S@MR

ISSN 1813-3304

СИБИРСКИЕ ЭЛЕКТРОННЫЕ МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

Siberian Electronic Mathematical Reports http://semr.math.nsc.ru

Том 18, №2, стр. 782-791 (2021) DOI 10.33048/semi.2021.18.057 УДК 512.55 MSC 16D10, 16D40, 13C05

WHEN A (DUAL-)BAER MODULE IS A DIRECT SUM OF (CO-)PRIME MODULES

N. GHAEDAN, M.R. VEDADI

ABSTRACT. Since 2004, Baer modules have been considered by many authors as a generalization of the Baer rings. A module M_R is called Baer if every intersection of the kernels of endomorphisms on M_R is a direct summand of M_R . It is known that commutative Baer rings are reduced. We prove that if a Baer module M is a direct sum of prime modules, then every direct summand of M is retractable. The converse is true whenever the triangulating dimension of M is finite (e.g. if the uniform dimension of M is finite). Dually, if every direct summand of a dual-Baer module M is co-retractable, then it is a direct sum of coprime modules and the converse is true whenever the sum is finite or M is a max-module. Among other applications, we show that if R is a commutative hereditary Noetherian ring then a finitely generated Rmodule is Baer iff it is projective or semisimple. Also, over a ring Morita equivalent to a perfect duo ring, all dual-Baer modules are semisimple.

Keywords: Baer module, co-prime module, co-retractable, prime module, dual-Baer, retractable module.

1. INTRODUCTION

Throughout the paper, all rings will have unit elements and all modules will be right unitary. A ring R is said to be *Baer* if for every non-empty subset X of R, the right annihilator of X in R is of the form eR for some $e = e^2 \in R$. Baer rings play an important role in the theory of rings of operators in functional analysis; see [15] and [5]. The concept of Baer ring was extended to modules by S.T. Rizvi and C. S. Roman in [20] and [22]. Baer modules and their generalizations have

Ghaedan, N., Vedadi, M.R., When a (dual-)Baer module is a direct sum of (co-)prime modules.

^{© 2021} Ghaedan N., Vedadi M.R.

Received January, 31, 2021, published July, 6, 2021.

been studied among many other works. Every Baer module M is a D2-module (i.e., if M/A isomorphic to a direct summand of M then A is a direct summand of M), see [28], [11], [17], [18] and [7] for recent works on the subjects. It is easy to verify that "if R is a commutative Baer ring then R is reduced". For if $x^2 = 0$ then $x \in \operatorname{ann}_R(x) = eR$ for some $e = e^2 \in R$. Hence x = ex = 0. The following question naturally arises: "Let R be commutative ring. When a finitely generated Baer R-module is a finite direct sum of prime modules?". By a prime module M, we mean M is co-generated by each of its submodules [6]. We study Baer modules that are direct sums of primes in Theorems 4 and 5, and give an answer to the above question in Theorem 6. As an application, we show that if a ring R is Morita equivalent to a commutative hereditary Noetherian ring then a finitely generated R-module is Baer if and only if it is projective or semisimple (Corollary 2).

The dual notion of the Baer modules was introduced and studied in [25] where a module M_R is *dual-Baer* if for every $N \leq M_R$, the right ideal $\operatorname{Hom}_R(M, N)$ of $\operatorname{End}_R(M)$ is generated by an idempotent element. These modules are known to have the C2-property (i.e., every submodule in M isomorphic to a direct summand is a direct summand of M), see [1],[10], [14], [24] and [9] for some recent works on the dual-Baer modules and important generalizations of them. We shall dually investigate when a dual-Baer module is a direct sum of co-prime ones; see Theorem 7. This shows that if R is a right duo perfect ring, every dual-Baer module is semisimple. In order to extend the results to non-commutative case, we first give a categorical characterization for (dual-)Baer modules in Theorem 1. Any unexplained terminology and all the basic results on rings and modules that are used in the sequel can be found in [3] and [16].

2. Main results

If K and L are two R-modules then $\operatorname{Tr}(K, L)$ means $\sum \{f(K) \mid f: K \to L\}$ and $\operatorname{Rej}(K, L)$ means $\bigcap \{\ker f \mid f: K \to L\}$. If $M = M_R$ is a module then the class of R-modules that are generated (resp. co-generated) by M is denoted by $\operatorname{Gen}(M_R)$ (resp. $\operatorname{Cog}(M_R)$). By $N \leq^{\oplus} M_R$, we mean N is a direct summand of M_R (i.e., there is a submodule K of M_R such that $M = N \oplus K$).

