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LOCALLY FREE SUBGROUPS OF ONE-RELATOR GROUPS

A.I. BUDKIN
ABSTRACT. Let Gi = (x1,...%s; [T1, Tnt1][T2, Tny2] ... [Tn, 220]95),
G2 = (a,z1,...,2s; [a, z1][a, x2] . . . [a,2,]S) be one-relator groups. We

find conditions on S and n under which the normal closure of each
(n — 1)-generated subgroup of G and of each 3-generated subgroup of
G is locally free.
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1. INTRODUCTION

In this paper we find conditions when the normal closure of each n-generated
subgroup of an one-relator group is a locally free group.

A group is said to be n-free if each of its n-generated subgroup is free. An example
of such group [1, lemma 3] is the fundamental group

A, = (3317962, sy T2n [$1,332][3?3,l‘4] . [332n—179€2n]>

of genus n orientable surface. There are quite a lot of articles related to n-free
groups, we will note only a few of them.

In [2] it is found the conditions under which every subgroup of infinite index of a
fundamental group of a surface is free. In particular, this implies that all subgroups
of infinite index of A,, are free and A,, is n-free.

The proof of lemma 3 [1] without changes is suitable for establishing the following
result: the group

(1,2, .. Tan, 21,5 - - -5 Zm; [T1, T2][T3, 4] - - [Xon—1,22,]5) (n > 2),

where S is a word in the alphabet 21, ..., z,,, is n-free. A detailed proof of this fact
is given in [3, proposition 2] and in [4, lemma 1.2.3].
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1758 A.I. BUDKIN

It follows from [5] that a free product with amalgamation G = F ¢ F’, where
the factors F' and F” are free groups and the amalgamated subgroup C'is a maximal
cyclic subgroup of each factor, is 2-free. Corollary 4.2 (see [6]) says that this group
G is in fact 3-free. In [6] it is defined a class C}, of groups which contains the class
of all k-free groups, and it is proved if G = K *x F’', where K and K’ belongs to
C3 and the amalgamated subgroup C is a maximal cyclic subgroup of each factor,
then G € Cj.

In [7] it is found the conditions on the defining relations of a group under which
it is 2-free. In [8] so-called fully residually free groups were studied. It is proved in
[8], if such group is 2-free then it is 3-free. Interesting results about n-free groups
can also be found in [9 — 13].

In this paper we generalize the notion of a n-free group. We consider a group

G1 = (z1,... 755 [v1, T[22, Tnya] - [T, T20] R),
where %, 11, Tnt2, Tnyts,-- -, Ta, do not occur in R. We prove that if ¢1,...,¢,_1 €
G then G/ {t1,... 7tn,1>Gl is a free group. Note that such groups can also be found

in [11, 14, 15].
Also we investigate a group G2 which have the representation

Gy = <0¢,.’L’1,...7JUS;P>7

where P = P(a, 1, x2,...,%s) = [a,x1][a, z2] ... [a,2,])S (n > 7) and z1,...,27 do
not occur in S. We show that if ¢1,5,t3 € Go then G{t1,tz,t3)? is a locally free
group. Such group were also studied in [16] and for R =1, n = 2 in [15].

2. PRELIMINARY REMARKS

We recall some definitions and notation. As usual, (S) is a group generated by
S; (t1,...,t,)¢ is a normal closure of a subgroup (ti,...,t,) in G (i.e. a normal
subgroup of G generated by ti,...,t,); G’ is the commutant of G; Z(G) is the
center of G; [z,y] = 71y~ lxy; Z is a set of integers.

An embedding of a group A into B is any homomorphism ¢ : A — B which is
an isomorphism of A onto A®. A group A is said to be embeddable in a group B if
there exists an embedding ¢ : A — B.

A group is locally free if each of its finitely generated subgroups is free.

We say that a set {f1,..., fr} of numbers has the property (E), if it contains
exactly one largest non-zero positive number or exactly one smallest negative non-
zero number. If this set does not have the property (E), we write not(E).

Let X = {x1,22,...} be an alphabet, F(X) be a free group freely generated by
the set X, and a be an homomorphism of F(X) onto some group G. If {P,Q, R, ...}
is a set of defining relations for G in the alphabet X under the map «, then G can
suitably be represented thus:

1) G=(X;P,Q,R,...).

In what follows we identify symbols x; with their corresponding generating elements
x$. The elements of X are called generating symbols for G. We shall suppose that
X contains fixed symbols z1,...,x,.

