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SPECIAL CLASSES OF POSITIVE PREORDERS

S.A. BADAEV, B.S. KALMURZAYEV, N.K. MUKASH, A.A. KHAMITOVA

Abstract. We study positive preorders relative to computable redu-
cibility. An approach is suggested to lift well-known notions from the
theory of ceers to positive preorders. It is shown that each class of positive
preoders of a special type (precomplete, e-complete, weakly precomplete,
e�ectively �nite precomplete, and e�ectively inseparable ones) contains
in�nitely many incomparable elements and has a universal object. We
construct a pair of incomparable dark positive preorders that possess an
in�mum. It is shown that for every non-universal positive preorder P ,
there are in�nitely many pairwise incomparable minimal weakly precom-
plete positive preorders that are incomparable with P .

Keywords: positive preorder, ceer, computable reducibility, precomplete,
weakly precomplete, minimal preorder.

Introduction

The work is dedicated to studying positive preorders on the set of natural
numbers ω. By a positive preorder we mean a computably enumerable re�ective and
transitive binary relation. A special case of a positive preorder�positive equivalence
(ceer) �is su�ciently well studied. Classic works in this area include the works
by Yu.L. Ershov [1], K. Bernardi and A. Sorbi [2], A. Lachlan [3], S.A. Badaev [4],
S. Gao and P. Gerdes [5]. The current state of study the ceers is given in [6], articles
[7]�[10], and works by other authors.

If E is a ceer, then it is possible to de�ne functions and relations on the factor set
ω/E and obtain interesting structures with relatively computable properties. Our
motivation for such approach was the work by F. Montagna and A. Sorbi [11], where
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for E the provable equivalence relation for propositions from Peano arithmetic is
taken, and operations on ω/E are naturally generated by logical connectives. Some
modern studies in the area of ceers go in the opposite direction, solving, for example,
issues on representability of linear orders [9] or Boolean algebras [10] in the form
of a quotient structure ω/E for a suitable ceer E. In this work, for every positive
preorder P we introduce the notion of so called support E of preorder P , that is,
the maximal ceer contained in the preorder P , and actually work with a partially
ordered set ω/E. Based on the notion of support, we generalize some known notions
and results of the theory of ceers to the positive preorders.

If R and S are preorders on ω, we say that R is computably reducible to S
(denoted by R ≤c S), if there exists a computable function f , such that xRy ⇔
f(x)Sf(y) for all x, y ∈ ω. Preorders R and S are said to be equivalent (denoted
by R ≡c S), if R ≤c S and S ≤c R. Preorders R and S are called computably
isomorphic, if there exists a computable permutation of the set ω, that reduces R
to S. A positive preorder is called universal, if any positive preorder is computably
reducible to it. A well-known notion of universal ceer has been introduced in a
similar way, as the maximal one among all ceers relative to computable reducibility.

In Section 1 of this work, we provide de�nitions of precompleteness, weak precom-
pleteness, e-completeness, e�ectively �nite precompleteness, and e�ective insepara-
bility of positive preorders, and prove the existence of universal positive preorders
of the above-mentioned types. In Section 2, we study the questions of existence of
supremum and in�mum of incomparable positive preorders. And in Section 3, we
show for an arbitrary non-universal positive preorder P the existence of an in�nite
number of pairwise incomparable weakly precomplete minimal positive preorders,
incomparable to P .

1. Special classes of positive preorders

Recall some notions that turned out to be helpful in the studies on universal
ceers. The notion of precomplete equivalence was introduced by A.I. Maltsev in
work [12]. It played a signi�cant role in di�erent areas of the computability theory,
including the theory of ceers. An equivalence E is called precomplete, if it contains
at least two equivalence classes and for every partial computable function ϕ there
exists a computable function f such that ϕ(x)Ef(x) for all x ∈ dom(ϕ).

According to the de�nition by Lachlan [3], a ceer S is called e-complete (from
extension complete), if for every ceer R, every �nite function f , which is an embed-
ding of 〈dom(f), R � dom(f)〉 into 〈ω, S〉, and any number i ∈ ω r dom(f), by the
number i, a canonical index of the function f , and a computably enumerable index
of the relation R, it is possible to e�ectively �nd a number j such that f ∪ {〈i, j〉}
is an embedding of 〈dom(f) ∪ {i}, R〉 into 〈ω, S〉. In [3], it was established that
e-complete ceers and precomplete ceers are universal and form two di�erent types
of computable isomorphism.

