table 5.1], we see that ${ }^{3} D_{4}(3) \leq G / K$. Consider the action of ${ }^{3} D_{4}(3)$ on K defined by ϕ as in Lemma|2. Take an element $g \in{ }^{3} D_{4}(3)$ of order 73. If $p \neq 3$, then g fixes an element in K by [19, Proposition 2] and hence 73 and p are adjacent in $\Gamma(G)$. Lemma 3 implies that $p \in\{3,7\}$ if $\varepsilon=-$ and $p \in\{3,13\}$ if $\varepsilon=+$, as claimed.

Lemma 9. $\pi(K) \subseteq\{3\}$.
Proof. Suppose that $7 \in \pi(K)$ or $13 \in \pi(K)$. Factoring G by $\Phi(K)$, we arrive at a situation where K is an elementary abelian group. By Lemma 7 , we have $G / K \cong L$.

According to [18, Table 5.1], we see that $P \Omega_{8}^{+}(3)<L$. Comparing orders of L and $P \Omega_{8}^{+}(3)$, we infer that their Sylow 5 -subgroups are isomorphic. Therefore, Sylow 5-subgroups of L are non-cyclic [20, Table 3]. Consider a Sylow 5-subgroup P of L. Denote by \widetilde{P} the full preimage of P in G. The conjugation action of 5elements of \widetilde{P} on K is fixed-point free, so \widetilde{P} is a Frobenious group. It follows from [21, Chap. 10, Theorem 3.1 (iv)] that P is cyclic; a contradiction.

Lemma 10. $K=1$.
Proof. By Lemma 9, K is a 3 -group. Assume that $K \neq 1$. As above, we can assume that K is elementary abelian. According to [18, Table 5.1], we see that $F_{4}(3) \leq G / K$. Consider the action of $F_{4}(3)$ on K as in Lemma 2, Since $F_{4}(3)$ is unisingular [22, Theorem 1.3], any element of order 73 in $F_{4}(3)$ fixes some non-identity element in K. Therefore, primes 3 and 73 are adjacent in $\Gamma(G)$; a contradiction.

Lemma 10 implies that $G \cong L$. This completes the proof of Theorem.

4. Acknowledgements

We are grateful to the referee whose valuable comments helped us correct some inaccuracies and improve the text.