If T is a group word in the alphabet X then o,,(T) (i = 1,...,n), or simply
0;(T), denotes the sum of exponents over x; in T, and [T'] denotes the set elements
from X occurring in T'.
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Let t € Gand T = T(xy,...,x,) be a group word in X for which T% = ¢; then,
by definition, we put o;(t) = 0;(7T). Since by assumption the sum of exponents
over x; in every defining relation of G is zero, it is readily checked that o;(t) is
independent of the choice of the word T'.

Often we will write a;; instead of o;(t;).

If t = (t1,...,t) is an k-tuple of elements t1,...,t; of G it is legitimate to
consider the following matrix with integer entries:

" O'l(tl) Un(tl) a1 A1n
M(G,t) = M(G,ty,...,tx) = =
Ul(tk) Jn(tk) (0775 N Qlen

Let L be a subgroup of G generated by elements ti,...,t;. We consider the
following elementary row transformations of the matrix M (G, 1):

1) multiplication of elements of the j-th row by —1,

2) replacement of the j-th row by the difference between the j-th and m-th rows,
m#j.

Each of these transformations effects a transformation of the set ¢1,...,% to a
new set of generators of the subgroup L; this new set may be derived from the old
by corresponding transformations:

1’) replacement of ¢; by tj_l,

2') replacement of ¢; by t;t,;! for m # j.

It is easy to see that the matrix M (G ,t~) with integer entries may be brought by
transformations of the above two types to a trapezoidal form. We may thus assume
that the generators ¢1, ..., t; of L have been so chosen that M(G,t~) is a trapezoidal
matrix with only zeros below the principal diagonal (i.e. a;; = 0 for all ¢ > j) and
positive elements on the principal diagonal (i.e. a;; > 0 for all 7). We will always
assume that the matrix M (G, t) has this form.

We will also consider

3) permutation of the columns of the matrix M (G, ).

This transformation corresponds to

3') renaming of generators of the group G.

Note that transformation 3’ changes the defining relations of the group G.

We recall the Reidemeister-Schreier rewriting process. Let G have representation

(2) G =(x1,29,...;P,Q,R,...),

H < G, and N be the preimage of a subgroup H under the homomorphism c.
Choose the Schreier system S of representatives of right cosets of the classes F'(X)
modulo N. A representative of the coset Nu in S is denoted by w. Consider 7 :
F(X) — F(Y) which maps an element u = ;! ...2;" (¢ = £1) of F(X) to an
€1

— €1 € L €1 3 L
element 7(u) = Yel s, o Yal o, Of F(Y), where sj = aj} ... 2" if ¢; = 1, and

. €1 €j
S] —.’,Eil B

i
[17].

A representation of the group H relative to the mapping ys . — (sz5T 1 may
be obtained using the subgroup representation theorem [17, theorem 2.4]. Namely,
Y is taken to be the set of generators for H, and as the set of defining relations we
take

if ; = —1. Note that the restriction of 7 to /N is an homomorphism

{r(sPs™1),7(sQs™"), - | s € S} U{ys. | 52 =37 in F(X)}.
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In particular, if H = (3, 23,...)¢, and G/H is an infinite cyclic group, then we
take the Schreier system of representatives of the right cosets of F'(X) modulo N
to be the set S = {2} | k € Z}. Then, by the subgroup representation theorem,

H= <{yx’f7m1ayxlf,;c2a s }kEZ; {yx’f,xl ) T(xllcpxl_k)’ cee }kEZ>'

In order to pass from the above-given representation to a new one, we use Tietze
transformations, detailed information about which is contained in [17].

Later we shall also use the following corollary of the Magnus freedom theorem
[17, corollary 4.10.2]: if

H={(z,c,...,t; R(zP,c,...,t)), p#0),

then the subgroup G of H generated by the elements zP,c,...,t, has the
representation

G = (b,c,...;R(b,c,...,1)),

where b corresponds to the element xP, ¢ to the element ¢, ..., t to the element ¢
of G.

3. LOCALLY FREE SUBGROUPS

Let’s fix the matrices:

1 a2 p2a13 p2p3ais ... D2P3Pa-...Pr—201k—1
0 1 a3  psan .. D3P4...Dk—202 k-1
A= 0 0 1 as3q oo Pa...PL—2G3 k-1 s
0 0 0 0 |
D2p3p4 - - - Pk—2Pk—101 k X1
DP3P4 - - - Pk—2Pk—102 k T2
B=| p4...pr_2pr-103k , X =] w3 ;
a1,k Tg—1

where pa #0,...,pk—1 # 0.