Theorem 1. Every exact sequence $0 \to N \to M \to Y \to 0$ of *R*-modules with $Y \in Cog(M_R)$ splits if and only if *M* is a Baer *R*-module.

Proof. (\Rightarrow). To show that the module M_R is Baer, Let $N = r_M(X)$ for some nonempty $X \subseteq S$. Then $N = \bigcap_{f \in X} \ker f$. Hence, we can deduce that $M/N \in \operatorname{Cog}(M_R)$. Now the exact sequence $0 \to N \xrightarrow{i} M \xrightarrow{\pi} M/N \to 0$ splits by our assumption. This means $N \leq^{\oplus} M_R$, proving that M_R is Baer.

(\Leftarrow). Suppose that $0 \to N \xrightarrow{f} M \to Y \to 0$ is an exact sequence of *R*-modules with $Y \in \operatorname{Cog}(M_R)$. Let $K = \operatorname{Im} f$. Since $M/K \simeq Y \in \operatorname{Cog}(M_R)$, there exists a one to one *R*-homomorphism $\theta : M/K \to M^{\Lambda}$ for some set Λ . For each $\lambda \in \Lambda$, let $f_{\lambda} = \pi_{\lambda}\theta$ where π_{λ} is the canonical projection on M^{Λ} . If now $X = \{f_{\lambda} \mid \lambda \in \Lambda\}$ then it is easily seen that $K = \operatorname{r}_M(X)$. Thus Im f is a direct summand of M_R by the Baer condition on M. It follows that the exact sequence splits, as desired. \Box **Lemma 1.** Let M_R be a nonzero module and $End_R(M) = S$. Then $N \in Gen(M_R)$ if and only if N = IM for some right ideal I of S if and only if Tr(M, N) = N.

Proof. By [27, Theorem 13.5].

Proposition 1. Let M_R be a nonzero module with $End_R(M) = S$. Then the module M_R is dual-Baer if and only if $IM \leq^{\oplus} M_R$ for every $I \leq S_S$.

Proof. (\Rightarrow) Let $I \leq S_S$ and N = IM. By our assumption, $\operatorname{Hom}_R(M, N)$ is a direct summand of S_S . Also, by Lemma 1, we have $N = \operatorname{Tr}(M, N) = \operatorname{Hom}_R(M, N)M$. It follows that $N \leq^{\oplus} M_R$.

(⇐) Let $N \leq M_R$ and $I = \operatorname{Hom}_R(M, N)$. By our assumption, $IM \leq^{\oplus} M_R$ and so IM = eM for some $e = e^2 \in S$. It follows that $e(M) \subseteq N$ and (1 - e)I = 0. Hence, $e \in I$ and $I \subseteq eS$. Thus I = eS.

Theorem 2. Every exact sequence $0 \rightarrow N \rightarrow M \rightarrow Y \rightarrow 0$ of *R*-modules with $N \in Gen(M)$ splits if and only if *M* is a dual-Baer *R*-module.

Proof. This obtained by Lemma 1 and Proposition 1.

Theorem 3. Being Baer (dual-Baer) module is a Morita invariant property.

Proof. This is obtained by Theorems 1, 2 and the fact that the category equivalences preserve exact sequences and direct (co) products [3, Proposition 21.6(3) and (5)]. \Box

In [21, Propositions 2.12 and 2.14], it is investigated when a Baer module is a direct sum of indecomposable modules. In comparison, a dual-Baer module is always decomposed into the indecomposable modules [25, Corollary 2.6]. In the following, we investigate Baer modules that are decomposed into the reduced modules and give some applications. A module is said to be reduced if it has no non-trivial fully invariant direct summand. If X and Y are R-modules then it is well known that $\operatorname{Rej}(X, Y)$ is a fully invariant submodule of X and $X/\operatorname{Rej}(X, Y)$ lies in $\operatorname{Cog}(Y)$. Thus if M_R is a reduced Baer module then Theorem 1 shows that for any $0 \neq N \leq$ M, $\operatorname{Hom}_R(M, N) = 0$ or $M \in \operatorname{Cog}(N)$. In [12], the triangulating dimension (τ dimension) $\tau \dim$ was defined for a module M_R as follows: $\sup\{k \in \mathbb{N} \mid M = \bigoplus_{i=1}^k M_i$ with $M_i \neq 0$ and $\operatorname{Hom}_R(M_i, M_j) = 0$ for any i < j. Theorem 2.5 of [12] states a series of necessary and sufficient conditions for $\tau dim(M_R)$ to be finite. In [8, Proposition 2.16 Baer rings with a generalized triangular matrix representation are studied. Note that Noetherian condition \Rightarrow finite uniform dimension \Rightarrow ascending (descending) chain condition on direct summands \Rightarrow finite τ -dimension; see [16, Chapter 3, page 208 for more information about the uniform dimension of a module. A module that is cogenerated by each of its nonzero submodule, is called *prime* in [6] and *-prime in [19]). It is easy to verify that every prime module is reduced and *retractable.* An *R*-module M_R is called *retractable* if $\operatorname{Hom}_R(M, N) \neq 0$ for every $0 \neq N \leq M_R$. The following theorem shows that the study of Baer modules with finite τ -dimension reduces to the study of such modules when they are prime. Recall that two *R*-modules X and Y are called *orthogonal to each other* (or orthogonal), if they do not contain nonzero isomorphic submodules.

