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AN APPLICATION OF THE CHEBYSHEV COLLOCATION

METHOD FOR THE CALCULATION OF A MASS FLUX IN A

LONG CONCENTRIC ANNULAR CHANNEL

O.V. GERMIDER, V.N. POPOV

Abstract. A rare�ed gas �ow through a long concentric annular channel
due to pressure gradient is studied on the basis of the linearized BGK
model of the Boltzmann kinetic equation using a Chebyshev collocation
method. The method is based on the approximation by the truncated
Chebyshev series. The linearized BGK model kinetic equation and boun-
dary conditions are transformed into a matrix equation, which corres-
ponds to a system of linear algebraic equations with the values of the
unknown function at the Chebyshev collocation points. The mass �ux
is calculated as a function of the rarefaction parameter. The accuracy
of the results is validated in several ways, including the recovery of the
analytical solutions at the hydrodynamic and free molecular limits.

Keywords: linearized BGK model kinetic equation, model of di�use
re�ection, collocation method, Chebyshev polynomials.

1. Introduction

Due to the development of micro- and nanotechnologies, in the last decade the
interest has grown to the research of �ows of a rare�ed gas in channels with complex
forms of cross sections. Examples on the use of channels in micro- and nanodevices
are provided in [1]. A correct description of the �ow of a rare�ed gas in the channels
of such devices can be obtained based on the Boltzmann kinetic equation. However,
to get a numeric solution to the Boltzmann kinetic equation, one requires signi�cant
computational resources, while substituting in the kinetic equation the collision
integral with its model that maintains fundamental properties of the integral,
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allows to reduce the computational expenses signi�cantly. The methods for solving
model kinetic equations known at the present time, such as the discrete velocities
and ordinates method [2]-[5], the conservative method [6], require a considerable
amount of detailed meshes in the con�gurational space and the velocity space even
in the framework of the linear transport theory. To achieve signi�cant savings in
computer resources, as shown in [7]-[9], polynomial approximation can be used.
The collocation method using Chebyshev's polynomials allows to obtain acceptable
results given a comparatively small number of knots in every direction of the phase
space [7]-[9]. It is also necessary to emphasize that the limits of applicability of the
linearized model kinetic equations for describing the gas �ow in the channels are
much wider [10] than it was assumed before, hence, the problem of searching for
the solutions of those is still relevant.

In this paper, we propose a modi�cation of the approach [7]-[9] with the applica-
tion of the properties of Chebyshev polynomial sums [11] and Hadamard's and
Kronecker's matrix products. The proposed modi�cation allows to perform a rational
construction of the matrix of a system of linear non-homogeneous equations taking
into account the boundary conditions for a more complex form of a cross section
of the channel, which represents a ring. The numerical solution of the problem on
calculation of the mass �ow in a long concentric annular channel is obtained using
the Bhatnagar�Gross�Krook (BGK) model of the Boltzmann kinetic equation [12]
in the framework of di�use boundary conditions on the walls of the channel.

2. Statement of the problem. The kinetic equaiton

Consider the �ow of a rare�ed gas in a long concentric annular channel formed
by two cylinders with the radii R′1 and R′2 (R′1 < R′2), under the action of a given
gradient of pressure directed along the axis of the channel z′. The walls of the
channel are kept at a constant temperature. We will consider the gas �ow in the
medium part of the channel. The condition of the rare�ed gas at the point r′ is
de�ned by the function of distribution of the gas molecules f ′(r′,v), where v is a
molecular gas velocity. The macroscopic parameters of the gas in the channel, such
as concentration n′, temperature T ′, pressure p′, mass velocity u, are expressed
via the function of distribution f ′(r′,v) in the form of integrals over the velocity
space. As the scales of length, velocity, consent ration, temperature, distribution
function, we choose respectively the values R′2, β

−1/2, n′0, T
′
0, n

′
0β

3/2, where β =
m′/(2kBT

′
0), kB is the Boltzmann constant, m′ is the mass of gas molecules, n′0,

T ′0 is the concentration, temperature of the gas at some point taken as the origin;
p′ = n′kBT

′. Then for dimensionless quantities we have the following relations:

r =
r′

R′2
, R1 =

R′1
R′2

, R2 = 1, f =
f ′

n′0β
3/2

,

C = β1/2v, u = β1/2u′, n =
n′

n′0
, T =

T ′

T ′0
.

