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WHEN A (DUAL-)BAER MODULE IS A DIRECT SUM OF

(CO-)PRIME MODULES

N. GHAEDAN, M.R. VEDADI

Abstract. Since 2004, Baer modules have been considered by many
authors as a generalization of the Baer rings. A module MR is called
Baer if every intersection of the kernels of endomorphisms on MR is a
direct summand of MR. It is known that commutative Baer rings are
reduced. We prove that if a Baer module M is a direct sum of prime
modules, then every direct summand of M is retractable. The converse
is true whenever the triangulating dimension of M is �nite (e.g. if the
uniform dimension of M is �nite). Dually, if every direct summand of
a dual-Baer module M is co-retractable, then it is a direct sum of co-
prime modules and the converse is true whenever the sum is �nite or
M is a max-module. Among other applications, we show that if R is
a commutative hereditary Noetherian ring then a �nitely generated R-
module is Baer i� it is projective or semisimple. Also, over a ring Morita
equivalent to a perfect duo ring, all dual-Baer modules are semisimple.

Keywords: Baer module, co-prime module, co-retractable, prime module,
dual-Baer, retractable module.

1. Introduction

Throughout the paper, all rings will have unit elements and all modules will be
right unitary. A ring R is said to be Baer if for every non-empty subset X of R,
the right annihilator of X in R is of the form eR for some e = e2 ∈ R. Baer rings
play an important role in the theory of rings of operators in functional analysis;
see [15] and [5]. The concept of Baer ring was extended to modules by S.T. Rizvi
and C. S. Roman in [20] and [22]. Baer modules and their generalizations have
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been studied among many other works. Every Baer module M is a D2-module
(i.e., if M/A isomorphic to a direct summand of M then A is a direct summand
of M), see [28], [11], [17], [18] and [7] for recent works on the subjects. It is easy
to verify that � if R is a commutative Baer ring then R is reduced". For if x2 = 0
then x ∈ annR(x) = eR for some e = e2 ∈ R. Hence x = ex = 0. The following
question naturally arises: � Let R be commutative ring. When a �nitely generated
Baer R-module is a �nite direct sum of prime modules?". By a prime module M ,
we mean M is co-generated by each of its submodules [6]. We study Baer modules
that are direct sums of primes in Theorems 4 and 5, and give an answer to the
above question in Theorem 6. As an application, we show that if a ring R is Morita
equivalent to a commutative hereditary Noetherian ring then a �nitely generated
R-module is Baer if and only if it is projective or semisimple (Corollary 2).
The dual notion of the Baer modules was introduced and studied in [25] where
a module MR is dual-Baer if for every N ≤ MR, the right ideal HomR(M,N) of
EndR(M) is generated by an idempotent element. These modules are known to
have the C2-property (i.e., every submodule in M isomorphic to a direct summand
is a direct summand of M), see [1],[10], [14], [24] and [9] for some recent works
on the dual-Baer modules and important generalizations of them. We shall dually
investigate when a dual-Baer module is a direct sum of co-prime ones; see Theorem
7. This shows that if R is a right duo perfect ring, every dual-Baer module is
semisimple. In order to extend the results to non-commutative case, we �rst give a
categorical characterization for (dual-)Baer modules in Theorem 1. Any unexplained
terminology and all the basic results on rings and modules that are used in the sequel
can be found in [3] and [16].

2. Main results

If K and L are two R-modules then Tr(K,L) means
∑
{f(K) | f : K → L} and

Rej(K,L) means
⋂
{ker f | f : K → L}. If M = MR is a module then the class of

R-modules that are generated (resp. co-generated) by M is denoted by Gen(MR)
(resp. Cog(MR)). By N ≤⊕ MR, we mean N is a direct summand ofMR (i.e., there
is a submodule K of MR such that M = N ⊕K).

Theorem 1. Every exact sequence 0→ N →M → Y → 0 of R-modules with Y ∈
Cog(MR) splits if and only if M is a Baer R-module.

Proof. (⇒). To show that the module MR is Baer, Let N = rM (X) for some non-
emptyX ⊆ S. ThenN =

⋂
f∈X ker f . Hence, we can deduce thatM/N ∈ Cog(MR).

Now the exact sequence 0→ N
ı→M

π→M/N → 0 splits by our assumption. This
means N ≤⊕ MR, proving that MR is Baer.