We state a few lemmas and use them to prove Theorems 4 and 5.

784

Lemma 2. (a) Let M_R be a nonzero retractable Baer module. Then either M_R is prime or there is a decomposition $M = N \oplus K$ such that N is a non-trivial fully invariant direct summand of M_R .

(b) If $M = M_1 \oplus M_2$ is a Baer R-module and each M_i is a prime R-module (i = 1, 2) such that $Hom_R(M_1, M_2) = 0$, then $Hom_R(M_2, M_1) = 0$.

(c) If M_1 and M_2 are prime R-modules such that $Hom_R(M_i, M_j) = 0$ $(i \neq j)$ then M_1 and M_2 are orthogonal.

Proof. (a) Let M_R be a non-prime module. Thus there exists a non-trivial submodule X of M such that $\operatorname{Rej}(M, X) =: N$ is nonzero. Clearly N is a fully invariant direct summand of M such that $M/N \in \operatorname{Cog}(M)$. Since M_R is retractable, $N \neq M$. Thus N is a non-trivial fully invariant submodule of M_R by Theorem 1.

(b) If $f: M_2 \to M_1$ is nonzero, we have $M/\ker f \in \operatorname{Cog}(M)$. Then by the Baer condition on M (Theorem 1), we must have $M_2 \simeq \ker f \oplus \operatorname{Im} f$. Now since M_1 is prime, it lies in $\operatorname{Cog}(\operatorname{Im} f)$. Hence $\operatorname{Hom}_R(M_1, M_2) \neq 0$, contradiction. (c) This is routine.

Corollary 1. A nonzero prime module is retractable and reduced. The converse is true when the module is Baer.

Proof. If M_R is prime then for any nonzero $X, Y \leq M_R$, we have $\operatorname{Hom}_R(X, Y) \neq 0$. It follows that M_R is reduced and retractable. The converse is obtained by Lemma 2(a).

Lemma 3. Let $M = \bigoplus_{i \in I} M_i(I \text{ is an index set})$ such that $Hom_R(M_i, M_j) = 0$ $(i \neq j)$. If $N \oplus L = M$ then $N = \bigoplus_{i \in I} (N \cap M_i)$.

Proof. It is obtained by [22, Lemma 1.3.18], we give a proof for the reader's convenience. By hypothesis each M_i is a fully invariant submodule of M_R . Hence for each i we have $M_i = (N \cap M_i) \oplus (L \cap M_i)$. Thus $M = [\bigoplus_i (N \cap M_i)] \oplus [\bigoplus_i (L \cap M_i)] = N \oplus L$. It follows that $N = \bigoplus_i (N \cap M_i)$.

Lemma 4. [23, Lemma 2.1] Let a module $M = \bigoplus_{i \in I} M_i(I \text{ is an index set})$ be a direct sum of submodules $M_i(i \in I)$ and let N be any nonzero submodule of M. Then there exists a subset J of I such that the canonical projection $\pi : M \to \bigoplus_{j \in J} M_j$ is injective on N and $\pi(N) \cap M_j \neq 0$.

We say that X and Y are sub-cog of each other and write $(X \stackrel{sub-cog}{\simeq} Y)$, if $X \in Cog(Y)$ and $Y \in Cog(X)$.

