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THE SUM OF ORDERS OF ELEMENTS IN NONABELIAN

GROUPS OF ODD ORDER

A.A. BUTURLAKIN, A.F. TERESHCHENKO

Abstract. Denote by ψ(G) the sum of the orders of the elements of a
�nite group G. We obtain an exact upper bound for ψ(G) on the set of
nonabelian groups of given odd order n in terms of the minimal prime
divisor of n. We also describe the �nite groups on which this bound is
achieved.
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1. Introduction

Denote by ψ(G) the sum of the orders of the elements of a �nite group G. In
[1] the authors show that the maximum of ψ(G) on the set of groups of the given
order n is attained at a cyclic group. This maximum is strict, that is, if H is a
non-cyclic group of order n, then ψ(H) < ψ(G). Using the function ψ, it is possible
to formulate su�cient conditions for a �nite group to be cyclic, abelian, nilpotent,
solvable, or supersolvable [2]. The paper [2], in particular, gives an upper bound for
the values of ψ(G) on the set of nonabelian groups G of even order. The paper [3]
contains a similar result for the non-cyclic q∗-groups. A �nite group G is a q∗-group
if q is the smallest prime divisor of the order of G. The main result of [3] states
that if G is a �nite non-cyclic q∗-group of order n and Cn is a cyclic group of order
n, then

ψ(G) 6
(q3 − q + 1)(q + 1)

q5 + 1
ψ(Cn).
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For a positive integer m and a prime q, put

(1) Mqm+1 = 〈a, b|aq
m

= bq = 1, ab = a1+q
m−1

〉.

Here we prove the following statement.

Theorem 1. Let q be an odd prime and let G be a nonabelian q∗-group of order n.
Then

ψ(G) 6
q6 + q3 − q2 + 1

q7 + 1
ψ(Cn)

with the equality if and only if G is a direct product of Mq3 and a cyclic group of
order coprime to q.

2. Preliminaries

The following lemma contains some useful facts about the function ψ.

Lemma 1. (1) [4, Lemma 2.2 ] If A, B are �nite groups of coprime orders,
then ψ(A×B) = ψ(A)ψ(B).

(2) [1, Corollary B] If P is a normal cyclic Sylow subgroup of a �nite group G,
then ψ(G) 6 ψ(P )ψ(G/P ), with equality if and only if P is central in G.

(3) [4, Lemma 2.9 ] If n is a natural number, p and q are the largest and smallest
prime divisors of n, then

ψ(Cn) >
q

p+ 1
n2.

(4) [4, Lemma 2.9 ] If p is a prime and m is a non-negative integer, then

ψ(Cpm) =
p2m+1 + 1

p+ 1
.

(5) [4, Lemma 2.2 ] Let p be a prime. Assume that G is a semidirect product of
a normal cyclic p-subgroup C and a nontrivial subgroup F whose order is
coprime to p. Put Z = CF (C). Then

ψ(G) = ψ(C)ψ(Z) + |C| (ψ(F )− ψ(Z)) .

Observe that [4, Lemma 2.9 ] states that ψ(Cn) > 2/(p + 1), but the authors
prove strict inequality. Also it easy to see that the number 2 in the numerator can
be replaced with q.

The following statement easily follows from Item (4) of the previous lemma.

Corollary 1. Let p be a prime and m be a positive integer. Then the following
statements hold.

(1)
pm

ψ(Cpm)
<
p+ 1

p2
.

(2) If H is a proper subgroup of a cyclic group C and p is a prime divisor of
the index |C : H|, then

ψ(H)

ψ(C)
6

1

p2 − p+ 1
.

Lemma 2. If H is a normal abelian Hall subgroup of a �nite group G, then ψ(G) 6
ψ(H)ψ(G/H).
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Proof. By the Schur�Zassenhaus theorem, G ' H o (G/H). It follows from Item
(1) of Lemma 1 that it is su�cient to prove that ψ(H o (G/H)) 6 ψ(H × (G/H)).
Choose h ∈ H and g ∈ G/H and denote by gh and g · h their products as elements
of semidirect and direct products respectively. Since H is a Hall subgroup, |g · h| =
|g||h|. Now

(gh)|g| = hg
|g|−1

hg
|g|−2

. . . hgh.

So |gh| divides |g · h|, and the lemma is proved. �

Lemma 3. [4, Proposition 2.5 ] Let G be a �nite group and suppose that there exists
x ∈ G such that |G : 〈x〉| < 2p, where p is the maximal prime divisor of |G|. Then
one of the following holds:

(1) G has a normal cyclic Sylow p-subgroup;
(2) G is solvable and 〈x〉 is a maximal subgroup of G of index either p or p+1.

Lemma 4. [5, Theorem 4.2 ] If q is an odd prime and m is a positive integer, then

ψ(Mqm+1) = ψ(Cqm × Cq) =
q2m+2 + q3 − q2 + 1

q + 1
.

In particular,

ψ(Mq3) =
q6 + q3 − q2 + 1

q7 + 1
ψ(Cq3).

