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ESTIMATES FOR SOLUTIONS TO ONE CLASS OF NONLINEAR

NONAUTONOMOUS SYSTEMS WITH TIME-VARYING

CONCENTRATED AND DISTRIBUTED DELAYS

I.I. MATVEEVA

Abstract. We consider a class of nonlinear systems of nonautonomous
di�erential equations with time-varying concentrated and distributed
delays than can be unbounded. Using a Lyapunov � Krasovskii functional,
some estimates of solutions are established. The obtained estimates allow
us to conclude whether the solutions are stable. In the case of exponential
and asymptotic stability, stabilization rates of the solutions at in�nity
are pointed out.
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1. Introduction

We consider the systems of delay di�erential equations of the following form:

d

dt
y(t) = A(t)y(t) +B(t)y(t− τ(t)) +

t∫
t−τ(t)

D(t, t− s)y(s) ds

+F

t, y(t), y(t− τ(t)), t∫
t−τ(t)

D(t, t− s)y(s) ds

 , t ≥ 0, (1.1)
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where A(t), B(t), D(t, s) are (n× n)-matrices with continuous real-valued entries,
i.e.,

aij(t), bij(t) ∈ C(R+), dij(t, s) ∈ C(R
2

+), i, j = 1, . . . , n,

τ(t) is the delay function, τ(t) ∈ C1([0,∞)),

0 < τ0 ≤ τ(t) ≤ τ1t+ τ2, 0 ≤ τ1 ≤ 1, τ2 > 0,
dτ(t)

dt
≤ τ3 < 1, (1.2)

F (t, u, v, w) is a continuous real-valued vector-function. We assume that F (t, u, v, w)
is a Lipschitz function of u, w on every compact set G ⊂ [0,∞) × Rn × Rn × Rn
and satis�es the inequality

‖F (t, u, v, w)‖ ≤ q‖u‖1+ω, t ≥ 0, u, v, w ∈ Rn, (1.3)

with q, ω ≥ 0.
Our aim is to obtain estimates for solutions to (1.1) on the whole half-axis {t ≥

0}, on the base of which we can make conclusions about stability of the solutions (in
particular, exponential or asymptotic stability) and point out stabilization rates.

There is a large number of works devoted to the study of stability of solutions to
delay di�erential equations (for example, see [1]�[5] and the bibliography therein).
Researchers often use Lyapunov � Krasovskii functionals in order to obtain stability
conditions. However, not every Lyapunov � Krasovskii functional allows us to obtain
estimates characterizing decay rate at in�nity. In recent years, investigations in
this direction have been actively developed. A lot of works are devoted to delay
di�erential equations with constant coe�cients. In the nonautonomous case the
number of relevant articles is signi�cantly less.

This article continues our research of stability of solutions to nonautonomous
delay di�erential equations. In particular, we investigated time-delay systems with
periodic coe�cients in linear terms. Conditions for exponential stability of the
zero solution were established and estimates of exponential decay of solutions at
in�nity were obtained by using suitable Lyapunov�Krasovskii functionals. In [6]
some nonlinear systems with variable coe�cients and time-varying concentrated
delay were studied.

In this article we consider nonautonomous systems of the from (1.1) with time-
varying concentrated and distributed delays. Note that the delay can be unbounded
if τ1 > 0. We establish estimates for solutions that allow us to conclude whether
the solutions are stable. In the case of exponential and asymptotic stability, we
point out stabilization rates of the solutions at in�nity. In Section 2 we establish
estimates for solutions to linear systems (i.e. F (t, u, v, w) ≡ 0). In Section 3 we
consider nonlinear systems of the form (1.1) when the vector-function F (t, u, v, w)
satis�es (1.3) with q > 0.

The author is grateful to Professor G. V. Demidenko for useful discussions.

2. Estimates for solutions to linear systems

At �rst we introduce some notations. De�ne the (n × n)-matrices H(t), K(t, s)
such that

H(t) ∈ C1(R+), H(t) = H∗(t) > 0, t ≥ 0, (2.1)

the minimal eigenvalue h(t) of H(t) satis�es the inequality

h(t) ≥ h0 > 0, (2.2)

K(t, s) ∈ C1(R2

+), K(t, s) = K∗(t, s), K(t, s) ≥ 0, (t, s) ∈ R2

+. (2.3)
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Hereinafter, the matrix inequality S > 0 (or S < 0) means that S is a positive (or
negative) de�nite Hermitian matrix. We use the spectral norm of matrices.

