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DIVISIBLE DESIGN GRAPHS WITH PARAMETERS

(4n, n+ 2, n− 2, 2, 4, n) AND (4n, 3n− 2, 3n− 6, 2n− 2, 4, n)

L. SHALAGINOV

Abstract. A k-regular graph is called a divisible design graph (DDG
for short) if its vertex set can be partitioned into m classes of size n,
such that two distinct vertices from the same class have exactly λ1

common neighbors, and two vertices from di�erent classes have exactly
λ2 common neighbors. A 4-by-n-lattice graph is the line graph of K4,n.
This graph is a DDG with parameters (4n, n + 2, n − 2, 2, 4, n). In the
paper, we consider DDGs with these parameters. We prove that if n is
odd, then such graph can only be a 4-by-n-lattice graph. If n is even, we
characterise all DDGs with such parameters. Moreover, we characterise
all DDGs with parameters (4n, 3n − 2, 3n − 6, 2n − 2, 4, n) that are
related to 4-by-n-lattice graphs. Also, we prove that if Deza graph with
parameters (4n, n+2, n−2, 2) or (4n, 3n−2, 3n−6, 2n−2) is not a DDG,
then n ≤ 8. All such Deza graphs were classi�ed by computer search.

Keywords: divisible desing graph, divisible design, Deza graph, lattice
graph.

1. Introduction

A k-regular graph on v vertices is called a divisible design graph (DDG for
short) with parameters (v, k, λ1, λ2,m, n) if its vertex set can be partitioned into m
classes of size n, such that two distinct vertices from the same class have exactly λ1
common neighbors, and two vertices from di�erent classes have exactly λ2 common
neighbors. A DDG with m = 1, n = 1, or λ1 = λ2 is called improper; in the
opposite case, it is called proper. Divisible design graphs were �rst studied by

Shalaginov, L., Divisible design graphs with parameters (4n, n+ 2, n− 2, 2, 4, n) and

(4n, 3n− 2, 3n− 6, 2n− 2, 4, n).
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M.A. Meulenberg in his master's thesis [9], and later the studies were developed in
three papers by D. Crnkovic, W.H. Haemers, H. Kharaghani and M.A. Meulenberg
[2, 3, 5] in 2011.

Every graph G can be interpreted as a design, by taking the vertices of G
as points, and the neighborhoods of the vertices as blocks. In other words, the
adjacency matrix of G is interpreted as the incidence matrix of a design. We refer
to this design as the neighborhood design of G. An incidence structure with constant
block size k is a divisible design if the point set can be partitioned into m classes
of size n, such that two points from one class occur together in λ1 blocks, and two
points from di�erent classes occur together in exactly λ2 blocks. A divisible design
D is called symmetric (or is said to have the dual property) if the dual of D (that
is, a design with a transposed incidence matrix) is again a divisible design with
the same parameters as D. The de�nition of a DDG implies that its neighborhood
design is a symmetric divisible design.

A Deza graph with parameters (v, k, b, a) is a k-regular graph with v vertices,
such that every two distinct vertices have b or a common neighbors, where b > a.
The de�nition of a DDG implies that DDG is a Deza graph with {b, a} = {λ1, λ2}.

An m×n-lattice graph is a graph with the vertex set {1, . . . ,m} × {1, . . . , n}.
It is well known that two vertices are adjacent if they share their �rst or second
coordinate. An m×n-lattice graph is a DDG when m = 4 (or n = 4). In this paper,
we characterise DDGs with parameters that are similar to the parameters of the
4×n-lattice graph. These graphs have parameters (4n, n+ 2, n− 2, 2, 4, n). We also
characterise all DDGs with parameters (4n, 3n − 2, 3n − 6, 2n − 2, 4, n) that are
related to 4×n-lattice graphs.

In [5, Construction 4.8], the construction of two series of DDGs with parameters
(4n, n+2, n−2, 2, 4, n) and (4n, 3n−2, 3n−6, 2n−2, 4, n) from Hadamard matrices
was presented. The �rst one corresponds to 4×n-lattice graphs and the second one
can be obtained from 4×n-lattice graphs by switching all edges between two pairs
of classes

The main result of this article is a characterisation of DDGs with parameters
(4n, n+ 2, n− 2, 2, 4, n) and (4n, 3n− 2, 3n− 6, 2n− 2, 4, n).

The paper is organised as follows. In Section 2, we provide some de�nitions,
notations, and preliminaries about DDGs and Deza graphs. In Section 3, we consider
Deza graphs with parameters (4n, n + 2, n − 2, 2) and (4n, 3n − 2, 3n − 6, 2n − 2)
that are not DDGs, in particular, we prove that in this case n ≤ 8. In Section 4,
we characterise DDGs with parameters (4n, n + 2, n − 2, 2, 4, n). In Section 5, we
characterise DDGs with parameters (4n, 3n− 2, 3n− 6, 2n− 2, 4, n).

2. Preliminaries

We denote the neighborhood of the vertex x by N(x) and the set of common
neighbors of the vertices x and y by N(x, y).

2.1. Properties of DDGs.

Proposition 1. [5, Lemma 2.1] The eigenvalues of the adjacency matrix of a DDG
with parameters (v, k, λ1, λ2,m, n) are

{k,
√
k − λ1,−

√
k − λ1,

√
k2 − λ2v,−

√
k2 − λ2v},
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with the multiplicities 1, f1, f2, g1, g2, respectively. Moreover, f1 + f2 = m(n − 1)
and g1 + g2 = m− 1.