(⇐). Suppose that 0 → N
f→ M → Y → 0 is an exact sequence of R-modules

with Y ∈ Cog(MR). Let K = Imf . Since M/K ' Y ∈ Cog(MR), there exists a
one to one R-homomorphism θ : M/K → MΛ for some set Λ. For each λ ∈ Λ, let
fλ = πλθ where πλ is the canonical projection on MΛ. If now X = {fλ | λ ∈ Λ}
then it is easily seen that K = rM (X). Thus Im f is a direct summand of MR by
the Baer condition on M . It follows that the exact sequence splits, as desired. �
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Lemma 1. Let MR be a nonzero module and EndR(M) = S. Then N ∈ Gen(MR)
if and only if N = IM for some right ideal I of S if and only if Tr(M,N) = N .

Proof. By [27, Theorem 13.5]. �

Proposition 1. LetMR be a nonzero module with EndR(M) = S. Then the module
MR is dual-Baer if and only if IM ≤⊕ MR for every I ≤ SS.

Proof. (⇒) Let I ≤ SS and N = IM . By our assumption, HomR(M,N) is a direct
summand of SS . Also, by Lemma 1, we have N = Tr(M,N) = HomR(M,N)M . It
follows that N ≤⊕ MR.
(⇐) Let N ≤ MR and I = HomR(M,N). By our assumption, IM ≤⊕ MR and so
IM = eM for some e = e2 ∈ S. It follows that e(M) ⊆ N and (1− e)I = 0. Hence,
e ∈ I and I ⊆ eS. Thus I = eS. �

Theorem 2. Every exact sequence 0→ N →M → Y → 0 of R-modules with N ∈
Gen(M) splits if and only if M is a dual-Baer R-module.

Proof. This obtained by Lemma 1 and Proposition 1. �

Theorem 3. Being Baer (dual-Baer) module is a Morita invariant property.

Proof. This is obtained by Theorems 1, 2 and the fact that the category equivalences
preserve exact sequences and direct (co) products [3, Proposition 21.6(3) and (5)].

�

In [21, Propositions 2.12 and 2.14], it is investigated when a Baer module is a
direct sum of indecomposable modules. In comparison, a dual-Baer module is always
decomposed into the indecomposable modules [25, Corollary 2.6]. In the following,
we investigate Baer modules that are decomposed into the reduced modules and
give some applications. A module is said to be reduced if it has no non-trivial fully
invariant direct summand. If X and Y are R-modules then it is well known that
Rej(X,Y ) is a fully invariant submodule of X and X/Rej(X,Y ) lies in Cog(Y ).
Thus if MR is a reduced Baer module then Theorem 1 shows that for any 0 6= N ≤
M , HomR(M,N) = 0 or M ∈ Cog(N). In [12], the triangulating dimension (τ -
dimension) τdim was de�ned for a moduleMR as follows: Sup{k ∈ N |M = ⊕ki=1Mi

with Mi 6= 0 and HomR(Mi,Mj) = 0 for any i < j}. Theorem 2.5 of [12] states
a series of necessary and su�cient conditions for τdim(MR) to be �nite. In [8,
Proposition 2.16] Baer rings with a generalized triangular matrix representation are
studied. Note that Noetherian condition ⇒ �nite uniform dimension ⇒ ascending
(descending) chain condition on direct summands ⇒ �nite τ -dimension; see [16,
Chapter 3, page 208] for more information about the uniform dimension of a module.
A module that is cogenerated by each of its nonzero submodule, is called prime in
[6] and ∗-prime in [19]). It is easy to verify that every prime module is reduced and
retractable. An R-module MR is called retractable if HomR(M,N) 6= 0 for every
0 6= N ≤ MR. The following theorem shows that the study of Baer modules with
�nite τ -dimension reduces to the study of such modules when they are prime. Recall
that two R-modules X and Y are called orthogonal to each other (or orthogonal),
if they do not contain nonzero isomorphic submodules.

We state a few lemmas and use them to prove Theorems 4 and 5.
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Lemma 2. (a) Let MR be a nonzero retractable Baer module. Then either MR is
prime or there is a decomposition M = N ⊕K such that N is a non-trivial fully
invariant direct summand of MR.
(b) IfM = M1⊕M2 is a Baer R-module and eachMi is a prime R-module (i = 1, 2)
such that HomR(M1,M2) = 0, then HomR(M2,M1) = 0.
(c) If M1 and M2 are prime R-modules such that HomR(Mi,Mj) = 0 (i 6= j) then
M1 and M2 are orthogonal.