We assume that the length of the channel L′ � R′2, and the nondimentional
pressure gradient is small in absolute value, that is,

(1) Gp =
dp

dz
, |Gp| � 1.

Taking into account the asymmetrical character of a gas �ow in the channel,
we introduce the cylindrical coordinates r = (ρ, rϕ, rz) in the con�gurational space
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and C = (C⊥, Cψ, Cz) in the velocity space. Designating ζ = cosψ, in the linear
approximation we have

p(z) = 1+Gpz, f(r,C) = f0(C) (1 +Gp(z + h(ρ,C))) , f0(C) = π−3/2 exp
(
−C2

)
,

(2) uz = GpUz, Uz(ρ) =
2

π

+∞∫
0

exp(−C2
⊥)C⊥

1∫
−1

1√
1− ζ2

Z(ρ, C⊥, ζ)dζdC⊥,

Z(ρ, C⊥, ζ) =
1√
π

+∞∫
−∞

exp(−C2
z )Czh(ρ,C)dCz.

The main calculated value is the reduced gas mass �ow

(3) JM =
4

(1−R2
1)

1∫
R1

Uz(ρ)ρdρ.

To obtain Uz, we use the linearized BGK equation [7]

(4)

(
∂Z

∂ρ
ζ +

∂Z

∂ζ

(1− ζ2)
ρ

)
C⊥ + δZ(ρ, C⊥, ζ) +

1

2
= δUz(ρ),

and the di�use boundary conditions on the channel walls

(5) Z(1, C⊥, ζ) = 0, ζ < 0, Z(R1, C⊥, ζ) = 0, ζ > 0,

where δ = Kn−1 is a parameter of gas rarefaction, Kn is a Knudsen number.

3. Solution of the boundary problem

We decompose the unknown function Z(ρ, C⊥, ζ), where ρ ∈ [0, 1], C⊥ ∈ [0,+∞)
and ζ ∈ [−1, 1], into a series of Chebyshev polynomials of the �rst kind Tki , and
restricting ourselves in this series to the members with the numbers ki ≤ ni (i =
1, 3), we obtain

(6) Z(ρ, C⊥, ζ) = T1(x1)⊗T2(x2)⊗T3(x3)A,

where x1 = (2ρ− 1−R1)/(1−R1), x2 = (C⊥− 1)/(C⊥+1), x3 = ζ, Ti is a matrix
of the size 1× n′i (n′i = ni + 1, i = 1, 3):

(7) Ti(xi) = (T0(xi)T1(xi) . . . Tni−1(xi)Tni(xi)) ,

A is a matrix of the size n′1n
′
2n
′
3 × 1:

(8) A = (a000 a001 . . . an1n2n3−1 an1n2n3
)
T
,

by T1(x1)⊗T2(x2) a Kronecker product of matrices T1(x1) and T2(x2) is denoted.
Substituting (6) into (4) and (5), we obtain

(9) B(x1, x2, x3)A = −1

2
,

(10) T1(−1)⊗T2(x2)⊗T3(x3)A = 0, x2 > 0,

(11) T1(1)⊗T2(x2)⊗T3(x3)A = 0, x2 < 0,
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where

(12) B(x1, x2, x3) =
2

1−R1

(
dT1(x1)

dx1
⊗T2(x2)x2+

+ T1(x1)⊗
dT2(x2)

dx2

(1− x22)
x1 + (1 +R1)/(1−R1)

)
⊗

⊗T3(x3)
1 + x3
1− x3

+ δT1(x1)⊗ (T2(x2)⊗T3(x3)−P2 ⊗P3) ,

(13) P2 =
2

π

1∫
−1

T2(x2)√
1− x22

dx2 = (2 0 . . . 0 0) ,

(14) P3 = 2

1∫
−1

1 + x3
(1− x3)3

T3(x3) exp

(
− (1 + x3)

2

(1− x3)2

)
dx3.

We choose as collocation points in (9) for x1 the extremum points of the polynomial
Tn1

(x1) on the segment [−1; 1], for x2 and for x3 zeroes Tn′2(x2) and Tn′3(x3) on
this segment:

(15) x1,k1 = cos

(
π(n1 − k1)

n1

)
, k1 = 0, n1,

(16) xi,ki = cos

(
π(2ni − 2ki + 1)

2(ni + 1)

)
, ki = 0, ni, i = 2, 3.