References

[1] J.S. Williams, Prime graph components of finite groups, J. Algebra, 69:2 (1981), 487-513. Zbl 0471.20013
[2] W. Shi, A characteristic property of A_{5}, Journal of Southwest China Normal University(Natural Science Edition), 1986:3 (1986), 11-14. (in Chinese)
[3] R. Brandl, W.J. Shi, Finite groups whose element orders are consecutive integers, J. Algebra, 143:2 (1991), 388-400. Zbl 0745.20022
[4] P.J. Cameron, N.V. Maslova, Criterion of unrecognizability of a finite group by its GruenbergKegel graph, J. Algebra, to appear. DOI:10.1016/j.jalgebra.2021.12.005
[5] A.S. Kondrat'ev, Quasirecognition by the set of element orders of the groups $E_{6}(q)$ and ${ }^{2} E_{6}(q)$, Sib. Math. J., 48:6 (2007), 1001-1018. Zbl 1154.20008
[6] M.A. Grechkoseeva, Element orders in covers of finite simple groups of Lie type, J. Algebra Appl., 14:4 (2015), Article ID 1550056. Zbl 1323.20014
[7] M.A. Zvezdina, Spectra of automorphic extensions of finite simple exceptional groups of Lie type, Algebra Logic, 55:5 (2016), 354-366. Zbl 1388.20025
[8] Z. Momen, B. Khosravi, Quasirecognition of $E_{6}(q)$ by the orders of maximal abelian subgroups, J. Algebra Appl., 17:7 (2018), Article ID 1850122. Zbl 06888574
[9] W. Guo, A.S. Kondrat'ev, N.V. Maslova, Recognition of the group $E_{6}(2)$ by Gruenberg-Kegel graph, Trudy Inst. Mat. Mekh. UrO RAN, 27:4 (2021), 263-268.
[10] A.S. Kondrat'ev, Recognizability by prime graph of the group ${ }^{2} E_{6}(2)$, J. Math. Sci., New York, 259:4 (2021), 463-466. Zbl 07427843
[11] The Great Mathematical Workshop, July 12-17 and August 16-21, 2021 with an intermodule work in between, http://mca.nsu.ru/bmm_english/
[12] A.V. Vasil'ev, On connection between the structure of finite group and the properties of its prime graph, Sib. Math. J., 46:3 (2005), 396-404. Zbl 1096.20019
[13] A.M. Staroletov, On recognition of alternating groups by prime graph, Sib. Èlectron. Mat. Izv, 14 (2017), 994-1010. Zbl 1378.20016
[14] A.V. Vasil'ev, E.P. Vdovin E.P, An adjacency criterion for the prime graph of a finite simple group, Algebra Logic, 44:6 (2005), 381-406. Zbl 1104.20018
[15] A.V. Zavarnitsine, Finite simple groups with narrow prime spectrum, Sib. Èlectron. Mat. Izv, 6 (2009), 1-12. Zbl 1289.20021
[16] A.V. Vasil'ev, E.P. Vdovin, Cocliques of maximal size in the prime graph of a finite simple group, Algebra Logic, 50:4 (2011), 291-322. Zbl 1256.05105
[17] D. Gorenstein, R. Lyons, R. Solomon, The classification of the finite simple groups. Part I, Chapter A: Almost simple K-groups, Mathematical Surveys and Monographs, 40, American Mathematical Society, Providence, 1998. Zbl 0890.20012
[18] M.W. Liebeck, J. Saxl, G.M. Seitz, Subgroups of maximal rank in finite exceptional groups of Lie type, Proc. Lond. Math. Soc., III. Ser., 65:2 (1992), 297-325. Zbl 0776.20012
[19] A.V. Zavarnitsine, Finite groups with a five-component prime graph, Sib. Math. J., 54:1 (2013), 40-46. Zbl 1275.20009
[20] A.A. Buturlakin, M.A. Grechkoseeva, The cyclic structure of maximal tori of the finite classical groups, Algebra Logic, 46:2 (2007), 73-89. Zbl 1155.20047
[21] D. Gorenstein, Finite groups, Harper \& Row, New York, 1968. Zbl 0185.05701
[22] R. Guralnick, P.H. Tiep, Finite simple unisingular groups of Lie type, J. Group Theory, 6:3 (2003), 271-310. Zbl 1046.20013

Antonina Pavlovna Khramova
Sobolev Institute of Mathematics,
4, Acad. Koptyug ave.,
Novosibirsk, 630090, Russia
Email address: akhramova@math.nsc.ru

Natalia Vladimirovna Maslova
Krasovskil Institute of Mathematics and Mechanics UB RAS,
16 , S. Kovalevskaja str.,
Yekaterinburg, 620108, Russia
Ural Federal University,
19, Mira str.,
Yekaterinburg, 620002, Russia
Ural Mathematical Center,
19, Mira str.,
Yekaterinburg, 620002, Russia
Email address: butterson@mail.ru
Viktor Vladimirovich Panshin
Sobolev Institute of Mathematics,
4, Acad. Koptyug ave.,
Novosibirsk, 630090, Russia
Novosibirsk State University,
1, Pirogova str.,
Novosibirsk, 630090, Russia
Email address: v.pansh1n@yandex.ru
Alexey Mikhailovich Staroletov
Sobolev Institute of Mathematics,
4, Acad. Koptyug ave.,
Novosibirsk, 630090, Russia
Novosibirsk State University,
1, Pirogova str.,
Novosibirsk, 630090, Russia
Email address: staroletov@math.nsc.ru

[^0]: Khramova, A.P., Maslova, N.V., Panshin, V.V., Staroletov, A.M., Characterization of groups $E_{6}(3)$ and ${ }^{2} E_{6}(3)$ by Gruenberg-Kegel graph.
 (C) 2021 Khramova A.P., Maslova N.V., Panshin V.V., Staroletov A.M.

 The work is supported by the Mathematical Center in Akademgorodok under the agreement No. 075-15-2019-1675 with the Ministry of Science and Higher Education of the Russian Federation.

 Received October, 19, 2021, published December, 21, 2021.