De�ne the matrix

Q(t, s) =

 Q11(t, s) Q12(t, s) Q13(t, s)
Q∗12(t, s) Q22(t, s) Q23(t, s)
Q∗13(t, s) Q∗23(t, s) Q33(t, s)

 (2.4)

with the entries

Q11(t, s) = − d

dt
H(t)−H(t)A(t)−A∗(t)H(t)−K(t, 0),

Q12(t, s) = −H(t)B(t),

Q13(t, s) = −τ(t)H(t)D(t, s),

Q22(t, s) =

(
1− d

dt
τ(t)

)
K(t, τ(t)),

Q23(t, s) = 0,

Q33(t, s) = −τ(t)
(
∂

∂t
K(t, s) +

∂

∂s
K(t, s)

)
.

(2.5)

Consider the initial value problem for the linear systems (F (t, u, v, w) ≡ 0)

d

dt
y(t) = A(t)y(t) +B(t)y(t− τ(t)) +

t∫
t−τ(t)

D(t, t− s)y(s) ds, t > 0,

y(t) = ϕ(t), t ∈ [−τ2, 0],

y(+0) = ϕ(0),

(2.6)

where ϕ(t) ∈ C([−τ2, 0]) is a given real-valued vector-function. Below we establish
some estimates for solutions to (2.6).

Theorem 1. Suppose that there are matrices H(t), K(t, s) satisfying (2.1)�(2.3)
such that〈

Q(t, s)

(
u
v
w

)
,

(
u
v
w

)〉
≥ p(t)〈H(t)u, u〉+ k(t)τ(t)〈K(t, s)w,w〉, (2.7)

u, v, w ∈ Rn, (t, s) ∈ R2

+,

where p(t), k(t) ∈ C(R+). Then, for a solution y(t) to (2.6), the following estimate
holds

‖y(t)‖ ≤

√
V (0, ϕ)

h(t)
exp

(
−1

2

∫ t

0

γ(ξ)dξ

)
, t > 0, (2.8)

where

V (0, ϕ) = 〈H(0)ϕ(0), ϕ(0)〉+
0∫

−τ(0)

〈K(0,−s)ϕ(s), ϕ(s)〉ds, (2.9)

γ(t) = min{p(t), k(t)}. (2.10)
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Proof. Let y(t) be a solution to (2.6). Using the matricesH(t),K(t, s), satisfying the
conditions of Theorem 1, by analogy with [7], we consider the following Lyapunov�
Krasovskii functional on this solution

V (t, y) = 〈H(t)y(t), y(t)〉+
t∫

t−τ(t)

〈K(t, t− s)y(s), y(s)〉ds. (2.11)

Di�erentiating this functional, we have

d

dt
V (t, y) =

〈
d

dt
H(t)y(t), y(t)

〉
+

〈
H(t)

d

dt
y(t), y(t)

〉
+

〈
H(t)y(t),

d

dt
y(t)

〉
+〈K(t, 0)y(t), y(t)〉 −

(
1− d

dt
τ(t)

)
〈K(t, τ(t))y(t− τ(t)), y(t− τ(t))〉

+

t∫
t−τ(t)

〈
d

dt
K(t, t− s)y(s), y(s)

〉
ds.

Taking into account that y(t) satis�es (2.6), we obtain

d

dt
V (t, y) =

〈[
d

dt
H(t) +H(t)A(t) +A∗(t)H(t) +K(t, 0)

]
y(t), y(t)

〉
+〈H(t)B(t)y(t− τ(t)), y(t)〉+ 〈B∗(t)H(t)y(t), y(t− τ(t))〉

+

〈
H(t)

t∫
t−τ(t)

D(t, t− s)y(s) ds, y(t)

〉
+

〈
H(t)y(t),

t∫
t−τ(t)

D(t, t− s)y(s) ds

〉

−
(
1− d

dt
τ(t)

)
〈K(t, τ(t))y(t−τ(t)), y(t−τ(t))〉+

t∫
t−τ(t)

〈
d

dt
K(t, t−s)y(s), y(s)

〉
ds.

Using the matrix Q(t, s) de�ned in (2.4), (2.5), we have

d

dt
V (t, y) = − 1

τ(t)

t∫
t−τ(t)

〈
Q(t, t− s)

 y(t)
y(t− τ(t))

y(s)

 ,

 y(t)
y(t− τ(t))

y(s)

〉 ds.
By (2.7), we arrive at the inequality

d

dt
V (t, y) ≤ −p(t)〈H(t)y(t), y(t)〉 − k(t)

t∫
t−τ(t)

〈K(t, t− s)y(s), y(s)〉ds.