To obtain the values of Chebyshev polynomials at the points (15) and (16) and
their derivatives, we use the geometric de�nition Tji(xi) = cos(ji arccosxi), where
xi ∈ [−1, 1] [11]. Then

Tj1(x1,k1) = cos

(
πj1(n1 − k1)

n1

)
, j1, k1 = 0, n1,

Tji(xi,ki) = cos

(
πji(2ni − 2ki + 1)

2(ni + 1)

)
, ji, ki = 0, ni, i = 2, 3.

(17)
dTji(xi)

dxi
=
ji sin(ji arccosxi)√

1− x2i
, ji = 0, ni, i = 1, 2.

Calculating the values of
dTj(xi)

dxi
(i = 1, 2) respectively at the points (15) and

(16), we have

dTj1(x1,0)

dx1
= (−1)j1+1j21 ,

dTj1(x1,n1
)

dx1
= j21 ,

(18)
dTj1(x1,k1)

dx1
=

j1 sin

(
πj1(n1 − k1)

n1

)
∣∣∣∣sin(π(n1 − k1)n1

)∣∣∣∣ , j1 = 0, n1, k1 = 1, n1 − 1,
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(19)
dTj2(x2,k2)

dx2
=

j2 sin

(
πj2(2n2 − 2k2 + 1)

2(n2 + 1)

)
∣∣∣∣sin(π(2n2 − 2k2 + 1)

2(n2 + 1)

)∣∣∣∣ , j2, k2 = 0, n2.

Substituting (15) and (16) into (9), we arrive at the system of linear n′1n
′
2n
′
3-

equations, where we substitute the equations with x1,0, x2,k2 (k2 = n′2/2, n2) by
the equations that follow from boundary condition (10):

(20) T1(−1)⊗T2(x2,k2)⊗T3(x3,k3)A = 0, k3 = 0, n3,

with x1,n1 , x2,k2 (k2 = 0, n′2/2− 1) by the equations that follow from boundary
condition (11):

(21) T1(1)⊗T2(x2,k2)⊗T3(x3,k3)A = 0, k3 = 0, n3.

Here and after we consider n2 an odd number. As a result, the system of linear
n′1n

′
2n
′
3-equations is transformed into the form

(22) CA = F,

(23) C =
2

1−R1
EJH ◦

∑
k=2,3

Jk ⊗Hk

⊗G2 + δJ1 ⊗H1 ⊗G1−

− δEJH ◦ (J1 ⊗H4 ⊗P2)⊗ (G3 ⊗P3), F = −1

2
EJH,1 ⊗G3,

by ◦ Hadamard's matrix product is denoted. The elements of the square matrices
Jl = (Jl)n′1×n′1 , Hl = (Hl)n′2×n′2 (l = 1, 3) and Gl = (Gl)n′3×n′3 (l = 1, 2) and
column matrices H4 = (H4)n′2×1 and G3 = (G3)n′3×1 are de�ned the following
way:

(24) J1,i1,j1 = T1,j1(x1,i1), J2,i1,j1 =
dT1,j1(x1,i1)

dx1
,

J3,i1,j1 =
T1,j1(x1,i1)

x1,i1 + (1 +R1)/(1−R1)
, (i1, j1 = 0, n1);

(25) H1,i2,j2 = T2,j2(x2,i2), H2,i2j2 = x2,i2T2(x2,i2),

H3,i2,j2 =
dT2,j2(x2,i2)

dx2
(1− x22,i2), H4,i2,1 = 1, (i2, j2 = 0, n2);

(26) G1,i3,j3 = T3,j3(x3,i3), G2,i3,j3 =
1 + x3,i3
1− x3,i3

T3,j3(x3,i3),

G3,i3,1 = 1, (i3, j3 = 0, n3);

EJH is a square matrix of the size n′1n
′
2 × n′1n′2:

(27) EJH = E−
∑
k=1,2

EJ,k ⊗EH,k,

EJH,1 is the �rst column EJH, the matrix E = (E)n′1n′2×n′1n′2 consists of elements

equal to 1, and the nonzero elements of EJ,kn′1×n′1
and EH,kn′2×n′2

(k = 1, 2) are

EJ,1,0,j1 = 1, EJ,2,n1,j1 = 1, EH,1,i2,j2 = 1 (i2 = n′2/2 + 1, n1), EH,2,i2,j1 = 1,

(i2 = 0, n′2/2), (jk = 0, nk) (k = 1, 2).
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Taking into account the fact that at the points (15) we have that [11]