Lemma 5. If $M = M_1 \oplus M_2$ is a Baer R-module and M_i is prime R-module (i = 1, 2) then either $Hom_R(M_1, M_2) = Hom_R(M_1, M_2) = 0$ or $M_1 \overset{sub-cog}{\simeq} M_2$

Proof. Let $N = \operatorname{Rej}(M_1, M_2)$. Then $M_1/N \in \operatorname{Cog}(M_2)$. It follows that $M/N \in \operatorname{Cog}(M)$ and so N is a direct summand of M by Theorem 1. Therefore N is a fully invariant direct summand of the Baer module M_1 by [20, Theorem 2.17]. Now by Corollary 1, we must have N = 0 or $N = M_1$. Consequently, $M_1 \in \operatorname{Cog}(M_2)$ or $\operatorname{Hom}_R(M_1, M_2) = 0$. Similarly $M_2 \in \operatorname{Cog}(M_1)$ or $\operatorname{Hom}_R(M_2, M_1) = 0$. The proof is now completed by Lemma 2(b).

Theorem 4. Let $M = \bigoplus_{i \in I} P_i(I \text{ is an index set})$ be a Baer module such that each P_i is a prime R-module. Then we have:

(a) M = ⊕_{j∈J} M_j(J is an index set) such that each M_j is a prime R-module and M_i's are mutually orthogonal with Hom_R(M_i, M_j) = 0 (i ≠ j).
(b) Every direct summand of M_R is retractable.

Proof. (a) For every $j \in I$, let $M_j = \bigoplus \{P_i \mid P_i \overset{sub-cog}{\simeq} P_j\}$. Since every direct summand of a Baer module is Baer ([20, Theorem 2.17]), we have by Lemma 5, $\operatorname{Hom}_R(M_i, M_j) = 0$ for every $(i \neq j)$. Thus it is enough to prove that each M_i is a prime module. Fix j and let $P = M_j = \bigoplus_{i \in A_j} P_i(A_j \text{ an index set})$. Suppose that $0 \neq N \leq P$, we may suppose by Lemma 4 that $N \cap P_i \neq 0$ for all $i \in A_j$. Thus every P_i can be embedded into N because P_i is assumed to be prime. It follows that $P \in \operatorname{Cog}(N)$, as desired. The proof is now completed by 2(c).

(b) We use (a). Let $0 \neq K \leq N \leq M = N \oplus N'$. We shall show that $\operatorname{Hom}_R(N, K) \neq 0$. By Lemma 3, we have $N = \bigoplus_{j \in J} (N \cap M_j)$. Again by Lemma 4, there is $t \in J$ such that K and $(N \cap M_t)$ contain nonzero isomorphic submodules. Thus the prime condition on M_t implies that $\operatorname{Hom}_R(N \cap M_t, K) \neq 0$, proving that $\operatorname{Hom}_R(N, K) \neq 0$.

Theorem 5. The following statements are equivalent for a non-zero Baer module M.

(a) $\tau dim(M_R) < \infty$ and every direct summand of M_R is retractable.

(b) $M = \bigoplus_{i=1}^{n} M_i$ such that each M_i is a prime *R*-module.

(c) $M = \bigoplus_{i=1}^{n} M_i$ such that each M_i is a prime *R*-module and M'_i s are mutually orthogonal with $Hom_R(M_i, M_j) = 0$ $(i \neq j)$.

Proof. (a) \Rightarrow (b). This obtained by [12, Theorem 2.5] and Corollary 1.

(b) \Rightarrow (c). By Proposition 4.

(c) \Rightarrow (a). By Proposition 4, every direct summand of M_R is retractable and by [12, Theorem 2.5] and Corollary 1, we have $\tau dim(M_R) < \infty$.

A module M_R is called *compressible* if M can be embedded into every non-zero submodule of M_R . *R*-modules X and Y are said to be *sub-isomorphic* if X can be embedded into Y and vise versa; see for example [23].

Proposition 2. Let M_R be a non-zero Baer module with ascending (descending) chain condition on direct summands. Then the following statements are equivalent. (a) Every direct summand of M_R is retractable.

(b) $M = \bigoplus_{i=1}^{n} M_i$ such that $Hom_R(M_i, M_j) = 0$ $(i \neq j)$ and each M_i is a finite direct sum of indecomposable compressible R-modules that are mutually subisomorphic.