3. Proof of Theorem

Let q be an odd prime and let G be a nonabelian q∗-group of order n. Suppose
that

(2) ψ(G) >
q6 + q3 − q2 + 1

q7 + 1
ψ(Cn).

Let p be the greatest prime divisor of |G|. Since ψ(Cn) > q
p+1n

2 by Item (3) of

Lemma 1,

ψ(G) >
(q6 + q3 − q2 + 1)q

(q7 + 1)(p+ 1)
n2.

So G contains an element x such that

|x| > ψ(G)

n
>

(q6 + q3 − q2 + 1)q

(q7 + 1)(p+ 1)
n.

Then

|G : 〈x〉| < (q7 + 1)(p+ 1)

(q6 + q3 − q2 + 1)q
.

We proceed by induction on the number of prime divisors of the order of G.
Assume that p = q. Then

|G : 〈x〉| < (q7 + 1)(q + 1)

(q6 + q3 − q2 + 1)q
.

Since G is nonabelian and

(q7 + 1)(q + 1)

(q6 + q3 − q2 + 1)q
< q2,
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the index |G : 〈x〉| is q. It follows that G is isomorphic to Mqm+1 for m > 2 (see, for
example, [6, Theorem 1.2 ]). By Lemma 4 and Item (4) of Lemma 1, the inequality
(2) leads to

ψ(G) =
q2m+2 + q3 − q2 + 1

q + 1
>
q6 + q3 − q2 + 1

q7 + 1
ψ(Cn) =

=
q6 + q3 − q2 + 1

q7 + 1
· q

2m+3 + 1

q + 1
,

or equivalently

(q2m+2 + q3 − q2 + 1)(q7 + 1)− (q6 + q3 − q2 + 1)(q2m+3 + 1) =

= −q2m+6 + q2m+5 − q2m+3 + q2m+2 + q10 − q9 + q7 − q6 =

= (−q2m+2 + q6)(q3 + 1)(q − 1) > 0.

This inequality holds and becomes equality only if m = 2 as stated.
Suppose that p > q. Then

|G : 〈x〉| < (q7 + 1)(p+ 1)

(q6 + q3 − q2 + 1)q
< p+ 1.

It follows from Lemma 3 that either G contains a normal cyclic Sylow p-subgroup
or |G : 〈x〉| = p.

Assume that G contains a normal cyclic Sylow p-subgroup P . By Item (2) of
Lemma 1, we have ψ(G) 6 ψ(P )ψ(G/P ) with the equality if and only if P is
central in G.

If G/P is a nonabelian group, then

ψ(G/P ) 6
q6 + q3 − q2 + 1

q7 + 1
ψ(C|G/P |)

by the inductive hypothesis. Hence

ψ(G) 6
q6 + q3 − q2 + 1

q7 + 1
ψ(P )ψ(C|G/P |) =

q6 + q3 − q2 + 1

q7 + 1
ψ(Cn).

Since we assume (2), the latter inequality must be equality. It is possible only if P
is central. Then G has the stated structure, that is, it is a direct product of Mq3

and a cyclic group of order coprime to q.
Let G/P be an abelian group. Denote by H a p-complement of G. We write Z

for CH(P ). By Item (5) of Lemma 1,

ψ(G) < ψ(Cpm)ψ(H)

(
ψ(Z)

ψ(H)
+

pm

ψ(Cpm)

)
.

If H is cyclic, then

ψ(G) <

(
ψ(Z)

ψ(H)
+

pm

ψ(Cpm)

)
ψ(Cn).

Let us bound the right-hand side from above. Consider the fraction ψ(Z)/ψ(H). If
Z = H, then G = P ×H and G is abelian, contradicting the assumption. So Z is
a proper subgroup of H. It follows from Item (2) of Corollary 1 that

(3)
ψ(Z)

ψ(H)
6

1

r2 − r + 1

for a prime divisor r of |H : Z|. Since G/CG(P ) 6 Aut(Cpm), we have H/CH(P ) 6
Aut(Cpm). Therefore, |H/CH(P )| divides p − 1. In particular, r divides p − 1 and
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so p > 2r + 1. Since r > q, it follows that p > 2q + 1. Now it follows from (3) and
Item (1) of Corollary 1 that(

ψ(Z)

ψ(H)
+

pm

ψ(Cpm)

)
ψ(Cn) 6

(
1

(2q + 1)2
+

1

2q + 1
+

1

q2 − q + 1

)
ψ(Cn).

Since
1

(2q + 1)2
+

1

2q + 1
+

1

q2 − q + 1
<
q6 + q3 − q2 + 1

q7 + 1

holds for all q > 2, we have a contradiction.
If H is a non-cyclic subgroup of G, then by Item (5) of Lemma 1, we have

ψ(G) = |P |ψ(H) + (ψ(P )− |P |)ψ(Z).
Dividing the both sides by ψ(Cn), we get

ψ(G)

ψ(Cn)
=
|P |
ψ(P )

ψ(H)

ψ(C|H|)
+

(
1− |P |

ψ(P )

)
ψ(Z)

ψ(C|Z|)

ψ(C|Z|)

ψ(C|H|)
.