De�nition 1. Let P be an arbitrary preorder. We will refer to the equivalence
relation E = {(x, y) : xPy & yPx} as a support of the preorder P and denote the
equivalence E by supp(P ).

Obviously, the support supp(P ) of a positive preorder P is a ceer. However, the
inverse is not correct. Indeed, if X is not a computably enumerable set, then the
preorder Q = {(2x, 2x+ 1) : x ∈ X} is not positive, but its support is the identity
equivalence relation Id.
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Remark 1. Given any preorders P1, P2, if P1 ≤c P2, then supp(P1) ≤c supp(P2).

The inverse statement is not true. For example, supp(Q) ≤c supp(Id), but
Q �c Id.

De�nition 2. We refer to a preorder P as precomplete (weakly precomplete, e-
complete, e�ectively �nite precomplete, or e�ectively inseparable), if the support of
the preorder P is a precomplete (weakly precomplete, e-complete, e�ectively �nite
precomplete, or e�ectively inseparable, respectively) equivalence.

Theorem 1. For every positive preorder P , there exists a precomplete positive
preorder Q such that P ≤c Q.

Proof. Let P be an arbitrary positive preorder, and E be a universal precomplete
ceer. Then supp(P ) ≤c E by some computable function f . We de�ne the positive
preorder Q in the following way: for all x, y ∈ ω,

xQy ⇔ xEy ∨ (∃u)(∃v)[xEf(u) & yEf(v) & uPv]

It is easy to see that P ≤c Q and supp(Q) = E. Due to the choice of E, the
preorder Q is precomplete. �

Corollary 1. Universal precomplete positive preorders exist.

Proof. It is su�cient to take any universal positive preorder for P in the proof of
the theorem [13]. �

Precomplete ceers are universal [2], and therefore, they all are pairwise equivalent.
Moreover, nontrivial precomplete ceers form the unique type of computable isomor-
phism [3]. For precomplete positive preorders, the picture is completely di�erent,
as it follows from the next corollary. In particular, precomplete positive preorders
can be non-universal.

Corollary 2. There are in�nitely many non-equivalent precomplete positive preor-
ders.

Proof. Consider a computable sequence {Pk}k∈ω of positive preorders, such that

• supp(Pk) = Idk+1,
• (∀i ≤ j ≤ k)([i]Idn+1

Pk[j]Idn+1
).

Every Pk is a positive preorder, whose quotient over the support is a linear order,
isomorphic to the order {0 < 1 < 2 < . . . < k}. Obviously, Pj �c Pi for all i < j.
We denote by Qk a positive preorder which can be constructed similarly as in the
proof of Theorem 1, where for P we take a positive preorder Pk. Then Qj �c Qi

for all i < j. �

It is well known that every of the following classes:

• weakly precomplete ceers,
• e-complete ceers,
• e�ectively �nite precomplete ceers,
• e�ectively inseparable ceers,�

contains universal equivalences, see the survey [6]. Applying the construction from
the proof of Theorem 1, we obtain the following

Corollary 3. For every positive preorder P there exists a preorder Q from each of
the classes listed above, such that P ≤c Q.
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2. Suprema and infima

Relative to computable reducibility ≤c, the set of positive preorders is a preorder
structure whose quotient structure over the equivalence ≡c forms a partially ordered
set with respect to the ordering induced by ≤c. Not entirely correctly, we will say
that a positive preorder P consists of equivalence classes (to be exact, equivalence
classes of its support supp(P )), connected by the relation P .

One of the most important problems in studying of any ordered structure is the
question of existence of the least upper bounds and greatest lower bounds. In paper
[7], the questions of existence of suprema and in�ma with respect to computable
reducibility were studied. The results of this work are presented in the tables below:

X Y X ∧ Y ?
light light -sometimes NO

-sometimes YES
dark dark NO
light dark NO

Table 1. The existence of in�ma in
the structure of ceers

X Y X ∨ Y ?
light light -sometimes NO

-sometimes YES
dark dark NO
light dark -sometimes NO

-sometimes YES

Table 2. The existence of suprema in
the structure of ceers

Of course, in these tables, incomparable ceers X and Y were considered.
Recall (see, for example, [6]) that by Idn we denote an equivalence with n

computable classes. By Id the identity equivalence is denoted. An equivalence E
is called dark, if E is incomparable to Id. An equivalence E with in�nitely many
classes is called light, if it is not dark.

