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CHARACTERIZATION OF GROUPS E(3) AND 2E4(3) BY
GRUENBERG-KEGEL GRAPH

A.P. KHRAMOVA, N.V. MASLOVA, V.V. PANSHIN, A.M. STAROLETOV

ABSTRACT. The Gruenberg—Kegel graph (or the prime graph) I'(G) of
a finite group G is defined as follows. The vertex set of I'(G) is the set of
all prime divisors of the order of G. Two distinct primes r and s regarded
as vertices are adjacent in I'(G) if and only if there exists an element of
order 7s in G. Suppose that L = Eg(3) or L = 2Fg(3). We prove that if
G is a finite group such that I'(G) = I'(L), then G = L.
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1. INTRODUCTION

Given a finite group G, denote by w(G) the spectrum of G, that is the set of
all its element orders. The set of all prime divisors of the order of G is denoted
by 7(G). The Gruenberg-Kegel graph (or the prime graph) T'(G) of G is defined
as follows. The vertex set is the set 7(G). Two distinct primes r and s regarded
as vertices of I'(G) are adjacent in I'(G) if and only if rs € w(G). The concept of
prime graph of a finite group was introduced by G.K Gruenberg and O. Kegel. Now
this graph is known as Gruenberg-Kegel graph. They also gave a characterization
of finite groups with disconnected prime graph but did not publish it. This result
can be found in [I], where J.S. Williams started the classification of finite simple
groups with disconnected Gruenberg-Kegel graph.
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Denote the set of orders of maximal abelian subgroups of G by M(G). Note
that if w(G) = w(H) or M(G) = M(H), then I'(G) = T'(H). Consider alternating
groups Alts and Altg of degrees 5 and 6, respectively. Then I'(Alts) = I'(Alts) but
w(Alts) ={1,2,3,5} = w(Alte) \ {4} and M (Alts) = {1,2,3,4,5} = M(Altg) \ {9}

We say that a finite group G is recognizable by T'(G) (w(G) or M(G)) if for
every finite group H the equality I'(H) = T'(G) (w(H) = w(G) or M(H) = M(G),
respectively) implies that H is isomorphic to G. Clearly, if G is recognizable by
I'(G), then it is also recognizable by w(G) and M (G). The converse is not true in
general: the group Alts is known to be uniquely determined by spectrum [2], while
there are infinitely many groups with the same spectrum as Altg [3]. The modern
state of the study on characterization of simple groups by Gruenberg—Kegel grpah
can be found, for example, in the recent work by P. J. Cameron and the second
author [4]. In particular, in [4] the authors have proved that if a finite group L
is recognizable by I'(L), then L is almost simple, that is its socle is a nonabelian
simple group.

If p is a prime and ¢ = p* is its power, then by E (¢) and Ej; (¢) we denote
the simple exceptional groups Eg(q) and 2Eg(q), respectively. Finite groups G such
that w(G) = w(L), where L = E=(q), were described in [5] 6, [7], in particular, if
p € {2,11}, then the equality w(G) = w(L) implies G = L. In [§] it is proved that
if G is a finite group with M(G) = M (L), where L 2 Eg(q), then G has a unique
nonabelian composition factor and this factor is isomorphic to L. Nevertheless,
there are few results about groups having Gruenberg-Kegel graph as simple groups
EZ(q). In [9] and [10] it is proved that if L = EZ (2) and T'(G) = I'(L), then G = L.
The purpose of this paper is to show that groups Eg (3) and Ej (3) are recognizable
by their Gruenberg—Kegel graphs.

We prove the following theorem.

Theorem 1. Suppose that L = E5(3) with e € {+,—}. If G is a finite group such
that T'(G) =T'(L), then G = Eg(q).

Remark 1. This result was obtained during The Great Mathematical Workshop
[11].

2. PRELIMINARIES

Recall that a subset of vertices of a graph is called a coclique if every two vertices
of this subset are nonadjacent. Suppose that G is a finite group. Denote by ¢(G) the
maximal size of a coclique in T'(G). If 2 € 7(G), then ¢(2,G) denotes the maximal
size of a coclique containing vertex 2 in I'(G).

Lemma 1 ([12]). Suppose that G is a finite group with t(G) > 3 and t(2,G) > 2.
Then the following statements hold.

(1) There erists a monabelian simple group S such that S < G = G/K <
Aut(S), where K is the solvable radical of G.
(2) For every coclive p of I'(G) such that |p| > 3, at most one prime of p divides
|K|-|G/S|. In particular, t(S) > t(G) — 1.
(3) One of the following two conditions holds:
e cvery prime p € w(G) nonadjacent to 2 in T'(G) does not divide | K| -
|G/S|. In particular, t(2,5) > t(2,G);
e S A; or La(q) for some odd q, and t(S) =t(2,5) = 3.
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Lemma 2. [13| Lemma 1] Suppose that N is a normal elementary abelian subgroup
of a finite group G and H = G/N. Define an automorphism ¢ : H — Aut(N) as
follows: n®9N) = n9. Then T(G) = T(N x4 H).
Lemma 3. Suppose that L = Eg(q), where ¢ € {+, —}. Then the following statements
hold.