According to the de�nition of (2.11), we have

d

dt
V (t, y) ≤ −γ(t)V (t, y),

where γ(t) is given in (2.10). This di�erential inequality yields the estimate

V (t, y) ≤ V (0, ϕ) exp

(
−
∫ t

0

γ(ξ)dξ

)
,
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where V (0, ϕ) is de�ned in (2.9). Obviously,

h(t)‖y(t)‖2 ≤ 〈H(t)y(t), y(t)〉 ≤ ‖H(t)‖‖y(t)‖2, (2.12)

where h(t) is the minimal eigenvalue of H(t). Then,

‖y(t)‖2 ≤ 1

h(t)
〈H(t)y(t), y(t)〉 ≤ V (t, y)

h(t)
≤ V (0, ϕ)

h(t)
exp

(
−
∫ t

0

γ(ξ)dξ

)
,

whence (2.8) follows.
Theorem 1 is proven. �

Corollary 1. Let the conditions of Theorem 1 hold. If

t∫
0

γ(s)ds ≥ 0,

then the zero solution to (1.1) is stable; moreover, for a solution y(t) to (2.6), we
have the estimate

‖y(t)‖ ≤

√
V (0, ϕ)

h0
, t > 0,

where h0 is de�ned in (2.2).

Corollary 2. Let the conditions of Theorem 1 hold. If

t∫
t0

γ(s)ds→∞, t→∞,

for some t0 ≥ 0, then the zero solution to (1.1) is asymptotically stable; moreover,
the stabilization rate is determined by the function

exp

(
−1

2

∫ t

t0

γ(ξ)dξ

)
.

Corollary 3. Let the conditions of Theorem 1 hold. If

t∫
0

γ(s)ds ≥ γ1t+ γ2, γ1 > 0,

then the zero solution to (1.1) is exponentially stable; moreover, for a solution y(t)
to (2.6), we have the estimate

‖y(t)‖ ≤

√
V (0, ϕ)

h0
exp

(
−γ1t

2
− γ2

2

)
, t > 0.
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3. Estimates for solutions to nonlinear systems

Consider the initial value problem for (1.1)

d

dt
y(t) = A(t)y(t) +B(t)y(t− τ(t)) +

t∫
t−τ(t)

D(t, t− s)y(s) ds

+F

(
t, y(t), y(t− τ(t)),

t∫
t−τ(t)

D(t, t− s)y(s) ds

)
, t > 0,

y(t) = ϕ(t), t ∈ [−τ2, 0],

y(+0) = ϕ(0),

(3.1)

where ϕ(t) ∈ C([−τ2, 0]) is a given real-valued vector-function. Below we establish
some estimates for solutions to (3.1).

Theorem 2. Let the conditions of Theorem 1 hold and ω = 0 in (1.3). Then, for
a solution y(t) to (3.1), the following estimate holds

‖y(t)‖ ≤

√
V (0, ϕ)

h(t)
exp

(
−1

2

∫ t

0

γq(ξ)dξ

)
, t > 0, (3.2)

where

γq(t) = min

{(
p(t)− 2q‖H(t)‖

h(t)

)
, k(t)

}
. (3.3)

Proof. Let y(t) be a solution to (3.1). Consider the Lyapunov�Krasovskii functional
(2.11) on this solution. As in the proof of Theorem 1, di�erentiating V (t, y), we
obtain

d

dt
V (t, y) = − 1

τ(t)

t∫
t−τ(t)

〈
Q(t, t− s)

 y(t)
y(t− τ(t))

y(s)

 ,

 y(t)
y(t− τ(t))

y(s)

〉 ds
+W (t), (3.4)

where Q(t, s) is de�ned in (2.4), (2.5),

W (t) =

〈
H(t)F

t, y(t), y(t− τ(t)), t∫
t−τ(t)

D(t, t− s)y(s) ds

 , y(t)

〉

+

〈
H(t)y(t), F

t, y(t), y(t− τ(t)), t∫
t−τ(t)

D(t, t− s)y(s) ds

〉 . (3.5)

By (1.3) for ω = 0, we have

‖W (t)‖ ≤ 2q‖H(t)‖‖y(t)‖2.

By (2.7), we arrive at the inequality

d

dt
V (t, y) ≤ −p(t)〈H(t)y(t), y(t)〉
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−k(t)
t∫

t−τ(t)

〈K(t, t− s)y(s), y(s)〉ds+ 2q‖H(t)‖‖y(t)‖2.