The equation [5, Equation 2] states that the trace of adjacency matrix A of a
DDG is:

(1) trace(A) = 0 = k + (f1 − f2)
√
k − λ1 + (g1 − g2)

√
k2 − λ2v

Let V1 ∪ V2 ∪ . . . ∪ Vt be the partition of the vertex set of a graph Γ with the
property that every vertex of Vi has exactly rij neighbors in Vj . Then V1∪V2∪. . .∪Vt
will be an equitable t-partition of Γ. Matrix R = (rij)t×t is called the quotient matrix
of the equitable partition.

Proposition 2. [5, Theorem 3.1] The vertex partition from the de�nition of a
DDG (the canonical partition) is equitable and the quotient matrix R satis�es the
following equation

R2 = RRT = (k2 − λ2v)Im + λ2nJm

.

Further, by a factor matrix of DDG we mean the matrix corresponding to the
canonical partition of DDG.

Proposition 3. [5, Proposition 3.2] The quotient matrix R of DDG satis�es the
following conditions:∑

i

(R)i,j = k, for all j = 1, 2, . . . ,m,

0 ≤ trace(R) = k + (g1 − g2)
√
k2 − λ2v ≤ m(n− 1).

2.2. Construction that arises from Hadamard matrices. An m×m matrix
H is a Hadamard matrix if every entry is 1 or −1, and HHT = mI. A Hadamard
matrixH is called graphical, ifH is symmetric with a constant diagonal, and regular,
if all row and column sums are equal (for example, l). Without loss of generality
we assume that a graphical Hadamard matrix has diagonal entries −1. Consider a
regular graphical Hadamard matrix H.

The next construction is based on [5, Contruction 4.8].

Construction 1. Consider the smallest regular graphical Hadamard matrices −1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

 and

 −1 1 −1 −1
1 −1 −1 −1
−1 −1 −1 1
−1 −1 1 −1

 .
We replace every entry with value −1 by Jn−In and each +1 by In, and obtain the

adjacency matrix of a DDG with parameters (4n, n+ 2, n− 2, 2, 4, n) and (4n, 3n−
2, 3n− 6, 2n− 2, 4, n) respectively.

The second graph can be obtained from the �rst one by switching edges between
two pairs of classes of the canonical partition.
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2.3. Switching constructions. Switching a set of vertices in a graph means
reversing the adjacencies of each pair of vertices, where one belongs to the set and
the other does not: thus, the edge set is changed such that an adjacent pair becomes
nonadjacent and vice versa. The edges, both of whose endpoints either belong to
the set, or do not belong, are not changed. Graphs are switching equivalent if one of
them can be obtained from the other one by switching. Switching was introduced
by van Lint and Seidel (see [11]) and developed by Seidel.

An involutive automorphism of a graph is called a Seidel automorphism if it only
interchanges nonadjacent vertices.

Construction 2 (Dual Seidel switching; [4, Theorem 3.1]). Let G be a strongly
regular graph with parameters (v, k, λ, µ), where k 6= µ, λ 6= µ. Suppose that M is
the adjacency matrix of G, and P is a non-identity permutation matrix of a similar
size. Then PM is the adjacency matrix of a Deza graph Γ if and only if P represents
a Seidel automorphism. Moreover, Γ is a Deza graph if and only if λ 6= 0, µ 6= 0.

Construction 3 (Generalised dual Seidel switching 2; [6, Theorem 6]). Let G be

a Deza graph with the adjacency matrix M =

[
M11 M12

M21 M22

]
, and H be its induced

subgraph with the adjacency matrixM11. If there exists a Seidel automorphism of H
with the permutation matrix P11 such that P11M12M22 = M12M22, then the matrix

N =

(
P11M11 M12

M21 M22

)
is the adjacency matrix of a Deza graph.

Remark 1. The combinatorial meaning of the matrix condition is as follows.
Condition P11M11M12 = M11M12 from Theorem 3 means that for every v ∈ V (G)\
V (H) and for every x, y ∈ V (H) such that ϕ(x) = y, the number of common
neighbors for v and x in H is equal to the number of common neighbors for v and
y in H.

Remark 2. Note that in [6], Construction 3 was considered only for Deza graphs
with strongly regular children but the proof does not use this property, therefore, this
construction can be applied to every Deza graph.

3. Deza graphs which are not DDGs

Proposition 4. [7, Theorem 1] If G is a Deza graph with parameters (v, k, b, a)
and a < 2b− k, then G is a DDG.

Lemma 1. If G is a Deza graph with parameters (4n, n+ 2, n− 2, 2) or (4n, 3n−
2, 3n− 6, 2n− 2) and G is not a DDG, then n ≤ 8.

Proof. (1) Let G have parameters (4n, n+ 2, n−2, 2). By Lemma 4, if G is not
a DDG, then a ≥ 2b− k. Thus, 2 ≥ 2(n− 2)− (n+ 2), and n ≤ 8.

(2) Let G have parameters (4n, 3n−2, 3n−6, 2n−2). By Lemma 4, if G is not
a DDG, then a ≥ 2b− k. Thus, 2n− 2 ≥ 2(3n− 6)− (3n− 2), and n ≤ 8.