Proof. (a) LetMR be a non-prime module. Thus there exists a non-trivial submodule
X of M such that Rej(M,X) =: N is nonzero. Clearly N is a fully invariant direct
summand of M such that M/N ∈ Cog(M). Since MR is retractable, N 6= M . Thus
N is a non-trivial fully invariant submodule of MR by Theorem 1.
(b) If f : M2 → M1 is nonzero, we have M/ ker f ∈ Cog(M). Then by the Baer
condition on M (Theorem 1), we must have M2 ' ker f⊕Im f . Now since M1 is
prime, it lies in Cog(Im f). Hence HomR(M1,M2) 6= 0, contradiction.
(c) This is routine. �

Corollary 1. A nonzero prime module is retractable and reduced. The converse is
true when the module is Baer.

Proof. IfMR is prime then for any nonzero X,Y ≤MR, we have HomR(X,Y ) 6= 0.
It follows that MR is reduced and retractable. The converse is obtained by Lemma
2(a). �

Lemma 3. Let M =
⊕

i∈IMi(I is an index set) such that HomR(Mi,Mj) = 0
(i 6= j). If N ⊕ L = M then N =

⊕
i∈I(N ∩Mi).

Proof. It is obtained by [22, Lemma 1.3.18], we give a proof for the reader's convenience.
By hypothesis each Mi is a fully invariant submodule of MR. Hence for each i we
haveMi = (N ∩Mi)⊕ (L∩Mi). ThusM = [

⊕
i(N ∩Mi)]⊕ [

⊕
i(L∩Mi)] = N ⊕L.

It follows that N =
⊕

i(N ∩Mi). �

Lemma 4. [23, Lemma 2.1] Let a module M =
⊕

i∈IMi(I is an index set) be a
direct sum of submodulesMi(i ∈ I) and let N be any nonzero submodule ofM . Then
there exists a subset J of I such that the canonical projection π : M →

⊕
j∈JMj

is injective on N and π(N) ∩Mj 6= 0.

We say that X and Y are sub-cog of each other and write (X
sub−cog
' Y ), if X ∈

Cog(Y ) and Y ∈ Cog(X).

Lemma 5. If M = M1 ⊕ M2 is a Baer R-module and Mi is prime R-module

(i = 1, 2) then either HomR(M1,M2) = HomR(M1,M2) = 0 or M1
sub−cog
' M2

Proof. Let N = Rej(M1,M2). Then M1/N ∈ Cog(M2). It follows that M/N ∈
Cog(M) and so N is a direct summand of M by Theorem 1. Therefore N is a fully
invariant direct summand of the Baer module M1 by [20, Theorem 2.17]. Now by
Corollary 1, we must have N = 0 or N = M1. Consequently, M1 ∈ Cog(M2) or
HomR(M1,M2) = 0. Similarly M2 ∈ Cog(M1) or HomR(M2,M1) = 0. The proof is
now completed by Lemma 2(b). �

Theorem 4. Let M =
⊕

i∈I Pi(I is an index set) be a Baer module such that each
Pi is a prime R-module. Then we have:
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(a) M =
⊕

j∈JMj(J is an index set) such that each Mj is a prime R-module and

M ′is are mutually orthogonal with HomR(Mi,Mj) = 0 (i 6= j).
(b) Every direct summand of MR is retractable.

Proof. (a) For every j ∈ I, let Mj =
⊕
{Pi | Pi

sub−cog
' Pj}. Since every direct

summand of a Baer module is Baer ([20, Theorem 2.17]), we have by Lemma 5,
HomR(Mi,Mj) = 0 for every (i 6= j). Thus it is enough to prove that each Mi is a
prime module. Fix j and let P = Mj =

⊕
i∈Aj

Pi(Aj an index set). Suppose that

0 6= N ≤ P , we may suppose by Lemma 4 that N ∩ Pi 6= 0 for all i ∈ Aj . Thus
every Pi can be embedded into N because Pi is assumed to be prime. It follows
that P ∈ Cog(N), as desired. The proof is now completed by 2(c).
(b) We use (a). Let 0 6= K ≤ N ≤M = N⊕N ′. We shall show that HomR(N,K) 6=
0. By Lemma 3, we have N =

⊕
j∈J(N ∩Mj). Again by Lemma 4, there is t ∈ J

such that K and (N ∩Mt) contain nonzero isomorphic submodules. Thus the prime
condition on Mt implies that HomR(N ∩Mt,K) 6= 0, proving that HomR(N,K) 6=
0. �

Theorem 5. The following statements are equivalent for a non-zero Baer module
M .
(a) τdim(MR) <∞ and every direct summand of MR is retractable.
(b) M =

⊕n
i=1Mi such that each Mi is a prime R-module.