Proof. (a) \Rightarrow (b). By our assumption $\tau \dim(M_R)$ is finite ([12, Theorem 2.5]). Hence by Theorem 5, $M = \bigoplus_{i=1}^{n} M_i$ is a direct sum of prime modules such that $\operatorname{Hom}_R(M_i, M_j) = 0$ $(i \neq j)$. It follows that $\tau \dim(M_i) < \infty$ for all i by [12, Proposition 2.14]. Therefore, we may suppose that M_R is a prime module. Now by [3, proposition 10.14], $M = \bigoplus_{i=1}^{m} P_i$ is a finite direct sum of indecomposable submodules. Thus the Baer condition on $P_i \oplus P_j$ implies that every $f: P_i \to P_j$ is zero or one to one. On the other hand, since M_R is prime, $\operatorname{Hom}_R(X, Y) \neq 0$ for every non zero submodules X and Y of M_R . Consequently, all P_i are indecomposable compressible R-modules that are mutually sub-isomorphic, as desired. (b) \Rightarrow (a). Let $P = \bigoplus_{i=1}^{m} P_i$ where $P_1, \dots P_m$ are compressible and mutually subisomorphic *R*-modules. It is easy to show that P_R is a prime. Therefore, (a) is now obtained by Theorem 4.

Lemma 6. Let R be commutative ring, P and Q be prime ideals of R. Then for every finitely generated nonzero ideal A in R/P, $Hom_R(A, R/Q) = 0$ if and only if $P \not\subseteq Q$.

Proof. If there exist a finitely generated ideal A in R/P and $0 \neq f \in \operatorname{Hom}_R(A, R/Q)$ then $P \subseteq \operatorname{ann}_R(f(A)) = Q$. Conversely, let $P \subseteq Q$ and A be a finitely generated ideal in R/P. Clearly R/P can be embedded into A_R . Hence, there is an Rhomomorphism $f : A \to E$, where E is the injective hull of $(R/Q)_R$. It follows that $f(A) \cap R/Q \neq 0$. Since now f(A) is finitely generated, it is retractable by [13, Theorem 2.7]. Thus $\operatorname{Hom}_R(f(A), (f(A) \cap R/Q))$ is nonzero, proving that $\operatorname{Hom}_R(A, R/Q) \neq 0$

Theorem 6. Let R be a commutative ring. The following statements are equivalent for every finitely generated Baer R-module M.

(a) $\tau dim(M_R) < \infty$.

(b) $M = \bigoplus_{i=1}^{n} M_i$ such that each M_i is a prime *R*-module.

(c) There are mutually incomparable prime ideals $P_1 \cdots P_n$ such that $M = \bigoplus_{i=1}^n M_i$ and each M_i is a finite direct sum of right ideals of R/P_i .

Proof. Let M be a finitely generated R-module. By [13, Theorem 2.7], every finitely generated R-module is retractable. Hence, every direct summand of M_R is retractable. Thus (a) \Leftrightarrow (b) by Theorem 5.

(c) \Rightarrow (b). This is clear.

(b) \Rightarrow (c). We have the decomposition $M = \bigoplus_{i=1}^{n} M_i$ of prime modules such that $\operatorname{Hom}_R(M_i, M_j) = 0$ $(i \neq j)$ by Theorem 4. Let $P_i = \operatorname{ann}_R(M_i)$. Since M_i is a prime R-module then P_i is a prime ideal of R and M_i is prime torsionfree as an R/P_i -module. Fix i, replace R with R/P_i and let $M = M_i$. Thus M is a torsionfree Baer module over a commutative domain R. If $M = R^{(n)}/K$ then K is a closed submodule of $R^{(n)}$. Also R being commutative domain has uniform dimension 1. Hence, the uniform dimension of M_R is finite by [16, Theorem 6.35]. Thus we can now apply Proposition 2 to deduce that M_R is a finite direct sum of (uniform) right ideals of R. The proof is completed by Lemma 6.

The following result can be a generalization of [20, Proposition 2.19].

Corollary 2. Let R be a ring Morita invariant to a commutative hereditary Noetherian ring and M_R is finitely generated. Then M_R is a Baer R-module M if and only if it is semisimple or projective.

Proof. By Theorem 3, we can suppose that R is a commutative hereditary Noetherian ring. For the necessity, we apply Theorem 6 for M. If $P_j = 0$ for some j then n = 1 and M a finite direct sum of right ideals of R, because all P_i are mutually incomparable. Hence M_R is projective by the hereditary condition on R. On the other hand, every singular R-module has a nonzero socle by [?, Proposition 5.4.5]. Hence if M_R is singular, it must be semisimple by Proposition 2. For the sufficiency, let M_R be projective. To show that M_R is Baer, we apply Theorem 1. Let $0 \rightarrow$ $N \rightarrow M \rightarrow Y \rightarrow 0$ be an exact sequence of R-modules with $Y \in Cog(M)$. Since M_R is projective, $Y \in \text{Cog}(R)$. Thus Y_R can be embedded in a free *R*-module by [?, Proposition 3.4.3]. Our assumption on *R* implies that Y_R must be projective. Hence the exact sequence splits, as desired.