�

Deza graphs with parameters (4n, n+ 2, n− 2, 2) and (4n, 3n− 2, 3n− 6, 2n− 2)
in the case when n ≤ 8 were determined completely by computer search. For n = 6,
we found 48 non-isomorphic Deza graphs with parameters (4n, n+ 2, n− 2, 2) and
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10 non-isomorphic Deza graphs with parameters (4n, 3n − 2, 3n − 6, 2n − 2) that
are not DDGs. For the remaining values of n (i.e., 2, 3, 4, 5, 7, and 8), we found
only DDGs.

Adjacency matrices of all Deza graphs with such parameters are available on
the web pages http://alg.imm.uran.ru/dezagraphs/deza.php?v=24&k=8&b=4&
a=2&form=None and http://alg.imm.uran.ru/dezagraphs/deza.php?v=24&k=

16&b=12&a=10&form=None.

4. DDGs with parameters (4n, n+ 2, n− 2, 2, 4, n)

The main result of this section is the following theorem.

Theorem 1. Let G be a DDG with parameters (4n, n+ 2, n− 2, 2, 4, n). Then one
of the following cases hold.

(1) If n is odd, then G is isomorphic to a 4×n-lattice graph,
(2) If n is even, then the quotient matrix R of G equals with respect to the

canonical partition to one of matrices (4), (5) or (6)
(a) if R equals matrix (4), then G is isomorphic to the 4×n-lattice graph,
(b) if R equals matrix (5), then G is isomorphic to the graph G′ from

Construction 4 (see below),
(c) if R equals matrix (6), then G is isomorphic to one of the graphs

obtained from Construction 5 (see below).

For n ≤ 8, we veri�ed the assertion of Theorem 1 by computer enumeration, and
it is true. Therefore, we will assume that n > 8 if necessary.

By Proposition 1, we have g1 + g2 = m− 1 = 3. We can calculate all possibilities
for g1, g2 and trace(R) using Proposition 3 and Equation (1).

g1 g2 trace(R)
3 0 4n− 4
2 1 2n
1 2 4
0 3 8− 2n

Òàáëèöà 1

If g1 = 0 and n > 8, then trace(R) < 0, which is impossible.

If g1 = 3, then G has exactly four eigenvalues {k,±2, n − 2}. The classi�cation
of graphs with the smallest eigenvalue −2 (see [1, Section 3.12]) implies that G is
isomorphic to the 4×n-lattice graph.

4.1. Quotient matrices.

Lemma 2. Let G be a DDG with parameters (v, k, λ1, λ2,m, n) and suppose that n
is odd. If R = [rij ] is the quotient matrix of G, then rii is even for all i = 1, . . . ,m.

Proof. Since rii is the valency of the subgraph induced by the vertices of the i-th
class of canonical partition, rii is even for an odd n. �
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Proposition 5. Let G be a DDG with parameters (4n, n+2, n−2, 2, 4, n) where n >
8 and suppose that (a, b, c, d) is a row of the quotient matrix R. Then {a, b, c, d} =
{n− 1, 1, 1, 1}.

Proof. By Proposition 3, we have the equality

(2) a+ b+ c+ d = n+ 2

and by Proposition 2, we have

(3) a2 + b2 + c2 + d2 = n2 − 2n+ 4.

First, note that if there is x ∈ {a, b, c, d} such that x ≥ n, then equation (3) does not
hold. Now denote by x the largest element in {a, b, c, d} and by y the second largest
element. In the case x ≤ n− 2, the sum a2 + b2 + c2 + d2 is maximal if x = n− 2,
y = 4 and two other elements equal 0. Then we have a2+b2+c2+d2 ≤ (n−2)2+16.
By (3), we have n2 − 2n + 4 ≤ (n − 2)2 + 16. Hence, n ≤ 8. Since n > 8, we have
x = n − 1 and we need to check three possibilities for {a, b, c, d}: {n − 1, 3, 0, 0},
{n − 1, 2, 1, 0}, and {n − 1, 1, 1, 1}. It is easy to see that only the third of them
satis�es (3). �

Corollary 1. Let G be a DDG with parameters (4n, n+2, n−2, 2, 4, n). Then there
are exactly three following possibilities for quotient matrix R of G with respect to
the numbering of classes.

(4)

 n− 1 1 1 1
1 n− 1 1 1
1 1 n− 1 1
1 1 1 n− 1



(5)

 1 n− 1 1 1
n− 1 1 1 1

1 1 n− 1 1
1 1 1 n− 1



(6)

 1 n− 1 1 1
n− 1 1 1 1

1 1 1 n− 1
1 1 n− 1 1



Remark 3. It is easy to see that these matrices correspond to rows of table 1.
Therefore, if G has a quotient matrix (4), then G is isomorphic to a 4×n-lattice
graph.

Statement 1 of Theorem 1 immediately follows from Lemma 2 and Remark 3.

Further we will assume that n is even. We need to consider graphs with quotient
matrices (5) and (6).
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4.2. Graphs with quotient matrix (5).

Construction 4. The 4×n-lattice graph G has an induced subgraph H such that H
is isomorphic to the 2×n-lattice graph. By Remark 1, Construction 3 is applicable
for these G and H. For every even n > 6, there is a Seidel automorphism ϕ of H,
such that for every i ∈ {1, 2} and for every j ∈ {1, . . . , n} we have that ϕ((i, j)) =
(3− i, n+1− j). The subgraph H satis�es the condition of Construction 3 since the
combinatorial condition of Remark 1 holds. Indeed, for every v ∈ V (G) \V (H) and
for every x, y ∈ V (H) such that ϕ(x) = y, there is exactly one common neighbor
in H for v and x, and exactly one for v and y. Hence, by Theorem 3, for n > 6
there is a Deza graph with parameters (4n, n + 2, n − 2, 2). Since automorphism
ϕ interchanges two blocks of the canonical partition of the 4×n-lattice graph, the
obtained Deza graph is a DDG. It is clear that it has quotient matrix (5). We denote
this graph by G′(n).