Since ψ(Z) 6 ψ(C|Z|),

ψ(G)

ψ(Cn)
6
|P |
ψ(P )

ψ(H)

ψ(C|H|)
+

(
1− |P |

ψ(P )

)
ψ(C|Z|)

ψ(C|H|)
=

=
|P |
ψ(P )

(
ψ(H)

ψ(C|H|)
−
ψ(C|Z|)

ψ(C|H|)

)
+
ψ(C|Z|)

ψ(C|H|)
.

Since H is a non-cyclic q∗-group, according to [3, Theorem 4]

ψ(H)

ψ(C|H|)
6

(q3 − q + 1)(q + 1)

q5 + 1
.

Thus
ψ(G)

ψ(Cn)
6
|P |
ψ(P )

(
(q3 − q + 1)(q + 1)

q5 + 1
−
ψ(C|Z|)

ψ(C|H|)

)
+
ψ(C|Z|)

ψ(C|H|)
.

Since ψ(C|Z|)/ψ(C|H|) > 0, Corollary 1 implies that

ψ(G)

ψ(Cn)
<

(q + 1)

q2
(q3 − q + 1)(q + 1)

q5 + 1
+

1

q2 − q + 1
.

The inequality

(q + 1)

q2
(q3 − q + 1)(q + 1)

q5 + 1
+

1

q2 − q + 1
<
q6 + q3 − q2 + 1

q7 + 1

is equivalent to

q15 − 3q14 + 2q12 − 3q11 + q10 − q9 − q7 − 3q6 + 3q5 − q4 − 3q3 + q2 − 1 > 0

which holds for all q > 2 (indeed, q15 > 3q14, 2q12 > 3q11, and so on); that is
a contradiction and we �nished the case when G contains a normal cyclic Sylow
p-subgroup.

Assume that |G : 〈x〉| = p. Let P ∈ Sylp(G) and |P | = pm+1. There are three
options: P is cyclic (this situation has been considered already), P ' Cpm ×Cp, or
P 'Mpm+1 .

Let us show that P is normal in G. If Q ∈ Sylq(G) then Q lies in 〈x〉. So Q
is cyclic and G contains a normal q-complement N (see, for example, [7, Theorem
5.14]). By the inductive hypothesis, P is normal in N and, therefore, in G. So
G = P oH where H is a cyclic subgroup of G.
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If P is isomorphic to Cpm ×Cp, then ψ(G) 6 ψ(P )ψ(H) by Lemma 2. It follows
from Lemma 4 that

ψ(G)

ψ(Cn)
6

ψ(P )

ψ(Cpm+1)
=
p2m+2 + p3 − p2 + 1

p2m+3 + 1
6
q6 + q3 − q2 + 1

q7 + 1
.

The last inequality holds and is strict for all m > 2. If m = 0, then P is cyclic.
Assume that m = 1. Since H acts nontrivially on the cyclic group P/CP (H) of
order p, its order has a non-identity common divisor with p− 1. So p > 2q+1. The
inequality

(2q + 1)4 + (2q + 1)3 − (2q + 1)2 + 1

(2q + 1)5 + 1
<
q6 + q3 − q2 + 1

q7 + 1

is equivalent to

8q9 + 20q8 + 24q7 + 31q6 + 28q5 + q4 − 4q3 + 17q2 + 16q + 3 > 0,

which holds for all q > 1; that is a contradiction.
Finally, consider the case P ' Mpm+1 . Let h be an arbitrary element of the

group H and ϕ be the automorphism of P induced by conjugation by h. Let a, b
be generators for P such that

ap
m

= bp = 1, ab = a1+p
m−1

.

Obviously, ϕ(g) = g for every g ∈ 〈a〉. If ϕ(b) = bγaα for 0 6 γ 6 p − 1 and
0 6 α 6 pm − 1, then

a(1+p
m−1) = ϕ(ab) = aϕ(b) = ab

γaα = ab
γ

= a(1+p
m−1)γ .

Hence

(1 + pm−1)γ ≡ 1 + pm−1 (mod pm),

or equivalently

(1 + pm−1)((1 + pm−1)γ−1 − 1) ≡ 0 (mod pm).

So γ − 1 ≡ 0 (mod p), i.e. γ = 1.
Since h is an arbitrary element of H, the latter centralizes the normal series

1 6 〈a〉 6 P.

Since H is a p′-group, we have G = P ×H.
By Item (1) of Lemma 1

ψ(G)

ψ(Cn)
=

ψ(P )ψ(H)

ψ(C|P |)ψ(C|H|)
.

Recall that H is a cyclic subgroup, and therefore

ψ(G)

ψ(Cn)
=

ψ(P )

ψ(C|P |)
6
p6 + p3 − p2 + 1

p7 + 1
<
q6 + q3 − q2 + 1

q7 + 1
;

that is a contradiction, and the proof is complete.
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