Using the natural approach outlined in Section 1, we will introduce the notions
of dark, light, and �nite preorders in the following way.

De�nition 3. A positive preorder P is called dark (�nite, light), if the support
supp(P ) is a dark equivalence (consists of a �nite number of classes; is neither
�nite nor dark equivalence).

Note that in work [8] a slightly di�erent notion of a dark positive preorder P
was introduced for the case where P induces a linear order on supp(P ).

Since ceers are positive preorders, for the questions of existence of suprema and
in�ma in the tables provided above we do not have to consider cases with answers
of the kind "sometimes YES, sometimes NO". In this paper, we will only consider
the case where both preorders are dark.

Theorem 2. There exist dark positive preorders that have the greatest lower bound.
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Proof. Let S be a simple set. Then RS = {(x, y) : x = y ∨ {x, y} ⊆ S} is a dark
ceer. We de�ne preorders P and Q in the following way:

P = RS ⊕ Id1;

Q = RS ⊕ Id1 ∪ {(2x, 2y + 1) : x ∈ S}.
Obviously, the positive preorders P and Q are dark. We will show that they

are incomparable, and RS is their greatest lower bound. It is easy to see that
the preorder P is a ceer and that the positive preorder Q has exactly two related
equivalence classes 2S and 2ω+1, in particular, Q is not an equivalence. Obviously,
each preorder that is computably reducible to an equivalence is an equivalence itself.
Therefore, we directly obtain that Q �c P .

Let us prove that P �c Q. Assume that P ≤c Q by a computable function f .
Due to reducibility, the image of the function f cannot intersect both Q-classes 2S
and 2ω + 1. If range(f) ∩ 2S = ∅, then 2S is the preimage of a computable set,
which is impossible. But if range(f)∩2S 6= ∅, then the function f([x2 ]) provides the
non-surjective reducibility RS ≤c RS , which is also impossible. Hence, the positive
preorders P and Q are incomparable.

It is clear that RS is a lower bound of P and Q. Suppose that a positive preorder
T is a lower bound of the preorders P and Q. Since P is an equivalence and T ≤c P ,
then the preorder T is also an equivalence. Let T ≤c Q by a computable function g.
Similarly to the above, note that range(g) cannot intersect both related Q-classes
2S and 2ω + 1 and consider two cases.

Case 1. range(g)∩ 2S = ∅. Since all Q-classes of equivalence, except for the class
2S, are computable, then all equivalence classes T are also computable. We will
prove by contradiction that the number of equivalence classes in T is �nite. Assume
that T has in�nitely many equivalence classes. Then range(g) consists of an in�nite
number of Q-classes. Therefore, the computably enumerable set range(g)r(2ω+1∪
2S) is in�nite, which is impossible since the set S is simple. Hence, T is a partition
of ω into a �nite number of computable sets, and therefore, T ≤c RS .

Case 2. range(g) ∩ 2S 6= ∅. Then range(g) ∩ 2ω + 1 = ∅ and the computable

function g(x)
2 provides the reducibility of the equivalence T to RS .

Therefore, RS is the greatest lower bound of the positive preorders P and Q. �

3. Weakly precomplete minimal positive preorders

In the paper [7] by U. Andrews and A. Sorbi the following fact was established
for ceers.

Theorem 3. Let R be a non-universal ceer. Then there exist in�nitely many
pairwise incomparable ceers {El}l∈ω, such that for all l and a ceer X

(1) El � R
(2) X ≤ El ⇒ (∃n)[X ≤ Idn]

Note that in Theorem 3, there is not necessary to construct an in�nite sequence of
equivalences {El}l∈ω, it su�ces to construct only one. Moreover, we can additionally
require that this equivalence was weakly precomplete. Using the reasoning from the
proof of Theorem 3, we will prove its analogue for positive preorders.

De�nition 4. A preorder P is called minimal, if for every preorder X the reducibili-
ty X ≤c P leads to the reducibility P ≤c X or �niteness of the number of equivalence
classes of the support supp(P ).
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Theorem 4. For every non-universal positive preorder R, there exists a weakly
precomplete minimal positive preorder P , which is not reducible to R.

Proof. Let R be a non-universal positive preorder. We will construct a positive
preorder P , ful�lling the following requirements for all i, j, k, e ∈ ω :

Pi,j : If a set Wi intersects in�nitely many equivalence classes of supp(P ), then
it intersects the class [j]supp(P ).