Lemma 1. The column (qi,...,qx_1)" is a solution of the system of equations
AX = B, where
a2 a3 a4 ... Q1k—1 A1k
P2 a23 QA24 ... QA2k—1 A2k
_ k—2
@ =(-1) 0 p3 ass ... aszp—1 asg ,
0 0 0 oo DPk—1 Af—1,k
a3 Q24 Q25 ... Q2k—1 G2k
p3 az4 azs ... Aa3k—1 A3k
=310 p1 as ... air-1 a4k ,
0 0 0 oo DPk—1 Af—1,k

Ok—2k—1 Qk—2k

Pk—1 Ak—1,k
qk—1 = Qg—1,k-

qrk—2 = —
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PRrROOF. First we find z; by Cramer’ rule. Then we put the i-th column in the
place of the last one. Using the formula for the decomposition of the determinant
by column it is easy to see that

g = (-1)F"1x

Qji4+1  Pi+1@ii42  Pi+1Pi4205i+3 -+ Pit1---Pk—205 k—1 Dit1---Pk—104 k
1 41,542 Pit2@it1,i43 coo Dig2-PE—2Q541,k—1  Pit2---Pk—1Gi+1,k
0 1 (42,43 co Dit3ePk—20i42k—1 Pit3---Pk—10i12.k
O 0 0 1 ak_l,k
Now we multiply the 2nd row by p;y1, the 3rd row by p;11pi+2, - .., the last row
by pit1Pit2...pk—1. Then we divide the 2nd column by p;y1, the 3rd column by
Di+1Di+2, - - -, column by p;+1pit2...pr—1. We obtain that
Qi+l @it2 Qi i+3 N 7 .| Qi k
Di+1 @j4+1,i4+2  @i4+1,44+3 - it k-1 Qi+1k
¢ = (—1F=1 0 Dit2 Gi42,i43 -+ Git2k-1 Git2k |- O
0 0 0 oo Pk—1 Ap—1,k

Now we present the construction of the embedding 1 of a group G into a
suitable group C' with the specially selected representation in which the matrix
M(C, tlf, e ,t;f) has zero k-th column.

Lemma 2. Let
G={(a,z1,...,25; R(a,z1,...,25))

be a group, t1, ..., t (k < s) be elements of G and 0;(R) =0 (i = 1,...,k). Suppose

that the matriz M(G,t) has the form:

yat a2 aiz ... aik-1 Qaik
0 p2 a3 ... agp—1 G2k
3) MG H=| ... ,
0 0 0 ... pra
0 0 0 ... 0 0

where a;; = 0(t;) (note that ay, k41 is an element of matriz or is missing). Assume
that the group C' has the representation

(4) C={(a,x1,...,Tk—1,Tk,-.-Ts; R3),
where
Rs(a,x1,...,Tk—1,Zk,...,2s) = R(a, xlsc,:(“ , xgx,:qul,xgx,;qsplpz, e
xk}*lxlzqkilplpz“.pk727m’]:;n7 Thyl,. .- 71,5)7
m=p1...px_1 and q1,...,qx_1 be the same as in lemma 1. Then there exists the
embedding ¥ : G — C of G into C such that the matriz consisting of the first k
columns of the matriz M(C, tqf, e ,t;f) 1s triangular with a zero angle under the

principal diagonal and with a zero k-th column.

PrROOF. Assume that the group C; has the representation C; =
(a,z1,...,Tk—1, Tk, ... Ts; R1), where R1 = R(a,z1,...,Tk-1,T], Tkt1,...). By
corollary of the Magnus freedom theorem formulated above, there exists the



1762 A.I. BUDKIN

embedding ¢ of G into C) such that a¥ = a,2¥ = z;(i = 1,2,...,k — 1,k +
1,...), I’Z) = z". Clearly, in generators

— q1 _ q2p1 _ dk—1P1P2.--Pk—2
a, Y1 = T1T, , Y2 = T2Xy, yor sy Yk—1 = Tp—1T y Lhy Th41y- -+ Ls
(4 has the following representation: C1 = (a,y1, ..., Yk—1,Zk, - - - Ts; Ro), where
— —q1 —q2pP1 —4q3p1p2
RQ(a7yla"'7yk—17$ka"'7xs)*R(aaylmk y Y2y, » YTy, PR
—qk—-1P1P2---Pk—2 m
Yk—17), s L ,$k+1,...,$5).
Rename generators yi,...,Yx—1 by x1,...,2,_1 respectively, we see that C; in
new generators has the representation
C = <a,$17 sy Th—1,Thy - - - Ts; R3(a’am1a s 7x8)>a
i.e. C1 coincides with C.
Express elements t?, e ,tf through these new generators. Suppose that ¢; is a
value of T;(a,x1,...,xs) on generators a,xy,...,xs of G. We see
P _ —q1 —q2p1 —q3p1p2 —qk—1P1P2---Pk—2 _.m
t; —Ti(a,:clmk y L2Xy y L3y, y Lk—1Tp, » Lpe a$k+17'--7xs)-
Therefore
Py
Jk(ti ) = —@;1q1 — @2P192 — Q3P1P24q3 — *** — Q4§ k—1P1DP2 - - - Pk—2Qk—1 + Q; kM,