(1) n(Eg (3)) ={2,3,5,7,13,19,37,41,61,73} and I'(Eg (3)) is the following:

Proof. Apply a criterion of adjacency of two vertices in F(Eéc(q)) [14, Prop 2.5,
Prop 3.2, and Prop 4.5]. O

3. PROOF OF THEOREM

Consider a finite group G such that I'(G) = I'(L), where L = E§(3) with ¢ €
{—,+}. Using Lemma (3] we find that ¢(G) = t(L) = 5 and ¢(2,G) = t(2,L) = 3.
It follows from Lemma that S < G = G/K < Aut(S), where K is the solvable
radical of G and S is a nonabelian simple group. Denote by €2 the set of primes in
7(L) nonadjacent to 2 in I'(L). Then Q = {19,37,73} if ¢ = — and Q = {73,757}
if ¢ = +. Lemma [1] implies that ¢(S) > 4, and primes from Q belong to 7(S) and
do not divide |G|/|S|. The proof of the theorem is split into several lemmas.

Lemma 4. K is nilpotent.

Proof. Consider the action of G on K by conjugation. Denote r = 37 if ¢ = — and
r = 757 if ¢ = +. Then r &€ 7(K). Take an element x € G of order r. Since r is
nonadjacent to all the vertices of 7(K), the action of  on K is fixed-point free. By
Thompson’s theorem, K is nilpotent. O

Lemma 5. If e = —, then S = L.

Proof. Observe that 73 is the largest prime in 7(S). Inspecting groups from [15]
Table 1], we find that Uy (27) and Eg (3) are the only simple groups whose order is
divisible by 19 -37 - 73 and is not divisible by primes greater than 73. According to
[16] Table 2], t(U4(27)) = 3 and hence S = E; (3), as claimed. O
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Lemma 6. If e =+, then S = L.

Proof. Note that 757 is the largest prime in 7(S). By [I5, Table 3], S is either an
alternating group of degree n > 757, or Lo(757), or a group from the following list:

L3(27), L4 (27), Lo (3%), Go(27), Lo (757%), S4(757), Es(3), L3(3%), Ss(27), 07(27),
OF (27), Us(27).

If S is an alternating group of degree at least 757, then 17 € «(S) \ n(G). In
other cases if S % FEg(3), then ¢(S) < 3 according to [16], Tables 2-4]. Therefore,
S = Fs(3), as claimed. O

Lemma 7. G/K = L.

Proof. Note that | Aut(L) : L| = 2, so either G/K = L or G/K = Aut(L). Suppose
that G/K = Aut(L). Let v be a graph automorphism of order 2 of L. By [I7,
Proposition 4.9.2.], we have C(y) = F4(3). Since 73 € w(F4(3)) and vertices 2 and
73 are nonadjacent in I'(G), we arrive at a contradiction. O

Lemma 8. Ife = —, then n(K) C {3,7} and if e = +, then n(K) C {3,13}.

Proof. Take any prime p € 7(K). Since K is nilpotent, we can assume that K is a
p-group. Factoring G by ®(K), we arrive at a situation where K is an elementary
abelian p-group. According to [I8, Table 5.1], we see that 3D, (3) < G/K. Consider
the action of *D,(3) on K defined by ¢ as in Lemma2] Take an element g € 3D, (3)
of order 73. If p # 3, then g fixes an element in K by [19, Proposition 2] and hence
73 and p are adjacent in T'(G). Lemma [3| implies that p € {3,7} if ¢ = — and
p € {3,13} if e = +, as claimed. O

Lemma 9. 7(K) C {3}.

Proof. Suppose that 7 € 7(K) or 13 € 7(K). Factoring G by ®(K), we arrive at a
situation where K is an elementary abelian group. By Lemma we have G/K 2 L.

According to [I8, Table 5.1], we see that PQg (3) < L. Comparing orders of
L and PQ; (3), we infer that their Sylow 5-subgroups are isomorphic. Therefore,
Sylow 5-subgroups of L are non-cyclic [20, Table 3]. Consider a Sylow 5-subgroup
P of L. Denote by P the full preimage of P in G. The conjugation action of 5-
elements of P on K is fixed-point free, so P is a Frobenious group. It follows from
[21, Chap. 10, Theorem 3.1 (iv)] that P is cyclic; a contradiction. |

Lemma 10. K = 1.

Proof. By Lemma [0] K is a 3-group. Assume that K # 1. As above, we can
assume that K is elementary abelian. According to [I8, Table 5.1], we see that
Fy(3) < G/K. Consider the action of Fy(3) on K as in Lemma [2| Since Fy(3)
is unisingular [22] Theorem 1.3]|, any element of order 73 in Fy(3) fixes some
non-identity element in K. Therefore, primes 3 and 73 are adjacent in I'(G); a
contradiction. (]

Lemma [I0] implies that G = L. This completes the proof of Theorem.
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