In this section, we prove the statement 2b of Theorem 1. If G is a DDG with
parameters (4n, n+ 2, n− 2, 2, 4, n) and quotient matrix (5), then G is isomorphic
to G′(n).

Proof. We denote the blocks of the canonical partition of G by V1, V2, V3, and
V4 with respect to the quotient matrix (5). According to the quotient matrix (5),
the vertices of V1 and V2 induce cliques in G. There is a perfect matching between
them. We denote the vertices of the �rst block by (1, 1), (1, 2), . . . , (1, n), and the
vertices of the second block by (2, 1), (2, 2), . . . , (2, n), such that vertices (1, i) and
(2, i) are adjacent for every i.

Consider all pairs of vertices from blocks V1 and V2. Recall that in G, vertices
from the same block have n − 2 common neighbors, and vertices from di�erent
blocks have 2 common neighbors. Every two vertices from V1 have n − 2 common
neighbors in V1 and no common neighbors in other blocks. That is also true for
every two vertices from V2. Vertices (1, i) and (2, j), where i 6= j, have two common
neighbors ((1, j) and (2, i)) in V1 ∪ V2, and no common neighbors in V3 and V4.
Vertices (1, i) and (2, i) have no common neighbors in V1 ∪ V2, and 2 common
neighbors in V3 ∪V4. But (1, i) has only one neighbor in V3 and one neighbor in V4.
We denote these two vertices by (3, i) in V3 and (4, i) in V4. Then (3, i) and (4, i)
are adjacent with the vertex (2, i) and have no other neighbors in V1 ∪ V2.

Now consider common neighbors of vertices (1, i) and (3, i). In this case,
N((1, i)) ∩ N((3, i)) = {(2, i), (4, i)} because N((1, i)) ∩ (V3 ∪ V4) = {(3, i), (4, i)},
N((3, i)) ∩ (V1 ∪ V2) = {(1, i), (2, i)} and vertices (1, i), (3, i) have 2 common
neighbors in the graph G. Similarly, N((1, i)) ∩ N((4, i)) = {(2, i), (3, i)}, hence,
vertices {(1, i), (2, i), (3, i), (4, i)} induce a clique in graph G.

From the quotient matrix (5) we know that the subgraph of G induced by V3 is
isomorphic to n/2 copies of K2. Without loss of generality we assume that every
vertex (3, i) is adjacent to the vertex (3, n − i + 1) for all i = 1, 2, . . . , n/2. Now
consider the vertices (4, i) and (4, n−i+1). Since vertices (1, i) and (3, n−i+1) have
2 common neighbors in G and (1, n− i+1), (3, i) ∈ N((1, i), (3, n− i+1)), it follows
that every vertex (3, n− i+ 1) is not adjacent to the vertex (4, i). Similarly, every
vertex (3, i) is not adjacent to the vertex (4, n− i+ 1). Therefore, the vertices (1, i)
and (4, n− i+ 1) have only one common neighbor in V1 ∪V2 ∪V3. But every vertex
(1, i) has one neighbor (the vertex (4, i)) in V4. Hence, vertices (4, i) and (4, n−i+1)
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are adjacent for every i. Moreover, according to the quotient matrix (5), each vertex
(3, i) is adjacent with all vertices (4, j) with the exception of (4, n− i+ 1).

We described all edges of the graph G. Hence, there is a unique DDG with such
parameters and quotient matrix (5). Thus, this graph is isomorphic to G′(n). �

4.3. Graphs with quotient matrix (6). Let G be a DDG with parameters
(4n, n+2, n−2, 2, 4, n) and the quotient matrix (6). Further, suppose that A = [Aij ]
is the adjacency matrix of G with blocks Aij corresponding to the canonical
partition of G. Now consider an auxiliary graph G∗ with the following adjacency
matrix:

(7) A∗ =

 A11 Jn −A12 A13 A14

Jn −A21 A22 A23 A24

A31 A32 A33 Jn −A34

A41 A42 Jn −A43 A44

 .
This matrix can be obtained by the operation that corresponds to switching of

all edges between V1 and V2, and between V3 and V4. The partition (V1, V2, V3, V4)
is equitable for the graph G ∗ ∗ with quotient matrix J4.

Note that graph G∗ is regular with valency 4 and it can be disconnected. In
the following lemma, we calculate the number of common neighbors of all pairs of
vertices in the graph G∗. We denote the set of common neighbors of vertices x and
y in the graph G∗ by NG∗(x, y). Each vertex x ∈ Vi in the graphs G and G∗ has
only one neighbor in its own class Vi; we denote this neighbor by x

′.