where i =1,...,k—1. As M(G,t) is a trapezoidal matrix we note that a;; = 0 for
all j,7 < ¢. Hence

!

ok(ty) = —p1... Qi — Qi ip1P1 - - - PiGit1 — = Qi k—1P1 - - - Pk—2Gk—1 + Qi g =

= —p1..0i(Qi + Gi it1Qi+1 + Qi ipoDit1Giv2+ -+ Qi k—1Pit1---Qh—1 — @i kPit1---Pk—1)-

The expression in parentheses coincides with the i-th row of the matrix AX — B (if
x; replace by g¢;) therefore it is equal to 0. Thus

oty =0fori=1,....k—1.

Since aj; = agg = -~ = agr = 0 and o4 (t)) = ar1q1 — ArapP1g2 — AraP1Pags — - - —
Gk k—1P1D2 - - - Pk—2Gk—1 + @k M, we obtain that ak(t}f) =0.

So we found the embedding v : G — C of G into C' with the representation (4),
such that the matrix consisting of the first k£ columns of the matrix M (C, tlf, . ,t}f)
is triangular with a zero angle under the principal diagonal and with a zero k-th
column. O

A similar construction also appeared in [18].
Lemma 3. Let a group G have the representation
G ={a,x1,...,x5; R(a,z1,...,25)),

t1,...,ty € G (k < s) and 0;(R) = 0 (i = 1,...,k). Suppose that the matriz
M(G,t) has the form (3). Let a group C have the representation (4), where m =
PP Ph—1, (q1,...,qu_1)" is a solution of a system of equations AX = B from
lemma 1. Then if {a,T1,...,Tk_1,Thy1, Thios--.,2s)C is a locally free (or free)

group then G'{ty,... ;)¢ is also a locally free group (respectively, free group).
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PROOF. According to the above construction of the embedding ¢ (lemma 2), the
matrix M(C,t¥,... ,t}f) has zero k-th column. This means that C'(t7,. .. ,t}f)c is
contained in a subgroup {(a,1,...,Tk_1,Thi1, Thio,---,Ts)C, which by condition
is locally free. Hence C”(tlf, . ,tf)c is a locally free group. As ¢ : G — C'is an
embedding and (G')¥((ty,...,t:)%)" C C'(tY, ... ,t;f)c, then G'(t1,..., )% is a
locally free group. O

Lemma 4. Let a group G have the representation

G ={(a,b,c,d,...,u,h,v,...,w,...,z; PR),

where P = [a,bh~'][a,ch=/2][a,dh= T3] ... ... [a, uh==1][a, h™][a, ] ... [a,w].
Suppose that the set {f1, fa, ..., fx—1, —m} of numbers satisfies the property (E). If
(i) h & [R] or
(ii) a & [R] and op(R) =0,
then the mormal closure N = (a,b,c,d,...,u,v...,w,...,2)¢ generated by all

generators except h is a locally free group.

PROOF. We proceed as Magnus [17] did when he proved the freedom theorem
for one-relator groups.
Since G/N is an infinite cyclic group then N is generated by all elements

(5)  as=h%ah™% by =hbh™% ... ,ws = hPwh™% ... zs = h°zh™° (s € Z).

By section 2 the group N in generators (5) is defined by the set of Py (k € Z)
defining relations, where P, = 7(h* PRh=*). We have

PO = P(ao,...7’LLfk_1,...7Z())R0 =
= aglb;llafl by, .. .aglu;k{lafkflufkflagla_m[ao, V] . . . [ag, wo] Ro,
where the word Ry is obtained by rewriting the word R through generators (5). We
note that from of a;-symbols, only ag can be occurred in Rj.

Let the word P; be defined as (R; obtained from Ry by adding to each index of
the variable included in Ry the number 7)

R = P(CLi...Ufk71+i,...,Zi)R¢ ==

=a; b pibp i ag uEl A g ity asmeilas vl - fag, wil R,
i.e. the number 7 added to each index of the variable included in P,.