Tk : ϕk is not a reducing function of P to R.
WPe : If ϕe is total, then ∃xe((xe, ϕe(xe)) ∈ supp(P )).
The main operation in our construction is the one of re�exive and transitive

closure, denoted by the symbol ∗: for an arbitrary binary relation X, by X∗ we
denote the smallest preorder containing X. Every time when one or several pairs
of numbers is added into the preorder under construction, for the obtained binary
relation immediately the operation ∗ is performed.

We denote by (Rs)s∈ω an uniformly computable sequence of positive preorders
with the following properties: R0 = Id,

⋃
s∈ω Rs = R, for all s the following relation

holds: Rs+1 = (Rs ∪ {(xs, ys)})∗ for some pair of numbers (xs, ys).
By a large number we mean the one that is larger than all numbers that have

already been used in the construction.
An isolated strategy for satisfying the requirement Pi,j:

(1) Choose a large number t.
(2) If Wi ∩ [j]supp(P ) = ∅, then wait until Wi ∩ [k]supp(P ) 6= ∅ for some k ≥ t.
(3) Add the pairs (j, k) and (k, j) into P .
An isolated strategy for satisfying the requirement Tk:

We �x a universal positive preorder U .
(1) Choose fresh (that is, never used before) numbers a0, a1 and assume that the

parameter r of this strategy equals 1.
(2) For all distinct i, j ≤ r, restrain adding the pairs (ai, aj) in P , if they are not

already in P . This restraining applies only to the strategies distinct from Tk.
(3) Wait until all values of ϕk(a0), ϕk(a1), ..., ϕk(ar) become de�ned on some

stage s.
(4) If for all i, j ≤ r

aiP
saj ⇔ ϕk(ai)R

sϕk(aj), (†)

then add the pairs (ai, aj) into P for all i, j ≤ r such that iUsj, increase by 1 the
value of the parameter r, choose a fresh element ar and go to stage (2).
An isolated strategy for satisfying the requirement WPe:

(1) Choose a fresh number xe.
(2) Wait until the value of ϕe(xe) becomes de�ned.
(3) Add the pairs (ϕe(xe), xe) and (xe, ϕe(xe)) into P.

It is clear that ful�llment of all the requirements Tk, k ∈ ω, and WPe, e ∈ ω,
ensures irreducibility of the preorder P to R and weak precompleteness of P . We
will show that ful�llment of all requirements Pi,j , i, j ∈ ω, ensures that the preorder
P is minimal. Indeed, let X be an arbitrary positive preorder reducible to P by
some computable function f . And suppose that Wi is the range(f). If the set Wi

intersects only a �nite number of equivalence classes of supp(P ), then only a positive
preorder whose support consists of a �nite number of equivalence classes can be the
preimage of f . But if Wi intersects in�nitely many equivalence classes, then the
strategies Pi,j , j ∈ ω, in total yeild the equality [range(f)]supp(P ) = ω, and due to
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positivity of the preorder P , it is easy to construct a computable reducing function
for the reducibility P ≤c X. Therefore, P is the minimal positive preorder.
Strategy con�icts. Obviously, the strategies Pi,j and WPe do not con�ict with

each other. Con�icts can arise if one of these strategies wants to add some pair of
numbers in P , and this pair is already restrained by some strategy Tk. Note that
restrains are only imposed by strategies Tk. It might seem that the strategy Tk′

for k′ 6= k can prevent the strategy Tk from enumerating in P the pair (ai, aj)
when performing stage (4) by restraining this pair. But that does not happen,
since the parameters a0, a1, . . . , ar in both strategies Tk′ and Tk are chosen among
fresh numbers. Due to the same reason, parameters xe, chosen by the strategy
WPe, cannot be a component of any pair restrained by any of the strategies Tk.
Therefore, in the construction of the preorder P , we only need to care about solving
the con�icts between the strategies Pi,j and Tk.

The way of solving con�icts of such kind is well known � that is the priority
argument, in this case, the �nite-injury priority argument. We assume that all the
strategies are linearly ordered: S0, S1, S2, . . . , Sk, . . . , moreover, by the number k
we can e�ectively reconstruct the type of strategy and its indices. We will say that
the strategy Sk has a higher priority compared to Sn, if k < n.