Lemma 3. Let G∗, V1, V2, V3, and V4 be as described above, and suppose that x
and y are distinct vertices of G∗. Without loss of generality we can assume that
x ∈ V1. Consider all possible cases of the location of the vertex y:

(1) If y ∈ V1, then |NG∗(x, y)| = 0,
(2) If y ∈ V2, and

(a) if |N(x, y) ∩ (V1 ∪ V2)| = 2, then |NG∗(x, y)| = 0,
(b) if |N(x, y) ∩ (V1 ∪ V2)| = 1, then |NG∗(x, y)| = 2,
(c) if |N(x, y) ∩ (V1 ∪ V2)| = 0, then |NG∗(x, y)| = 4,

(3) If y ∈ Vi, where i ∈ {3, 4}, and
(a) if |N(x, y) ∩ (V1 ∪ Vi)| = 2, then |NG∗(x, y)| = 4,
(b) if |N(x, y) ∩ (V1 ∪ Vi)| = 1, then |NG∗(x, y)| = 2,
(c) if |N(x, y) ∩ (V1 ∪ Vi)| = 0, then |NG∗(x, y)| = 0,

Proof. (1) Since G has quotient matrix 6, all common neighbors of x and y
in G lie in V2. Since the edges between V1 and V2 in G∗ form a perfect
matching, we have that x and y have no common neighbors in G∗,

(2) (a) The vertex x is adjacent to y′ and the vertex y is adjacent to x′ in
G, but in G∗ these adjacencies are removed. Thus, x and y have no
common neighbors in G∗.

(b) InG, either x is adjacent to y′ or y (but not both of them) is adjacent to
x′ and they have one more common neighbor in V3 ∪ V4. In G∗, edges
between V1 and V2 are switched; hence, x and y have one common
neighbor in V1 ∪ V2 and one common neighbor in V3 ∪ V4.

(c) In G, neither x is adjacent to y′, nor y is adjacent to x′. Hence, x is
adjacent to y′ and y is adjacent to x′ in G∗. Moreover, x and y have
two common neighbors in V3 ∪ V4.
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(3) Let y ∈ V3. If y ∈ V4, then the proof is the same as if y ∈ V3.
(a) In G, vertices x and y have two common neighbors in V1 ∪ V3 and

have no common neighbors in V2 ∪ V4. Hence, in G∗, they have two
common neighbors in V1 ∪ V3 and two common neighbors in V2 ∪ V4.
New common neighbors are the unique neighbor of y in V2 and the
unique neighbor of x in V4.

(b) In G, vertices x and y have one common neighbor in V1 ∪ V3 and
one common neighbor in V2∪V4. Therefore, in G∗, they have the same
common neighbor in V1∪V3 and the other common neighbor in V2∪V4.

(c) In G, vertices x and y have no common neighbors in V1 ∪ V3 and two
common neighbors in V2 ∪ V4. Hence, in G∗, they have no common
neighbors in V1 ∪ V3 and in V2 ∪ V4.

�

Consider a connected component of G∗. We denote it by D and suppose that
D1 = D ∩ V1, D2 = D ∩ V2, D3 = D ∩ V3, D4 = D ∩ V4. Since G∗ has the equitable
partition with parts V1, V2, V3, V4 and with quotient matrix J4, it follows that the
set Di ∪Dj induces a subgraph of valency 2, which is the union of cycles, for every
i and j (i 6= j).

Lemma 4. The size of D is divisible by 8.

Proof. Consider the largest independent set S in D1. For each vertex x ∈ S, we
have one neighbor x′ in D1. Also for each vertex x we have one neighbor in D2, one
neighbor in D3 and one in D4. That is also true for the vertex x

′. Since every other
vertex must have one neighbor in D1 which is not adjacent to vertices from S, then
there are no other vertices in D. Finally, we have |D| = 8|S| and |D| is divisible by
8. �

In the next two lemmas, we consider the case when D contains vertices x and y
with 4 common neighbors.

Lemma 5. There exist vertices x, y ∈ D of type 2c from Lemma 3 if and only
if there are four vertices in D1 ∪ D2 (or in D3 ∪ D4) that induce a cycle. In this
case, the induced subgraphs on D1 ∪ D2 and D3 ∪ D4 are isomorphic to sC4 for
some s. Moreover, D is isomorphic to Cs[K2] where every copy of K2 is a pair of
vertices of type 2c from Lemma 3. Alternately, two of such pairs are from V1 ∪ V2
and two pairs are from V3 ∪ V4. We denote a cycle of length s by Cs and a pair of
nonadjacent vertices by K2.

Proof. First, consider vertices x, y ∈ D of type 2c from Lemma 3. They have two
common neighbors (x′ and y′) in D1 ∪D2 and two common neighbors (say, z and
t) in D3 ∪ D4. Hence, the pairs x′, y′ and z, t are of type 2c. Then z′, t′ and two
common neighbors x′, y′ in D3 ∪D4 are of type 2c. Then the common neighbors of
z′, t′ are also of type 2c. We continue this process until the cycle of pairs of vertices
is closed. Thus, we have a cycle of pairs of type 2c, where two pairs x, y and x′, y′

are taken from D1∪D2, the next two pairs are from D3∪D4 and further alternately,
because we can start with any of these pairs.

Conversely, if we have the cycle (x, x′, y, y′) as the induced subgraph in D1 ∪D2

(or D3∪D4), then the pairs of vertices x, y and x′, y′ are of type 2c, and the lemma
is proved. �
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Lemma 6. There exist vertices x, y ∈ D of type 3a from Lemma 3 if and only if
there are four vertices in D1∪D3 (or in D2∪D4) that induce the cycle. In this case,
the induced subgraphs on D1 ∪D2 and D3 ∪D4 are isomorphic to sC4 for some s.
Moreover, D is isomorphic to Cs[K2], where each copy of K2 is a pair of vertices
of type 2c from Lemma 3. Alternately, two such pairs are from the set V1 ∪ V3 and
two pairs are from V2 ∪ V4.