Let p and M respectively, be smallest and largest indexes of a;-symbols included
in Po.

For every ¢ = 0,1,2,..., we represent N_;; by generators S; and defining
relations ¥; as follows. As a generating set S;, take the set of generators from (5),
except for those ay for which k < p—i or k > M+, and take the set {P_;,..., P;}
of defining words to be ¥;. Thus

N_ii=(Si;P_i,...,P).

In [17, theorem 4.10, case 3] these groups N_;; are introduced for any one-relator
groups in which the sum of the exponents in our notation for h is 0. In [17] it is
proved that we can assume that N_;; is a subgroup of N_; 1,41 generated by
elements from (5) included in the list of generators of N_; ;. In addition, in [17] it is
noted that the union an ascending sequence of groups N_; ; coincides with N. We
need to check that N_; ; is a free group. To do this, use the Tietze transformations.
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First, we assume that the set {f1, f2,..., fk—1, —m} contains exactly one largest
non-zero positive number. Deleting, via the Tietze transformations, aps4; (i-e. as
with largest index) from the set of generators of N_;; and the defining relation
P;. Since ap;4; is not occurred in P_;, ..., P;_1, these defining relations will
not change. We continue this process of sequentially removing generators. Delete
AM+4i—1,0M—+i—2,--. from the set of generators and, respectively, P;_1, P;_o,...
from the set of defining relations. As a result, we get that N_; ; can be defined by
an empty set of defining relations. It means that N_; ; is a free group.

In the case when the set {fi, f2,..., fr—1, —m} contains exactly one smallest
non-zero negative number, we will do the same, starting with the deletion of a,,_;.

Since the union of an increasing sequence of free groups is a locally free group,
we see that NV is a locally free group. O

If P = [a,h™] (m # 0) we have a special case of lemma 3. In fact, as shown in
[1, Lemma 1], the following more general statement is true.

Lemma 5. Let a group G have the representation
G ={a,b,c,d,...,u,h,v,...,w,...,z;[a,A"]R) (m # 0).

If « ¢ [R] and op(R
(a,bye,d, ..., uyv. . . w,. .., 2)
group.

= 0, then the mnormal closure N =

)
G generated by all generators except h is a free

Theorem 1. Let a group G have the representation
G = (x1,...x5; [x1, Tp1][T2, Tnya] - - - [Tn, Ton| R)

where Ty, 1, Tpio, Tniss .. Ton & [R]. Ifty, ... tn_1 € G then G'(t1,... t,_1)C is
a free group.

PRrROOF. If there exists i (¢ < n) such that i-th column of M (G, t) is zero, we apply

lemma 5 (h = z;, a = x;1n, & [R], m = 1). By lemma 5 (x1,...,2;_1,%is1,...,2:)¢
is a free group. But G'(ti,...,t,_1)¢ C (z1,...,%i_1,%it1,...,25)C therefore
G'(t1,...,tn—1)% is a free group. We will assume that the first n columns of the

matrix M (G,t) are non-zero.
Let’s apply the transformations 1), 2) defined before. By renaming (if necessary)

generators z1,...,x, of G, we can assume that the matrix M (G, t) has the form
b1 a2 aiz ... Qa1k-1 Qik
0 p2 a3 ... agp_1 as

6 MGDH=| o o

( ) ( ) 0 0 0 oo Pk—1 Ak—1,k
0 0 0 ... 0 0

for some k (k < n), where p; > 0,...,pr—1 > 0. In particular, at the intersection

of the row with the number > k and the column with the number < n + 1, there is
a Zero.

By the construction of the embedding described earlier (lemma 2), there is an
embedding ¢ : G — C of G into C in which the k-th (k < n) column of the
matrix M(G,t%) is zero. We can assume that the defining relation of C has the
form [z;, 2} """ T (j > k, x; € [T]). Let’s apply 5 (h = xx, a = x; ¢ [T,
o,(T) =0, m =py...px_1). By lemma 5, N = (21,...,25_1,Tpt1,...,25)C is a
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free group. Since (G'(t1,...,t,_1))¥ C N then by lemma 3, G'(t1,...,t,_1)% is
a free group. O

4. NORMAL CLOSURES OF 3-GENERATED SUBGROUPS

In this section, we will consider a group G = (a, z1,...,zs; P), where
P = P(a,z1,za,...,25) = [a,21][a,x2] ... [a,2,]S (n>T)
and z1,...,27 ¢ [S]. We will prove that a normal closure of every 3-generated

subgroup of this group is a locally free group.