(c) M =
⊕n

i=1Mi such that each Mi is a prime R-module and M ′is are mutually
orthogonal with HomR(Mi,Mj) = 0 (i 6= j).

Proof. (a) ⇒ (b). This obtained by [12, Theorem 2.5] and Corollary 1.
(b) ⇒ (c). By Proposition 4.
(c) ⇒ (a). By Proposition 4, every direct summand of MR is retractable and by
[12, Theorem 2.5] and Corollary 1, we have τdim(MR) <∞. �

A module MR is called compressible if M can be embedded into every non-zero
submodule of MR. R-modules X and Y are said to be sub-isomorphic if X can be
embedded into Y and vise versa; see for example [23].

Proposition 2. Let MR be a non-zero Baer module with ascending (descending)
chain condition on direct summands. Then the following statements are equivalent.
(a) Every direct summand of MR is retractable.
(b) M =

⊕n
i=1Mi such that HomR(Mi,Mj) = 0 (i 6= j) and each Mi is a

�nite direct sum of indecomposable compressible R-modules that are mutually sub-
isomorphic.

Proof. (a) ⇒ (b). By our assumption τdim(MR) is �nite ([12, Theorem 2.5]).
Hence by Theorem 5, M =

⊕n
i=1Mi is a direct sum of prime modules such that

HomR(Mi,Mj) = 0 (i 6= j). It follows that τ dim(Mi) < ∞ for all i by [12,
Proposition 2.14]. Therefore, we may suppose that MR is a prime module. Now
by [3, proposition 10.14], M =

⊕m
i=1 Pi is a �nite direct sum of indecomposable

submodules. Thus the Baer condition on Pi ⊕ Pj implies that every f : Pi → Pj is
zero or one to one. On the other hand, sinceMR is prime, HomR(X,Y ) 6= 0 for every
non zero submodules X and Y of MR. Consequently, all Pi are indecomposable
compressible R-modules that are mutually sub-isomorphic, as desired.
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(b) ⇒ (a). Let P =
⊕m

i=1 Pi where P1, · · ·Pm are compressible and mutually sub-
isomorphic R-modules. It is easy to show that PR is a prime. Therefore, (a) is now
obtained by Theorem 4. �

Lemma 6. Let R be commutative ring, P and Q be prime ideals of R. Then for
every �nitely generated nonzero ideal A in R/P , HomR(A,R/Q) = 0 if and only if
P 6⊆ Q.

Proof. If there exist a �nitely generated ideal A in R/P and 0 6= f ∈ HomR(A,R/Q)
then P ⊆ annR(f(A)) = Q. Conversely, let P ⊆ Q and A be a �nitely generated
ideal in R/P . Clearly R/P can be embedded into AR. Hence, there is an R-
homomorphism f : A → E, where E is the injective hull of (R/Q)R. It follows
that f(A) ∩ R/Q 6= 0. Since now f(A) is �nitely generated, it is retractable
by [13, Theorem 2.7]. Thus HomR(f(A), (f(A) ∩ R/Q)) is nonzero, proving that
HomR(A,R/Q) 6= 0 �

Theorem 6. Let R be a commutative ring. The following statements are equivalent
for every �nitely generated Baer R-module M .
(a) τdim(MR) <∞.
(b) M =

⊕n
i=1Mi such that each Mi is a prime R-module.

(c) There are mutually incomparable prime ideals P1 · · ·Pn such thatM =
⊕n

i=1Mi

and each Mi is a �nite direct sum of right ideals of R/Pi.