Proof. First, consider vertices x, y ∈ D of type 3a from Lemma 3. They have two
common neighbors (x′ and y′) in D1 ∪D3 and two common neighbors (say, z and
t) in D2 ∪D4. Then the pairs x′, y′ and z, t are of type 3a. Therefore, z′, t′ and two
common neighbors x′, y′ in D2 ∪D4 are of type 3a. Then the common neighbors of
z′, t′ are also of type 3a. We continue this process until the cycle of pairs of vertices
is closed. Thus, we have a cycle of pairs of type 3a, where two pairs x, y and x′, y′

are taken from D1∪D3, the next two pairs are from D2∪D4 and further alternately,
because we can start with any of these pairs.

Conversely, if we have a cycle (x, x′, y, y′) as the induced subgraph in D1 ∪D3

(or D2∪D4), then the pairs of vertices x, y and x′, y′ are of type 3a, and the lemma
is proved. �

The subgraph D in Lemma 5 and Lemma 6 is the same one, but it is embedded
in a di�erent way in the graph G∗. In the �rst case, we alternate two pairs of
vertices from V1 and V2 with two pairs of vertices from V3 and V4; in the second
one, we alternate two pairs of vertices from V1 and V3 with two pairs of vertices
from V2 and V4. And we switch only edges between V1 and V2 and between V3 and
V4. Hence, corresponding subgraphs in the graph G are not isomorphic, excluding
the case when D is isomorphic to C4[K2], because in this case for D both lemmas
hold.

A (0, 2)-graph is a connected graph such that every two vertices have 0 or 2
common neighbors.

Lemma 7. If the connected component D has no pairs of vertices with four common
neighbors, then D is isomorphic to a 4-cube.

Proof. If the connected component D has no pairs of vertices with four common
neighbors, then D is a (0, 2)-graph of valency 4. In [8], Mulder proved that if a k-
regular (0, 2)-graph on v vertices has a diameter d, then v ≤ 2k and d ≤ k. In both
cases, equality is true only for a k-cube with parameters (2k, k, 2, 0). By Lemma 4,
the size of D is divisible by 8, so D is isomorphic to a 4-cube or is a Deza graph
with parameters (8, 4, 2, 0). But in the last case, D1 ∪D2 induces the cycle C4, so
by Lemma 5 we have a contradiction. �

Lemma 8. There exist three non-isomorphic equitable partitions of the 4-cube with
quotient matrix J4.

Proof. The inner edges of parts of the partition form a perfect matching in the
4-cube. Moreover, two edges from the same part are antipodal in the 4-cube. Now
we can use the result that was obtained in paper [10], that states that there are
eight equivalence classes of perfect matchings in a 4-cube and only three of them
satisfy the necessary condition. It is enough to test these perfect matchings to prove
that there are three antipodal perfect matchings and three corresponding equitable
partitions. �
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Construction 5. Consider some copies of the graph Cs[K2] with equitable
partitions as in Lemmas 5 or 6 and some copies of the 4-cube with one of three
equitable partitions. Then we can switch edges between V1 and V2 and also between
V3 and V4. This switching gives us a DDG with parameters (4n, n+ 2, n− 2, 2, 4, n)
and quotient matrix (6).

To complete the proof of Theorem 1, we prove statement 2c.

Proof of statement 2c of Theorem 1. By Lemmas 5, 6, and 7, the connected
component D of the graph G∗ is isomorphic to Cs[K2] or a 4-cube. The graph
Cs[K2] has two non-isomorphic embeddings into the canonical partition of G∗. The
4-cube has three non-isomorphic embeddings into the canonical partition of G∗.
Now we can obtain G∗ only from such connected components. Hence, a divisible
design graph G can be obtained from G∗ by the reverse switching. Thus, Theorem 1
is proved.

5. DDGs with parameters (4n, 3n− 2, 3n− 6, 2n− 2, 4, n)

The main result of this section is the following theorem.

Theorem 2. Let G be a DDG with parameters (4n, 3n−2, 3n−6, 2n−2, 4, n). Then
G can be obtained from a DDG with parameters (4n, n+2, n−2, 2, 4, n) by switching
between the �rst two classes and the last two classes of the canonical partition of
DDG. Classes are numbered according to the quotient matrix from Corollary 1.

For n ≤ 8, we veri�ed the assertion of Theorem 2 by computer enumeration, and
it is true. Therefore, we will assume that n > 8 if necessary.

5.1. Quotient matrices. By Proposition 1, we have g1 + g2 = m − 1 = 3. We
can calculate all possibilities for g1, g2, f1, f2 and trace(R) using Proposition 3 and
Equation (1).

g1 g2 trace(R)
3 0 6n− 8
2 1 4n− 4
1 2 2n
0 3 4

Òàáëèöà 2

If g1 = 3 and n > 8, then trace(R) > 4n−4, which is impossible by Proposition 3.

Proposition 6. Let G be a DDG with parameters (4n, 3n− 2, 3n− 6, 2n− 2, 4, n),
where n > 8 and suppose that (a, b, c, d) is a row of the quotient matrix R. Then
{a, b, c, d} = {n− 1, n− 1, n− 1, 1}.