Let t1,t2,t3 be any elements of G, R = (t1,t2,t3)¢ be a normal closure of the
subgroup (t,te,t3) in G.

First, we will assume (lemmas 6, 7) that the matrix M(G,t) does not contain
zero columns.

Lemma 6. Let’s suppose that there are three columns in M(G,t) with numbers
i,7,u such that

Ji(tg) = Uj(tQ) = O'u(tg) = 0, Ji(tg) ES (Tj(tg) = O’u(tg) =0.
Then RG' is a locally free group.

PROOF. Renaming generators {z1,...,2,} of G, we can assume that i = 1,5 =
_ air 12 @13 ai4
2,u = 3, i.e. the matrix M (G, t) has the form | 0 0 0 ag4 ... |,where

0 0 0 as4
a1 # 0,a12 # 0,a13 # 0. We can suppose that a1 # —aqs.
Note that when we rename generators, the defining relation is transformed into
the relation denoted by Pi(a,x1,2a,...,Ts).
We apply the construction of the embedding described earlier (lemma 2).
According to it, there is the embedding (k = 2, ¢1 = a12, m = a11) ¥ : G — C,
where C has the representation

A —a a
(a,x1, T2, ..., Ton; Pr(a, xixs 2, 05" w3, ..., xs).

Since the 2nd column of the matrix M (C,tY,t%,t%) is zero, then (tV ¢4 %) is
contained in the normal closure N = (a,z1, x3, 24, . . . 7xs>c. By lemma 4 (here ¢; =
a12,m = ai1, a1 # —ay;) the subgroup N is locally free. As (RG')¥ C NC' = N
then (RG')?¥, and hence RG’, are locally free groups. O

Lemma 7. Let the matriz M (G,t) have the form

_ P11 a2 13 G4
]\4(G7 ) = 0 P2 a3 agy e 5
0 O 0 as4

where p; > 0,ps > 0,a23 > 0. Then RG' is a locally free group.

PROOF. We apply the construction of embedding described earlier (lemma 2).
According to it, there is the embedding (k = 3, m = p1p2) ¥ : G — C, where C
has the representation

— . —q1 —Pb1q2 ,.P1pP2
C={a,r1,29,...,Ts; Pla,x125 ", x5 LRt xs),

(q1,q2) " is a solution of a system of equations
T1p1 + T2P1a12 = P1P2a13
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T2pP1pP2 = P1P2aG23,

. a2 a3
ie.qp =— , Q2 = G23.

q1 Do ass q2 23

Since the 3rd column of the matrix M (C, tlf,t;”,tff) is zero then (tqf,t;b,t}f)
is contained in the normal closure N = (a,z1,%9,%4,...,25)C. Since numbers

q2p1, —p1p2 have different signs then numbers ¢1, gop1, —p1p2 contain exactly one
the non-zero largest or smallest number. By lemma 4 the subgroup N is locally free.
Since (RG’)Y C NC’ = N then (RG’)¥, and hence RG’, are locally free groups. O

Let the matrix M (G, t) have the form

N pP1 a2 a1z a4 @15 ...
M=MG,t)=| 0 ps a3 as ass ... |,
0 0 P3 Q34 a3s

where p; > 0,p2 > 0,p3 > 0,a34 > 0,a35 > 0.

We apply the construction of embedding described earlier (lemma 2). According
to it (k = 4, m = p1paps), there is the embedding ¢ : G — Cy of G into Cj from
construction, where Cy has the representation

q1 —P1g2
)

— . - —P1pP293
CO—<a,$1,x2,...,xn,P(a,Jj1x2 ,.132 b

P1p2p3
Tg s

xy Ty en, Ts).

Here (q1,¢2,q3) " is a solution of a system of equations

T1p1 + ZT2p1a12 + T3Pp1P2a13 = P1P2P30G14

T2P1P2 + T3Pp1P20a23 = P1P2P3024

T3P1P2pP3 = P1P2P3G34,
in particular, g3 = azq > 0.

Rename generators of G twice. First, we denote x3 by x4, x4 by x5, x5 by 3,
then we denote x4 by x5, 5 by x4. This corresponds to a permutation of columns

of the matrix M (G, t). The following matrix are obtained

. b1 a2 a4 ais ... _ b1 aiz2 a1z a5 Qaiq
M= 0 p au ap ... |, M= 0 p2 a3 axs an
0 0 azq4 agss ... 0 0 P3 agzs Q34

Again, in each of these cases, we use lemma 2. We have groups Cp, Cs of the
form

_ . —q1 ,,—P142 ,,—P1P2q3 ,p1pP20a34
le<a,x1,x2,...,xn,Pl(a,xle 7x2 ,IE3 a$4 ,CL’5,...,(E3>,

_ . —q1 ,.—P1G2 ,,—P1P2q3 ,.P1P2P3
02_<a7$1a$27"'7xnaP2(a,$1$2 y Lo y L3 , Ly 7x5>"'7$8>7

and embeddings ¥ : G — Cy, 1 : G — Cs (Py, P; is obtained from P by renaming
suitable generators).