On each stage s of the construction, we consider exactly one of the strategies
Sl, l ∈ ω, denoted by Ss, moreover, Ss is a computable function of the argument s
and for every l there exist in�nitely many s such that Ss = Sl. By the end of any
stage s, the strategy Sl can either be active, or passive. On stage 0, all strategies are
passive. The strategy that is active (passive) on stage s remains so until on some of
the following stages it is declared passive (active, respectively). An active strategy
that turned into a passive one can be reactivated on some of the further stages.

Activation (reactivation) of a strategy Sl means choosing its parameters: for the
strategies Pi,j , Tk, and WPe, that is performing point (1) of these strategies, and
the parameters are the numbers t, r, a0, a1, and xe, respectively. In the course
of construction, the value of the parameter r of the strategy Tk can be increased,
and fresh numbers ar can be added to the list of its parameters, as it is described
at stage (4) of this strategy. Apart from the parameters r, a0, a1, the strategy Tk

during its activation forms the set res(k), consisting of pairs of numbers which are
restrained from adding to P by the strategy Tk to all strategies of lower priority.
During activation (reactivation), res(k) consists of two pairs (a0, a1) and (a1, a0),
to which new pairs are added as the parameter r increases, based on stage (4) of
the description of the strategy Tk.

Declaring a strategy to be passive is accompanied by turning its parameters into
unde�ned ones, and the set of restraints res(k) of the strategy Tk is emptied. After
that, the strategy reactivates at a larger stage.

Construction. The preorder P is constructed by stages. By P s we denote a
preorder on ω, consisting of a �nite number of pairs (x, y) with x 6= y, constructed
by the end of stage s.

We will say that an active strategy Ss+1 requires attention, if

(1) Ss+1 = Sl and Sl is the strategy Pi,j for some i, j and the following
condition is ful�lled: if W s

i ∩ [j]supp(P s) = ∅, then W s
i ∩ [m]supp(P s) 6= ∅

for some m ≥ t such that {(j,m), (m, j)} ∩ res(l′) = ∅ for all l′ < l, or
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(2) Ss+1 = Sl and Sl is the strategy Tk and the values of

ϕk(a0), ϕk(a1), . . . , ϕk(ar)

are de�ned on stage s for all parameters a0, a1, . . . , ar of the strategy Tk

and (�) is ful�lled, or
(3) Ss+1 = Sl and Sl is the strategy WPe for some e, (y, ϕe(y)) /∈ supp(P s)

for every y ∈ dom(ϕs
e) and ϕs

e(xe) is de�ned.

Stage 0. Put P 0 = Id, res(l) = ∅ for all l. Declare all strategies on stage 0 to be
passive. Go to the next stage.
Stage s + 1. If the strategy Ss+1 is passive, then activate (reactivate) it and

go to the next stage. If the strategy Ss+1 is active but does not require attention,
then go to the next stage without any changes. Finally, if the strategy Ss+1 requires
attention, then consider three cases.

(1) Ss+1 = Sl and Sl is the strategy Pi,j for some i, j. If W s
i ∩ [j]supp(P s) 6= ∅,

then go straitly to the next stage. Otherwise, choose the smallest number
m ≥ t such that the equivalence class [m]supp(P s) contains a number from
W s

i and both pairs (j,m), (m, j) do not belong to any of the sets res(l′), l′ <
1; set P s+1 = (P s ∪ {(j,m), (m, j)})∗; declare all the strategies S′l , l > l′,
to be passive.

(2) Ss+1 = Sl and Sl is the strategy WPe for some e. Let xe be a parameter of
the strategy WPe. Set P

s+1 = (P s ∪ {(xe, ϕe(xe)), (ϕe(xe), xe)})∗. Declare
all strategies S′l , l > l′, to be passive.

(3) Ss+1 = Sl and Sl is the strategy Tk for some k. Let r, a0, a1, . . . , ar be its
parameters. Set P s+1 = (P s ∪ {(ai, aj) : i, j ≤ r&(i.j) ∈ Us})∗. Increase
the value of the parameter r by one. Let the parameter ar+1 be equal to
the smallest of the fresh numbers. Enumerate in resk all pairs of numbers
(a1, ar+1), (ar+1, ai), i ≤ r. Declare all strategies S′l , l > l′, to be passive.

Go to the next stage.
Veri�cation. Obviously, for all s, every strategy that is passive on stage s will

be activated (reactivated) on some larger stage.

Lemma 1. Every strategy requires attention for only a �nite number of times.

Proof. To simplify the proof, we assume that S0 is T0, and ϕ0 is a nowhere de�ned
function. Then the strategy S0 is activated exactly one time and never requires
attention.