Proof. By Proposition 3, we have

(8) a+ b+ c+ d = 3n− 2

and by Proposition 2, we have

(9) a2 + b2 + c2 + d2 = 3n2 − 6n+ 4
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Assume that d is the smallest element in {a, b, c, d}. First, note that a2+b2+c2+d2

is maximal if a, b and c are maximal. If d ≥ 2, then a2 + b2 + c2 is maximal when
a = n, b = n, c = n−4, and d = 2. But in this case, a2+b2+c2+d2 = 3n2−8n+20.
If 3n2−8n+20 ≥ 3n2−6n+4, then n ≤ 8. Since n > 8, we can assume that d = 1.
Then {a, b, c} is equal to {n, n, n− 3} or {n, n− 1, n− 2} or {n− 1, n− 1, n− 1}.
Only the last case gives us the equality a2 + b2 + c2 + 1 = 3n2 + 6n + 4. If d = 0,
then {a, b, c} is equal to {n, n, n − 2} or {n, n − 1, n − 1}. Both cases give us the
inequality a2 + b2 + c2 6= 3n2 + 6n+ 4. �

Corollary 2. Let G be a DDG with parameters (4n, 3n − 2, 3n − 6, 2n − 2, 4, n).
Then there exist exactly three following possibilities for quotient matrix R of G with
respect to the numbering of classes.

(10)

 n− 1 1 n− 1 n− 1
1 n− 1 n− 1 n− 1

n− 1 n− 1 n− 1 1
n− 1 n− 1 1 n− 1



(11)

 n− 1 1 n− 1 n− 1
1 n− 1 n− 1 n− 1

n− 1 n− 1 1 n− 1
n− 1 n− 1 n− 1 1



(12)

 1 n− 1 n− 1 n− 1
n− 1 1 n− 1 n− 1
n− 1 n− 1 1 n− 1
n− 1 n− 1 n− 1 1


Remark 4. These matrices correspond to the last three rows of table 2. If we switch
edges between the �rst two and the second two classes of the canonical partition of
the graph with quotient matrix (10), then we obtain a graph with corresponding
equitable partition with quotient matrix (4). Therefore, if G has quotient matrix
(10), then G is isomorphic to the second graph from Construction 1.

If we switch edges between the �rst two and the second two classes of the
canonical partition of graphs with quotient matrices (11) and (12), then we obtain
graphs with corresponding equitable partition with quotient matrices (5) and (6)
respectively. To prove Theorem 2, it su�ces to check that the resulting graphs are
DDGs with parameters (4n, n+ 2, n− 2, 2, 4, n).

5.2. Proof of Theorem 2. The proof is carried out by a simple check of the
numbers of common neighbors of the pairs of vertices in all possible cases.

We denote the blocks of the canonical partition of G by V1, V2, V3 and V4 with
respect to the quotient matrix.

Lemma 9. Let G be a DDG with parameters (4n, 3n− 2, 3n− 6, 2n− 2, 4, n) with
quotient matrix (11). Suppose that G′ is the graph obtained from G by switching
between the �rst two and the last two classes of the canonical partition. Then G′ is
a DDG with parameters (4n, n+ 2, n− 2, 2, 4, n) and with quotient matrix (5).

Proof. We need to consider all pairs of vertices in G and show that two vertices
from the same class have n− 2 common neighbors in G′ and two vertices from the
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di�erent classes have 2 common neighbors in G′. Consider all possibilities for the
number of common neighbors of vertices x, y ∈ G.

• Consider x, y ∈ Vi, where i = 1 or 2. In this case, x and y have n − 2
common neighbors in Vi, n− 2 common neighbors in V3 and n− 2 common
neighbors in V4, since each of them has n − 1 neighbors in Vi, V3 and V4.
Then each vertex in V3 ∪V4 is adjacent to x or y. Hence, the vertices x and
y have only n− 2 common neighbors in Vi in G

′.
• Consider x ∈ V1, y ∈ V2, where x ∼ y. In this case, x and y have no common
neighbors in V1∪V2. Hence, x and y have n−1 common neighbors in V3 and
n− 1 common neighbors in V4. Then there are two vertices in V3 ∪ V4 that
are nonadjacent to both x and y. Hence, x and y have 2 common neighbors
in V3 ∪ V4 in G′.
• Consider x ∈ V1, y ∈ V2, where x 6∼ y. In this case, x and y have 2 common
neighbors in V1 ∪ V2. Hence, x and y have n − 2 common neighbors in V3
and n− 2 common neighbors in V4. Then each vertex in V3 ∪V4 is adjacent
with x or y. Hence vertices x and y have 2 common neighbors in V1 ∪V2 in
G′.
• Consider x, y ∈ Vi, where i = 3 or 4. In this case, x and y have n − 2
common neighbors in V7−i, n−2 common neighbors in V1 and n−2 common
neighbors in V2. Then each vertex in V1 ∪ V2 is adjacent to x or y. Hence,
x and y have only n− 2 common neighbors in V7−i in G

′.
• Consider x ∈ V3, y ∈ V4, where |N(x, y) ∩ (V3 ∪ V4)| = 2. In this case, x
and y have 2n− 4 common neighbors in V1 ∪V2. Hence, x and y have n− 2
common neighbors in V1 and n − 2 common neighbors in V2. Then each
vertex in V1 ∪ V2 is adjacent to x or y. Hence, x and y have no common
neighbors in V1 ∪ V2 and 2 common neighbors in V3 ∪ V4 in G′.