(28)
2

n1

n1∑
k1=0

′′
Tj1(x1,k1)Tl1(x1,k1) = γj1δj1,l1 ,

where by
n1∑
k1=0

′′
we mean the �nite sum in which the �rst and the last summands

are multiplied by 1/2,

(29) γji =

{
2, ji = 0 ∨ (i = 1 ∧ ji = ni)
1 ji > 0 ∧ (i = 1 ∧ ji < ni),

δji,li =

{
1, ji = li,
0, ji 6= li,

i = 1, 3,

and at the points (16) we have that [11]

(30)
2

ni + 1

ni∑
ki=0

Tjl(xi,ki)Tll(xi,ki) = γjiδji,li , i = 2, 3,

(31)
2

ni + 1

ni∑
ki=0

′
Tki(xi,j1)Tki(xi,li) = δj1,l1 , i = 2, 3,

where by
ni∑
ki=0

′
we mean the �nite sum in which the �rst summand is multiplied by

1/2, then from the system J1 ⊗H1 ⊗G1A = Z, in which

(32) Z = (Z000, Z001 . . . Zn1n2n3−1 Zn1n2n3
)
T
, Zk1k2k3 = Z(ρk1 , C⊥,k2 , ζk3),

we obtain

(33) A = %J′′1 ⊗H′1 ⊗G′1Z, % =
8

n1n′2n
′
3

,

where J′′1 is a matrix in which J ′′1,i1,i2 = JT1,i1,i2/4 (i1, i2 = 0, n1), J
′′
1,i1,i2

= JT1,i1,i2/2
((i1 = 0, n1 ∧ i2 6= 0, n1)∨ (i2 = 0, n1 ∧ i1 6= 0, n1)), and the rest of the elements are

equal to the corresponding elements of the matrix J1
T ; H′1 and G′1 are matrices in

which the �rst rows coincide with the corresponding rows of the matrices H1
T /2

and G1
T /2, and the rest of the rows are respectively the rows H1

T and G1
T . For

example, given n′1 = 4, the matrix J′′1 has the form

J′′1 =



1
4T0(x1,0)

1
2T0(x1,1)

1
2T0(x1,2)

1
2T0(x1,3)

1
4T0(x1,4)

1
2T1(x1,0) T1(x1,1) T1(x1,2) T1(x1,3)

1
2T1(x1,4)

1
2T2(x1,0) T2(x1,1) T2(x1,2) T2(x1,3)

1
2T2(x1,4)

1
2T3(x1,0) T3(x1,1) T3(x1,2) T3(x1,3)

1
2T3(x1,4)

1
4T4(x1,0)

1
2T4(x1,1)

1
2T4(x1,2)

1
2T4(x1,3)

1
4T4(x1,4)

 .

Substituting (33) into (22), we arrive at the system of linear n′1n
′
2n
′
3-equations

with respect to Z

(34) LZ = F,

(35) L = %C(J′′1 ⊗H′1 ⊗G′1) =
2

1−R1
B1 + δI− δB2,

(36) B1 = EJH ◦
(

2

n1
J2J

′′
1 ⊗ Id2 +

2

n′2
Id1 ⊗ (H3H

′
1)

)
⊗ Id3 ,
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(37) B2 =
4

n′2n
′
3

EJH ◦ (I1 ⊗EH)⊗EG,

where I1 and I are identity matrices of the sizes n′1 × n′1 and n′1n
′
2n
′
3 × n′1n′2n′3,

respectively; Id1 = J3J
′′
1, Id2 = H2H

′
1 and Id3 = G2G

′
1 are diagonal matrices:

(38) Id1,i1,i1 =
1

x1,i1 + (1 +R1)/(1−R1)
, Id2,i2,i2 = x2,i2 , Id3,i3,i3 =

1 + x3,i3
1− x3,i3

;

EH = (EH)n′2×n′2 = H4⊗P2H
′
1 is a matrix, all elements of which equal 1, and the

matrix

(39) EG = G3 ⊗P3G
′
1 = G3 ⊗ (P3G

′
1),

has equal rowsP3G
′
1. We obtain the solution of equation (34) using the LU -method.