We now consider the dual of Theorem 5. Following [26], a module M is called *co-prime* whenever $M \in \text{Gen}(M/N)$ for every proper submodule $N < M_R$. Furthermore, we say that M_R is *co-compressible* if M_R is a homomorphic image of every nonzero factor of M_R . Clearly, co-compressible \Rightarrow co-prime \Rightarrow co-retractable. However, the \mathbb{Z} -module $\mathbb{Z}_{p^{\infty}}$ is co-compressible, dual-Baer which is not Baer. For the dual notion

of sub-isomorphic, by $X \stackrel{epi}{\simeq} Y$ the *R*-modules X and Y are called *epi-invariant* if X and Y are homomorphic image of each other.

Lemma 7. (a) Let M_R be a nonzero co-retractable dual-Baer module. Then either M_R is co-prime or there is a decomposition $M = N \oplus K$ such that N is a non-trivial fully invariant direct summand of M_R .

(b) If $M = M_1 \oplus M_2$ is a dual-Baer R-module and M_i is co-prime R-module (i = 1, 2) such that $Hom_R(M_1, M_2) = 0$, then $Hom_R(M_2, M_1) = 0$.

Proof. (a) and (b) are dual of Lemma 2 and obtained from the dual arguments. \Box

Corollary 3. Every co-prime module is reduced and co-retractable. The converse is true if the module is dual-Baer.

Proof. If M_R is co-prime then clearly it is co-retractable. Also if $M = N \oplus K$ such that N is a non-trivial fully invariant direct summand of M_R . Then M, hence K is generated by M/K. This follows that $\operatorname{Hom}_R(N, K) \neq 0$, a contradiction. The converse is obtained by Lemma 7(a).

Lemma 8. Let $M = \bigoplus_{i \in I} C_i$ such that for any $i \in I$, the *R*-module C_i is reduced. If *V* is a non-zero fully invariant direct summand of M_R then there is non-empty subset *J* of *I* such that $V = \bigoplus_{i \in J} C_j$ and $Hom_R(V, C_i) = 0$ for any $i \in I \setminus J$.

Proof. Let $M = V \oplus V'$ where V is fully invariant submodule of M_R . Then we have $V = \bigoplus_{i \in I} V \cap C_i$ and $\operatorname{Hom}_R(V, V') = 0$. On the other hand, for every $i \in I$, it is easy to verify that $V \cap C_i$ is a fully invariant direct summand of C_i . Now let $J = \{i \in I \mid V \cap C_i \neq 0\}$.

Lemma 9. Every indecomposable co-retractable dual-Baer module is a co-compressible module.

Proof. Suppose Y is a proper submodule of X and X is an indecomposable coretractable dual-Baer module. Since X is co-retractable, there exits nonzero f: $X/Y \to X$. Now Im(f) lies in Gen(X) and so must be a direct summand of X by the dual-Baer condition (Theorem 2). It follows that f is surjective, proving that X is co-compressible.

A module M is called max if every proper submodule of M lies in a maximal submodule.

Theorem 7. Consider the following conditions for a non-zero dual-Baer module M_R .

(a) Every direct summand of M_R is co-retractable.

788

(b) M is a direct sum of co-compressible R-modules.

(c) M is a direct sum of co-prime R-modules.

(d) $M = \bigoplus_{i \in I} M_i$ is a direct sum of reduced R-modules with $Hom_R(M_i, M_j) = 0$ $(i \neq j)$ such that each M_i is a direct sum of indecomposable co-compressible modules that are mutually epi-invariant.

Then $(a) \Rightarrow (b) \Leftrightarrow (c)$ and $(c) \Rightarrow (d)$. All conditions $(a) \sim (d)$ are equivalent whenever I is a finite set or M_R is a max-module.

Proof. (a) \Rightarrow (b). By [25, Corollary 2.6], M is a direct sum of indecomposable modules. Thus (b) is obtained by our assumption and Lemma 9 and the fact that a direct summand of dual-Baer is dual-Baer ([25, Corollary 2.5]).