Using (2.12), we obtain

d

dt
V (t, y) ≤ −

(
p(t)− 2q‖H(t)‖

h(t)

)
〈H(t)y(t), y(t)〉

−k(t)
t∫

t−τ(t)

〈K(t, t− s)y(s), y(s)〉ds.

According to the de�nition of (2.11), we have

d

dt
V (t, y) ≤ −γq(t)V (t, y),

where γq(t) is given in (3.3). Repeating similar reasoning as in the proof of Theorem
1, we obtain (3.2).

Theorem 2 is proven.
�

Theorem 3. Let the conditions of Theorem 1 hold and ω > 0 in (1.3). Suppose
that the integral

∞∫
0

ωq‖H(ξ)‖(h(ξ))−1−ω/2 exp

(
−ω
2

∫ ξ

0

γ(s)ds

)
dξ

converges. Then the estimate holds

‖y(t)‖ ≤

√
V (0, ϕ)

h(t)
exp

(
−1

2

∫ t

0

γ(ξ)dξ

)(
1− V ω/2(0, ϕ)R

)−1/ω
, t > 0, (3.6)

for a solution y(t) to (3.1) with the initial function ϕ(t) such that

V (0, ϕ) < R−2/ω, (3.7)

where

R =

∞∫
0

ωq‖H(ξ)‖(h(ξ))−1−ω/2 exp

(
−ω
2

∫ ξ

0

γ(s)ds

)
dξ. (3.8)

Proof. Let y(t) be a solution to (3.1). Consider the Lyapunov�Krasovskii functional
(2.11) on this solution. As in the proof of Theorem 2, di�erentiating V (t, y), we
obtain (3.4), where W (t) is de�ned in (3.5). By (1.3) for ω > 0, we have

‖W (t)‖ ≤ 2q‖H(t)‖‖y(t)‖2+ω.

By (2.7), we arrive at the inequality

d

dt
V (t, y) ≤ −p(t)〈H(t)y(t), y(t)〉

−k(t)
t∫

t−τ(t)

〈K(t, t− s)y(s), y(s)〉ds+ 2q‖H(t)‖‖y(t)‖2+ω.



1696 I.I. MATVEEVA

According to the de�nition of (2.11), we have

d

dt
V (t, y) ≤ −γ(t)V (t, y) + +2q‖H(t)‖‖y(t)‖2+ω,

where γ(t) is given in (2.10). Taking into account the inequality

‖y(t)‖2 ≤ V (t, y)

h(t)
,

we obtain
d

dt
V (t, y) ≤ −γ(t)V (t, y) + β(t)(V (t, y))1+ω/2,

where

β(t) = 2q‖H(t)‖(h(t))−1−ω/2.
Hence, by Gronwall's inequality (see, for example, [8]), we arrive at the estimate

V (t, y) ≤ V (0, ϕ) exp

(
−
∫ t

0

γ(ξ)dξ

)

×

1− ω

2
V ω/2(0, ϕ)

t∫
0

β(ξ)e
−ω2

ξ∫
0

γ(s) ds
dξ


−2/ω

, t > 0, (3.9)

where V (0, ϕ) is de�ned in (2.9). We now estimate the function in parentheses

U(t) = 1− ω

2
V ω/2(0, ϕ)

t∫
0

β(ξ)e
−ω2

ξ∫
0

γ(s) ds
dξ

≥ 1− ω

2
V ω/2(0, ϕ)

∞∫
0

β(ξ)e
−ω2

ξ∫
0

γ(s) ds
dξ ≥ 1− V ω/2(0, ϕ)R,

where R is de�ned in (3.8). If ϕ(t) is such that (3.7) is valid, then U(t) > 0.
Consequently, it follows from (3.9) that

V (t, y) ≤ V (0, ϕ) exp

(
−
∫ t

0

γ(ξ)dξ

)(
1− V ω/2(0, ϕ)R

)−2/ω
.

By the de�nition of (2.11), we obtain (3.6).
The theorem is proven.

�

Remark 1. If q = 0, then Theorems 2 and 3 turn into Theorem 1.

Remark 2. Let the conditions of Corollaries 2 and 3 in Section 1 be valid, which
guarantee the asymptotic or exponential stability of the zero solution to the linear
systems. Then Theorem 3 gives us estimates for attraction domains and estimates
characterizing stabilization rates of solutions to (1.1) as t→∞.
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