For each matrix a corresponding system of equations arises. Its solutions for the
matrix M are denoted by ;, Gy, @3, for the matrix M by q; g2, ¢3. By lemma 1

ai2 Qi3 Qa4
7 _ _ a3 Q24 .
( ) q =1 P2 a3 a24 |, g2 = — , 43 = G34,
0 b3 a34
b3 a34
a12 ai4 ais
8 - - 24 QA25 - _
(8) g = | P2 Q24 Q25 |, o = — a3y ass |’ q3 = ass,
0 az4 ass
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a1z a1z a1s o5 o
9) Qu=| P2 Gz G5 |, Q== 0|, 03 = Ass
0 p3  ass
We will assume that each of sets
(10) q1, q92P1, q3pipP2, —Pi1pP2pPs3,
(11) 415, GoP1, G3P1P2, —P1P2034,
(12) q1, @2P1, G3P1DP2, —DP1D2P3,

does not have the property (E) (i.e. it has the property not(E)).

Lemma 8.

~ P3 _ ass
(13) g1 — —¢qy = —(q1,
a34 a34
~ P3 _ aszs
(14) q2 — go = —(q2.
as4 as4
ProoF. We calculate
a2 Q@13 Qis a1z aul: ais
~ ps _ P3 —
Q1 ——¢ = | P2 G23 Qa2 |— | P2 A2, - 0A25 | =
@34 0 0 i
b3 ass 345, @35
a1z @13 —aaE  ass
Firs G12 13 — a14%
= | P2 Q23 — 0G24, - a25 | = 435 P3| =
P2 Q23 — Q24
0 0 ass 34
— ass a2 a1z | P3| a2 a4
p a23 asq | P2 24
Since
a2 a3 a12 A14
q1 = Q34 —P3
P2 a23 P2 Qg4 |’
then the equality (13) is true. Also we have
P3
-~ ps _ a23 Qg5 Q2457 G25 |
q2 — o = — + B =
a34 ps3 ass 34,0 435
_ P3
_ a3+ G247, G5 | A35 G35
=10 = ——(—ag3a34 + a24p3) = ——qo.
azs @34 a34

Lemma 9. From the equalities
Q1 = —P1P2P3, @y = —P1P2034, 1 = —P1DP2D3
no more than one is true.

PROOF. Suppose that §; = —pip2as4, 1 = —p1p2ps. By (13)

P3 _ass
—p1p2p3 + —P1P2a34s = —q1.
a3q a34

This means that ¢ = 0. Now we see that the set {0, gop1, azapip2, —p1p2ps} has
the property (E). We got a contradiction.
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Assume that ¢1 = —p1paps, §; = —p1p2ass. By (13)
~ P3 _ a3s
q1 + —P1P2a34 = ———P1P2P3-
asy as4

Hence 1 = —p1paps(1 + 923) #£ —pypaps. We see that

asz4
q1 <0, —p1paps <0, q1 # —p1p2ps, g3p1p2 = azsp1p2 > 0,
then the set {q1, @2p1, ¢3p1p2, —p1p2p3} has the property (E), what’s wrong.

Let g1 = —p1p2ps, @1 = —pip2p3- Since gzp1p2 > 0, gzpip2 > 0, not(E) for sets
{q1, @2p1, g3p1p2, —p1p2p3} and {q1, G2p1, q3pip2, —p1p2p3} bring us to equalities
@2P1 = q3P1P2, §2p1 = q3p1p2- It means ¢z = azap2 and g2 = azsps. By (14)

p3 _ aszs
azspP2 — — (o = ——a34P2.
a3q a34
Hence g, = 0. We see that the set {g;, 0, aszspip2, —p1p2ps} has (E). We got a
contradiction. O

Lemma 10. ¢; # —p1paps.

PROOF. Suppose ¢1 = —pipap3- As @spipe > 0, from not(E) for the set
{q1, @p1, @3p1p2, —p1p2ps} it follows that gop; = gapip2. Hence g = azspo.

By lemma 9, q1 # —pip2ps. Since {q1, g2p1, gsp1p2, —p1p2ps} has not(E) and
q3p1p2 > 0, —pipeps < 0, we have that numbers q1, ¢op; are different signs.