(b) \Leftrightarrow (c). One side is clear. For the other side, note that every direct summand of a co-prime module is co-prime (hence, co-retractable). Thus we are done by (a) \Rightarrow (b). (b) \Rightarrow (d) We may suppose that $M = \bigoplus_{i \in I} C_i$ such that every C_i is indecomposable co-compressible *R*-module. Since M_R is dual-Baer, if $f \in \text{Hom}_R(C_i, C_j)$ ($i \neq j$) then Im(f) must be a direct summand of C_j (Theorem 2). If follows that f = 0 or f is epic. Thus for every $i \neq j$, either $\text{Hom}_R(C_i, C_j) = \text{Hom}_R(C_j, C_i) = 0$ or $C_i \stackrel{epi}{\simeq} C_j$ by Lemma 7(b). Now for any $i \in I$, let $M_i = \bigoplus_j \{C_j \mid C_i \stackrel{epi}{\simeq} C_j\}$. By Lemma 8, each M_i is reduced.

(d) \Leftrightarrow (a). Suppose that I is a finite set or M_R is a max-module. Then by [2, Propositions 2.6 and 2.7], each M_i is a co-retractable R-module. Now let $N \oplus L = M$ then by Lemma 3, $N = \bigoplus_{i \in I} (N \cap M_i)$. It is easily seen that each $(N \cap M_i)$ is a direct summand of M_i , and so is a co-retractable R-module. Therefore N_R is co-retractable by our assumption, as desired.

Recall that the singular submodule $Z(M_R)$ of an *R*-module *M* is defined by $Z(M_R) = \{m \in M_R \mid mA = 0 \text{ for some essential right ideal$ *A*of*R* $}. The module <math>M_R$ is called *singular* (resp. *nonsingular*) if $Z(M_R) = M$ (resp. $Z(M_R) = 0$).

Corollary 4. Let M be a non-zero dual-Baer R-module such that every direct summand of M_R is co-retractable. Then $M = M_1 \oplus M_2$ where M_1 is singular and M_2 is a nonsingular semisimple module.

Proof. If C_R is co-compressible and N is a proper essential submodule of C, then C/N and hence $C \simeq C/N$ is singular. This follows that every co-compressible R-module is either singular or semisimple (as semisimple R-modules have no proper essential submodules). The proof is now completed by Theorem 7.

Corollary 5. A projective dual-Baer M_R is semisimple if and only if every direct summand of M_R is co-retractable.

Proof. This follows from Corollary 5 and the fact that nonzero projective modules are not singular. \Box

A ring R is said to be *right duo* if every right ideal in R is a two sided ideal.

Lemma 10. If R is a ring Morita invariant to a right duo perfect ring then every nonzero R-module is max and co-retractable.

Proof. We may suppose that R is a right duo and a perfect ring. Let N be a proper submodule of a nonzero module M_R . Since R is right perfect then the

nonzero module M/N has a maximal submodule K/N. On the other hand, by [4, Theorem 2.14], the simple *R*-module M/K can be embedded in M_R . It follows that $\operatorname{Hom}_R(M/N, M)$ is nonzero, as desired.

Theorem 8. Let R be a ring Morita invariant to a right duo perfect ring, then dual-Baer R-modules are precisely semisimple R-modules.

Proof. Since a co-compressible module with a maximal submodule is simple, the result follows from Lemma 10 and Theorem 7. \Box

Acknowledgments The authors are grateful to the referee for his/her careful considerations.