Proof. LetM be a �nitely generated R-module. By [13, Theorem 2.7], every �nitely
generatedR-module is retractable. Hence, every direct summand ofMR is retractable.
Thus (a) ⇔ (b) by Theorem 5.
(c) ⇒ (b). This is clear.
(b) ⇒ (c). We have the decomposition M =

⊕n
i=1Mi of prime modules such that

HomR(Mi,Mj) = 0 (i 6= j) by Theorem 4. Let Pi = annR(Mi). Since Mi is a
prime R-module then Pi is a prime ideal of R and Mi is prime torsionfree as an
R/Pi-module. Fix i, replace R with R/Pi and let M = Mi. Thus M is a torsionfree
Baer module over a commutative domain R. If M = R(n)/K then K is a closed
submodule of R(n). Also R being commutative domain has uniform dimension 1.
Hence, the uniform dimension of MR is �nite by [16, Theorem 6.35]. Thus we can
now apply Proposition 2 to deduce thatMR is a �nite direct sum of (uniform) right
ideals of R. The proof is completed by Lemma 6. �

The following result can be a generalization of [20, Proposition 2.19].

Corollary 2. Let R be a ring Morita invariant to a commutative hereditary Noetherian
ring and MR is �nitely generated. Then MR is a Baer R-module M if and only if
it is semisimple or projective.

Proof. By Theorem 3, we can suppose thatR is a commutative hereditary Noetherian
ring. For the necessity, we apply Theorem 6 for M . If Pj = 0 for some j then
n = 1 and M a �nite direct sum of right ideals of R, because all Pi are mutually
incomparable. Hence MR is projective by the hereditary condition on R. On the
other hand, every singular R-module has a nonzero socle by [?, Proposition 5.4.5].
Hence ifMR is singular, it must be semisimple by Proposition 2. For the su�ciency,
let MR be projective. To show that MR is Baer, we apply Theorem 1. Let 0 →
N → M → Y → 0 be an exact sequence of R-modules with Y ∈ Cog(M). Since
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MR is projective, Y ∈ Cog(R). Thus YR can be embedded in a free R-module by
[?, Proposition 3.4.3]. Our assumption on R implies that YR must be projective.
Hence the exact sequence splits, as desired. �

We now consider the dual of Theorem 5. Following [26], a moduleM is called co-
prime wheneverM ∈Gen(M/N) for every proper submoduleN < MR. Furthermore,
we say that MR is co-compressible if MR is a homomorphic image of every nonzero
factor of MR. Clearly, co-compressible ⇒ co-prime ⇒ co-retractable. However, the
Z-module Zp∞ is co-compressible, dual-Baer which is not Baer. For the dual notion

of sub-isomorphic, by X
epi
' Y the R-modules X and Y are called epi-invariant if

X and Y are homomorphic image of each other.

Lemma 7. (a) Let MR be a nonzero co-retractable dual-Baer module. Then either
MR is co-prime or there is a decompositionM = N⊕K such that N is a non-trivial
fully invariant direct summand of MR.
(b) If M = M1 ⊕ M2 is a dual-Baer R-module and Mi is co-prime R-module
(i = 1, 2) such that HomR(M1,M2) = 0, then HomR(M2,M1) = 0.

Proof. (a) and (b) are dual of Lemma 2 and obtained from the dual arguments. �

Corollary 3. Every co-prime module is reduced and co-retractable. The converse
is true if the module is dual-Baer.

Proof. If MR is co-prime then clearly it is co-retractable. Also if M = N ⊕K such
that N is a non-trivial fully invariant direct summand of MR. Then M , hence K
is generated by M/K. This follows that HomR(N,K) 6= 0, a contradiction. The
converse is obtained by Lemma 7(a). �

Lemma 8. Let M =
⊕

i∈I Ci such that for any i ∈ I, the R-module Ci is reduced.
If V is a non-zero fully invariant direct summand of MR then there is non-empty
subset J of I such that V =

⊕
j∈J Cj and HomR(V,Ci) = 0 for any i ∈ I \ J .

Proof. Let M = V ⊕ V ′ where V is fully invariant submodule of MR. Then we
have V =

⊕
i∈I V ∩ Ci and HomR(V, V ′) = 0. On the other hand, for every i ∈ I,

it is easy to verify that V ∩ Ci is a fully invariant direct summand of Ci. Now let
J = {i ∈ I | V ∩ Ci 6= 0}. �

Lemma 9. Every indecomposable co-retractable dual-Baer module is a co-compressible
module.