Hence, as not(E) and gop1 = —p1paps, then go = —pops. Similarly, it is proved that
Qs = —p2a34- By (14)

P3 aszs
a3sP2 + ——P20a34 = ———DP2P3.
a34 a34
Thus asspe < 0, what’s wrong. O
Lemma 11. G, # —p1p20a34.
PROOF. Assume §; = —pipaass. Since gspipa > 0, from not(E) for the set

{G1, @ap1, Gzp1p2, —p1p2a34} We have Gop1 = G3p1p2, hence Gy = assps.

By lemma 9 ¢1 # —pip2ps. As {q1, q2p1, qap1p2, —pip2p3} has not(E) and
q3p1p2 > 0, —p1paps < 0 then numbers ¢, ¢op; are different signs. If ¢ < 0
then this set has (E), hence ¢; > 0. Therefore, since not(E), gap1 = —p1paps, i.e.
q2 = —Pp2p3-

By lemma 10 g3 # —pipops. Similarly to the previous one, it is proved that
g2 = —pa2p3- By (14)

P3 _ ass
—p2pP3 — —agsp2 = ——P2pP3-
as4 as4

It means —pops = 0, what’s wrong. a

Lemma 12. ¢; # —p1p2ps.

PROOF. Suppose ¢1 = —pipaps. As gspip2 > 0, from not(E) for the set

{@1, @2p1, @3p1p2, —p1peps3} it follows that gapy = gzpip2. Hence g = azyps.
By lemmas 10, 11 §; # —p1p2asa, ¢1 # —p1p2ps- As in lemma 11 we show that
Gy = —azap2, 2 = —p2p3- By (14)
Qa,

D3 35
—P2P3 + ——a34P2 = ———a34P2-
a34 34

It implies po = 0. This is not true. (I
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Lemma 13. At least one of the sets (10), (11), (12) has the property (E).

PROOF. Let’s assume that none of these sets has property (E). So far, we have
been under this assumption. By lemmas 10, 11, 12, g1 # —p1p2ps, ¢4 # —P1P2a34,
q1 # —p1p2ps. As in the proof of lemma 11, we find that g2 = —paps, o = —asapo,
q2 = —pap3. By (14)

P3 ass
—D2p3 + ——a34P2 = ———P2P3.
a34 a34
Hence %pgpg = 0. This is not true. |

Theorem 2. Let a group G have the representation
G={(a,z1,...,25P),

where P = P(a,z1,%2,...,2s) = [a,21][a, 23] ... [a,2,]S (n > 7) and x1,...,27 &
[S]. If t1,t2,t3 € G then G'(t1,t2,t3)C is a locally free group.

PROOF. Let R = (t1,2,13)“ be a normal closure of the subgroup (¢;,t2,t3) in G.
If 0;(t1) = 0i(t2) = 0i(t3) = 0 for some ¢, then we get into the situation of lemma
4, assuming that h = x;, m =1, fi = -+ = fx_1 = 0. By lemma 4 N is a locally
free group, where N = (a,1,...,2_1,Tis1,-..,25)¢. In this case t,ts,t3 € N,
hence RG’ C N, therefore RG’ is a locally free group.

Note that if there are three columns in the matrix M (G,B with numbers i, j, u
such that

0i(t2) = 0j(t2) = ou(tz) =0, 0i(t3) = 0;(t3) = ou(ts) =0,

then by lemma 6 RG’ is a locally free group.
We can suppose that the matrix M (G, t) has the form

B p1 @12 aiz aia Qais
MG, t)=| 0 ps a3 axs ass ... |,
0 0 p3 a3z ass

where p; > 0,py > 0,p3 # 0,a34 # 0,a35 # 0,a36 # 0,as7 # 0. If it is necessary to
replace t3 with t3 1 and rename generators of G, we can assume (since n > 7) that
p3 > 0,a34 > 0,a35 > 0. By lemma 13, in this case at least one of the sets (10), (11),
(12) has the property (E), and one can apply lemma 4. This set with the property

(E) corresponds to one of matrices My = M(Co, 1), My = M(Cy,tY ¢4 %), My =
M(Cq, t7, 15, 1%). Let’s say it’s M;. Let N be a normal closure in C} of a subgroup
generated by all generators of C; except z4. By lemma 4 N is a locally free group.
Hence by lemma 3 RG’ is a locally free group. O

The author is grateful to Svetlana Shakhova and Victoria Lodeischicova for a
number useful remarks.
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