References

- I. Amin, Y. Ibrahim, M. Yousif, C3-modules, Algebra Colloq. 22:4 (2015), 655-670. Zbl 1352.16002
- [2] B. Amini, M. Ershad, H. Sharif, Coretractable modules, J. Aust. Math. Soc., 86:3 (2009), 289-304. Zbl 1208.16011
- F.W. Anderson, K.R. Fuller, Rings and categories of modules. 2. ed., Grad. Texts Math., 13, Springer-Verlag, New York, 1992. Zbl 0765.16001
- [4] M. Baziar, A. Haghany, M.R. Vedadi, Fully Kasch modules and rings, Algebra Colloq. 17:4 (2010), 621-628. Zbl 1227.16008
- [5] S.K. Berberian, Baer *-rings, Springer-Verlag, Berlin etc., 1972. Zbl 0242.16008
- [6] L. Bican, P. Jambor, T. Kepka, P. Nemec, Prime and coprime modules, Fundam. Math. 107 (1980) 33-45. Zbl 0354.16013
- [7] G.F. Birkenmeier, Y. Kara, A. Tercan, π-Endo Baer modules, Commun. Algebra 48:3 (2020), 1132-1149. Zbl 1444.16001
- [8] G.F. Birkenmeier, H.E. Heatherly, J.Y. Kim, J.K. Park, Triangular matrix representations, J. Algebra 230:2 (2000), 558-595. Zbl 0964.16031
- T.P. Calci, A. Harmanci, B. Ungor, Generating dual Baer modules via fully invariant submodules, Quaest. Math., 42:8 (2019), 1125-1139. Zbl 07122658
- [10] N. Ding, Y. Ibrahim, M. Yousif, Y. Zhou, C4-modules, Commun. Algebra, 45:4 (2017), 1727– 1740. Zbl 1395.16002
- [11] N. Ding, Y. Ibrahim, M. Yousif, Y. Zhou, D4-modules, J. Algebra Appl 16:9 (2017), Article ID 1750166. Zbl 1382.16003
- [12] A. Haghany, M. Gurabi, M.R. Vedadi, Modules whose endomorphism rings have finite triangulating dimension and some applications, Mediterr. J. Math., 10:3 (2013), 1171-1187. Zbl 1394.16025
- [13] A. Haghany, O.A.S. Karamzadeh, M.R. Vedadi, Rings with all finitely generated module retractable, Bull. Iran. Math. Soc., 35:2 (2009), 37-45. Zbl 1194.16007
- [14] Y. Ibrahim, X.H. Nguyen, M. Yousif, Y. Zhou, Rings whose cyclics are C3-modules, J. Algebra Appl. 15:8 (2016), Article ID 1650152. Zbl 1373.16005
- [15] I. Kaplansky, Rings of operators, Mathematics Lecture Note Series, Benjamin, New York-Amsterdam, 1968. Zbl 0174.18503
- [16] T.Y. Lam, Lectures on modules and rings, Graduate Texts in Mathematics, 189, Springer, New York, 1998. Zbl 0911.16001
- [17] G. Lee, S.T. Rizvi, Direct sums of quasi-Baer modules, J. Algebra 456 (2016), 76–92. Zbl 1352.16008
- [18] G. Lee, S.T. Rizvi, C.S. Roman, When do the direct sums of modules inherit certain properties?, in Kim, Jin Yong (ed.) et al., Contemporary ring theory 2011. Proceedings of the 6-th China-Japan-Korea international conference, Kyung Hee University, Suwon, Korea, June 27-July 2, 2011, 47-77, World Sci. Publ., Hackensack, NJ, 2012. Zbl 1300.16005
- [19] C. Lomp, Prime elements in partially ordered groupoids applied to modules and Hopf algebra actions, J. Algebra Appl. 4:1 (2004), 77–97. Zbl 1104.16005
- [20] S.T. Rizvi, C.S. Roman, Baer and quasi-Baer modules, Comm. Algebra 32:1 (2004), 103–123. Zbl 1072.16007

790

- [21] S.T. Rizvi, C.S. Roman, On direct sums of Baer modules, J. Algebra 321:2 (2009), 682-696. Zbl 1217.16009
- [22] C.S. Roman, Baer and quasi-Baer modules, Doctoral Dissertation, The Ohio State University, 2004.
- [23] P.F. Smith, M.R. Vedadi, Submodules of direct sums of compressible modules, Comm. Algebra 36:8 (2008), 3042–3049. Zbl 1155.16004
- [24] R. Tribak, On weak dual Rickart modules and dual Baer modules, Commun. Algebra 43:8 (2015), 3190-3206. Zbl 1331.16006
- [25] D.K. Tütüncü, R. Tribak, On dual Baer modules, Glasg. Math. J. 52:2 (2010), 261–269. Zbl 1215.16007
- [26] I.E. Wijayanti, R. Wisbauer, On coprime modules and comodules, Commun. Algebra 37:4 (2009), 1308-1333. Zbl 1171.16023
- [27] R. Wisbauer, Foundations of module and ring theory, Gordon and Breach, Philadelphia, 1991. Zbl 0746.16001
- [28] M. Yousif, I. Amin, Y. Ibrahim, D3-Modules, Commun. Algebra 42:2 (2014), 578-592. Zbl 1307.16003

Mohammad Reza Vedadi Department of Mathematical Sciences, Isfahan University of Technology, Isfahan, 84156-83111, Iran. *Email address*: mrvedadi@cc.iut.ac.ir

NAJMA GHAEDAN DEPARTMENT OF MATHEMATICAL SCIENCES, ISFAHAN UNIVERSITY OF TECHNOLOGY, ISFAHAN, 84156-83111, IRAN. Email address: n.ghaedan@math.iut.ac.ir