• Consider x ∈ V3, y ∈ V4, where |N(x, y) ∩ (V3 ∪ V4)| = 1. In this case,
x and y have 2n − 3 common neighbors in V1 ∪ V2. Hence, x and y have
n − 1 common neighbors in V1 and n − 2 common neighbors in V2 or vice
versa. Then there are one vertex in V1 ∪ V2 that is nonadjacent with x and
y. Hence, vertices x and y have one common neighbor in V1 ∪ V2 and one
common neighbor in V3 ∪ V4 in G′.

• Consider x ∈ V3, y ∈ V4 where |N(x, y) ∩ (V3 ∪ V4)| = 0. In this case, x
and y have 2n− 2 common neighbors in V1 ∪V2. Hence, x and y have n− 1
common neighbors in V1 and n−1 common neighbors in V2. Then there are
two vertices in V1 ∪ V2 that are nonadjacent with x and y. Hence, vertices
x and y have two common neighbors in V1 ∪ V2 and no common neighbors
in V3 ∪ V4 in G′.

• Consider x ∈ Vi where i ∈ {1, 2}, and y ∈ Vj where j ∈ {3, 4}, where x ∼ y.
In this case, x and y have n − 2 common neighbors in Vi. There are two
possibilities for the number of common neighbors of x and y in V7−j . If x
and y have n − 1 common neighbors in V7−j , then they have 1 common
neighbor in V3−i ∪ Vj . In this case, x and y have 1 common neighbor in
V3−i ∪ Vj and 1 common neighbor in Vi in graph G′. If x and y have n− 2
common neighbors in V7−j , then they have 2 common neighbors in V3−i∪Vj .
In this case, x and y have 1 common neighbor in V7−j , 1 common neighbor
in Vi and no common neighbors in other classes in graph G′.
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• Consider x ∈ Vi where i ∈ {1, 2}, and y ∈ Vj where j ∈ {3, 4}, where x 6∼ y.
In this case, x and y have n − 1 common neighbors in Vi. There are two
possibilities for the number of common neighbors of x and y in V7−j . If x
and y have n − 1 common neighbors in V7−j , then they have 0 common
neighbors in V3−i ∪ Vj . In this case, x and y have 2 common neighbors in
V3−i∪Vj and no common neighbors in other classes in graph G′. If x and y
have n− 2 common neighbors in V7−j , then they have 1 common neighbor
in V3−i ∪ Vj . In this case, x and y have 1 common neighbor in V3−i ∪ Vj
and 1 common neighbor in V7−j in graph G′.

Thus, in all cases, two vertices from the same class of canonical partition have n−2
common neighbors in G′ and two vertices from di�erent classes have 2 common
neighbors. Hence, G′ is a DDG with parameters (4n, n+ 2, n− 2, 2, 4, n). �

Lemma 10. Let G be a DDG with parameters (4n, 3n− 2, 3n− 6, 2n− 2, 4, n) and
with quotient matrix (12). Suppose that G′ is a graph obtained from G by switching
between the �rst two and the last two classes of the canonical partition. Then G′ is
a DDG with parameters (4n, n+ 2, n− 2, 2, 4, n) and with quotient matrix (6).

Proof. The proof is similar to the proof of Lemma 9. We need to consider all
pairs of vertices in G and show that two vertices from the same class have n − 2
common neighbors in G′ and two vertices from the di�erent blocks have 2 common
neighbors in G′. Consider all possibilities for the number of common neighbors of
vertices x, y ∈ G. Without loss of generality we can assume that x ∈ V1.

• Consider y ∈ V1. In this case, x and y have n− 2 common neighbors in V2,
n − 2 common neighbors in V3 and n − 2 common neighbors in V4. Then
each vertex in V3 ∪V4 adjacent with x or y. Hence, x and y have only n− 2
common neighbors in V2 in G′.
• Consider y ∈ Vi, where i ∈ {2, 3, 4}. Let {j, s} = {2, 3, 4} \ {i}.

� If |N(x, y)∩(V1∪Vi)| = 2. Then x and y have 2n−4 common neighbors
in Vj ∪ Vs. Hence, x and y have n − 2 common neighbors in Vj and
n−2 common neighbors in Vs. Then each vertex in Vj ∪Vs is adjacent
to x or y. Hence, x and y have only two common neighbors in V1 ∪ Vi
in G′.

� If |N(x, y)∩(V1∪Vi)| = 1. Then x and y have 2n−3 common neighbors
in Vj ∪ Vs. Hence, x and y have n − 1 common neighbors in Vj and
n− 2 common neighbors in Vs or vice versa. Then there is one vertex
in Vj ∪ Vs that is nonadjacent with x and y. Hence, x and y have one
common neighbor in V1 ∪ Vi and one common neighbor in Vj ∪ Vs in
G′.

� If |N(x, y)∩(V1∪Vi)| = 0. Then x and y have 2n−2 common neighbors
in Vj∪Vs. Hence, x and y have n−1 common neighbors in Vj and n−1
common neighbors in Vs. Then there are two vertices in Vj ∪ Vs that
are nonadjacent to x and y. Hence, x and y have only two common
neighbors in Vj ∪ Vs in G′.

Thus, in all cases, two vertices from the same class of canonical partition have n−2
common neighbors in G′ and two vertices from di�erent classes have 2 common
neighbors. Hence, G′ is a DDG with parameters (4n, n+ 2, n− 2, 2, 4, n). �

This completes the proof of Theorem 2.



1756 L. SHALAGINOV

Remark 5. Graphs with quotient matrix (12) have four eigenvalues {3n −
2,±2,−(n− 2)}. Hence, these graphs are walk regular (see [3]).
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