Proof. Suppose Y is a proper submodule of X and X is an indecomposable co-
retractable dual-Baer module. Since X is co-retractable, there exits nonzero f :
X/Y → X. Now Im(f) lies in Gen(X) and so must be a direct summand of X by
the dual-Baer condition (Theorem 2). It follows that f is surjective, proving that
X is co-compressible. �

A module M is called max if every proper submodule of M lies in a maximal
submodule.

Theorem 7. Consider the following conditions for a non-zero dual-Baer module
MR.
(a) Every direct summand of MR is co-retractable.
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(b) M is a direct sum of co-compressible R-modules.
(c) M is a direct sum of co-prime R-modules.
(d) M =

⊕
i∈IMi is a direct sum of reduced R-modules with HomR(Mi,Mj) = 0

(i 6= j) such that eachMi is a direct sum of indecomposable co-compressible modules
that are mutually epi-invariant.
Then (a)⇒(b)⇔ (c) and (c)⇒(d). All conditions (a) ∼ (d) are equivalent whenever
I is a �nite set or MR is a max-module.

Proof. (a)⇒(b). By [25, Corollary 2.6],M is a direct sum of indecomposable modules.
Thus (b) is obtained by our assumption and Lemma 9 and the fact that a direct
summand of dual-Baer is dual-Baer ([25, Corollary 2.5]).
(b)⇔(c). One side is clear. For the other side, note that every direct summand of a
co-prime module is co-prime (hence, co-retractable). Thus we are done by (a)⇒(b).
(b)⇒(d) We may suppose thatM =

⊕
i∈I Ci such that every Ci is indecomposable

co-compressible R-module. Since MR is dual-Baer, if f ∈ HomR(Ci, Cj) (i 6= j)
then Im(f) must be a direct summand of Cj (Theorem 2). If follows that f = 0
or f is epic. Thus for every i 6= j, either HomR(Ci, Cj) = HomR(Cj , Ci) = 0 or

Ci
epi
' Cj by Lemma 7(b). Now for any i ∈ I, let Mi =

⊕
j{Cj | Ci

epi
' Cj}. By

Lemma 8, each Mi is reduced.
(d)⇔(a). Suppose that I is a �nite set or MR is a max-module. Then by [2,
Propositions 2.6 and 2.7], eachMi is a co-retractable R-module. Now let N⊕L = M
then by Lemma 3, N =

⊕
i∈I(N ∩Mi). It is easily seen that each (N ∩Mi) is a

direct summand of Mi, and so is a co-retractable R-module. Therefore NR is co-
retractable by our assumption, as desired. �

Recall that the singular submodule Z(MR) of an R-module M is de�ned by
Z(MR) = {m ∈ MR | mA = 0 for some essential right ideal A of R}. The module
MR is called singular (resp. nonsingular) if Z(MR) = M (resp. Z(MR) = 0).

Corollary 4. Let M be a non-zero dual-Baer R-module such that every direct
summand of MR is co-retractable. Then M = M1 ⊕M2 where M1 is singular and
M2 is a nonsingular semisimple module.

Proof. If CR is co-compressible and N is a proper essential submodule of C, then
C/N and hence C ' C/N is singular. This follows that every co-compressible R-
module is either singular or semisimple (as semisimple R-modules have no proper
essential submodules). The proof is now completed by Theorem 7. �

Corollary 5. A projective dual-Baer MR is semisimple if and only if every direct
summand of MR is co-retractable.

Proof. This follows from Corollary 5 and the fact that nonzero projective modules
are not singular. �

A ring R is said to be right duo if every right ideal in R is a two sided ideal.

Lemma 10. If R is a ring Morita invariant to a right duo perfect ring then every
nonzero R-module is max and co-retractable.

Proof. We may suppose that R is a right duo and a perfect ring. Let N be a
proper submodule of a nonzero module MR. Since R is right perfect then the
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nonzero module M/N has a maximal submodule K/N . On the other hand, by
[4, Theorem 2.14], the simple R-module M/K can be embedded in MR. It follows
that HomR(M/N,M) is nonzero, as desired. �

Theorem 8. Let R be a ring Morita invariant to a right duo perfect ring, then
dual-Baer R-modules are precisely semisimple R-modules.

Proof. Since a co-compressible module with a maximal submodule is simple, the
result follows from Lemma 10 and Theorem 7. �
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