Inductive step. Suppose that after some stage s0 none of the strategies

S0, S1, . . . , Sl−1

requires attention. We will prove that after some stage s1 ≥ s0 the strategy Sl will
not require attention either. It is easy to see that if Sl is one of the strategies Pi,j

or WPe, then after the stage s0 the strategy Sl can require attention at most once.
Now assume that Sl is the strategy Tk for some k and Sl requires attention

on in�nitely many stages s > s0. Due to the choice of s0, the strategy Sl cannot
be declared passive and the relation (†) is ful�lled on all of these stages. Then
the sequence of parameters a0, a1, a2, . . . is in�nite, the function ϕe is total, and
therefore, the computable function ϕe(ai) in variable i reduces the universal positive
preorder U to the preorder R, which is impossible. �

Lemma 2. All the requirements Pi,j, WPe, Tk are satis�ed.
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Proof. Suppose that Sl is any of the strategies Pi,j , WPe, Tk and s0 is the smallest
stage after which none of the strategies S0, S1, . . . , Sl requires attention. Existence
of such stage follows from Lemma 1. We will show that the strategy Sl will be
satis�ed during or after the stage s0. Consider three possible cases.

Case 1. Sl is the strategy Pi,j for some i, j, moreover, Wi intersects in�nitely
many equivalence classes supp(P ), and the number j is arbitrary. Due to the choice
of s0, the set

⋃
l′<l resl′ is �nite. Therefore, there are in�nitely many numbers

m ∈Wi, di�erent from components of all pairs of this set. Let s1 + 1 > s0 be some
stage for which one of such su�ciently large numbers m belongs to W s1

i , and Ss1+1

is the strategy Pi,j . Then W s1
i ∩ [j]supp(P s) 6= ∅, otherwise, on stage s1 + 1 the

strategy Sl will require attention, which contradicts the choice of the stage s0.
Case 2. Sl is the strategy WPe for some e, moreover, the function ϕe is total.

Suppose that on stage s2 + 1 > s0, the parameter xe and the value of ϕe(xe) are
de�ned, and Ss2+1 is the strategy WPe. Then (y, ϕe(y)) ∈ supp(P s2) for some
y ∈ dom(ϕs2

e ), otherwise, on stage s2 + 1 the strategy Sl would require attention,
which contradicts the choice of the stage s0.

Case 3. Sl is the strategy Tk for some k, moreover, the function ϕk is total.
Since the strategy Tk does not require attention after the stage s0, the list of its
parameters stabilises on some �nite set a0, a1, . . . , ar, the set of restraints resk
stabilises, and by some stage s3 + 1 > s0, for which Ss3+1 is Tk, all the values of
ϕk(a0), ϕk(a1), . . . , ϕk(ar) are de�ned, and for all i, j ≤ r the following relations
hold:

ϕk(ai)Rϕk(aj) ⇐⇒ ϕk(ai)R
s3ϕk(aj), iUj ⇐⇒ iUs3j.

Therefore, on the stage s3+1, the relation (†) fails. Due to the choice of s0, none of
the pairs (ai, aj), i, j ≤ r, can be enumerated in P by strategies of higher priority
and cannot be enumerated in P by the strategies of lower priority than the priority
of Sl. Hence, it follows that aiP

s3aj ⇐⇒ aiPaj for all i, j ≤ r. Therefore,
reducibility P ≤c R by the computable function ϕk fails for at least on one pair of
numbers (ai, aj) ∈ resk.

Therefore, in each of three considered cases, the construction provides the ful�ll-
ment of the corresponding requirement. �

The theorem is proved.
�

Corollary 4. For every positive non-universal preorder R, there exist ini�nitely
many pairwise incomparable weakly precomplete minimal positive preorders, each of
which does not reduce to R.

Proof. By Theorem 4, for preorder R there exists a weakly precomplete minimal
preorder P0, incomparable to R. Consider a positive preorder R1 = R ⊕ P0. Then
supp(R1) is not a universal ceer, since a universal ceer does not decompose into
a direct sum of incomparable equivalences, [1]. Therefore, R1 is not a universal
positive preorder. Applying Theorem 4, we obtain a weakly precomplete minimal
preorder P1, incomparable toR1, and therefore, incomparable toR and P0. Iterating
this process, we obtain the required sequence of weakly precomplete minimal preor-
ders. �
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