Based on the obtained elements of the matrix Z, we reconstruct Uz(ρ):

(40) Uz(ρ) = %T1

(
2ρ− 1−R1

1−R1

)
J′′1 ⊗EH,r ⊗EG,rZ,

where EH,r and EG,r are the �rst rows of the matrices EH and EG.
Substituting (40) into (3), we obtain

(41) JM =
%

1 +R1
P1J

′′
1 ⊗EH,r ⊗EG,rZ,

(42) P1 =

1∫
−1

T1(x1) (x1(1−R1) + 1 +R1) dx1,

where to obtain the integrals of Chebyshev polynomials, we use the following
formulae [11]:

(43) x1Ti(x1) = Ti+1(x1) + T|i−1|(x1),

1∫
−1

Ti(x1)dx1 =

{ 2

1− i2
, i is even,

0, i is odd

4. Analysis of the obtained results

In the free molecular mode of the �ow (δ = 0), equation (4) with boundary
conditions (5) transforms into the Boltzmann equation for a collisionless gas and
can be obtained analytically [13]. In this case, we have

(44) Z(ρ, C⊥, ζ) = −
ρζ +

√
1− ρ2(1− ζ2)
2C⊥

, −1 ≤ ζ ≤
√
R2

1 − ρ2
ρ

,

(45) Z(ρ, C⊥, ζ) = −
ρζ −

√
R2

1 − ρ2(1− ζ2)
2C⊥

,

√
R2

1 − ρ2
ρ

< ζ ≤ 1.
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Substituting (44) and (45) into (2), we come to the following expression for Uz(ρ):

(46) Uz(ρ) =
1

2
√
π


1∫

√
R2

1−ρ
2

ρ

√
R2

1 − ρ2(1− ζ2)√
1− ζ2

dζ−

−

√
R2

1−ρ
2

ρ∫
−1

√
1− ρ2(1− ζ2)√

1− ζ2
dζ

 .

In the hydrodynamic mode of the �ow (δ−1 � 1), from the Navier�Stokes
equation with a boundary condition of complete adhesion on the cylinders, following
[14], we obtain

(47) Uz(ρ) =
δ
(
ρ2 − 1

)
4

(
1− ln ρ

lnR1

)
.

In this case, substituting (47) into (3), we have that

(48) JM =
δ
(
R2

1(1− lnR1)− 1− lnR1

)
4 lnR1

.

In the mode of the �ow with sliding, the tangential mass velocity of the gas is
proportional to its normal gradient close to the channel walls [15] and [16]. Following
[16], we write the boundary conditions of sliding in the form

(49) Uz(Ri) =
σp
δ

∂Uz
∂nRi

(Ri), i = 1, 2,

where σp is a dimentionless coe�cient of viscous sliding, nRi is a unit normal vector
to the cylinder with the radius Ri (i = 1, 2), directed towards the gas. For a di�use
scattering, in the framework of the BGK model the coe�cient σp equals 1.016 [15].
We will search for the solution of the di�erential equation

(50)
1

ρ

d

dρ

(
ρ
dUz(ρ)

dρ

)
= δ, R1 ≤ ρ ≤ R2,

with boundary conditions (49) in the form

(51) Uz(ρ) = UH,z(ρ) + σpUs,z(ρ).

Here UH,z(ρ) is a hydrodynamic solution with the boundary conditions of adhesion
(47), and Us,z(ρ) is a small complement of order δ0, conditioned by the sliding of
the gas on the boundary. As a result, to determine the correction for sliding Us,z(ρ),
we obtain a Dirichlet problem for the Laplace's equation in the ring

(52)
1

ρ

d

dρ

(
ρ
dUs,z(ρ)

dρ

)
= 0,

(53) Us,z(Ri) =
1

δ

∂UH,z
∂nRi

(Ri), i = 1, 2.
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Substituting (47) into (53), we obtain

(54) Us,z(Ri) =
(−1)iδ

4

R2
1 − 2R2

i lnR1 − 1

Ri lnR1
, i = 1, 2.

As a result, solving boundary problems (52) and (54), we get

(55) Us,z(ρ) =
(1 + 2R2

1 lnR1 −R3
1 + 2R1 lnR1 −R2

1 +R1) ln ρ

4R1 ln
2R1

+

+
1

4

R2
1 − 2 lnR1 − 1

lnR1
.

In the mode of the �ow with sliding, the solution of equation (4) does not depend
on C⊥ and ζ and is determined by the condition that Z(ρ, C⊥, ζ) = Uz(ρ), that is,
it represents a composition of functions (47) in (55). Substituting (51) into (3) and
taking into account (47) in (55), we obtain

(56) JM = JM,H + σpJM,s =
δ
(
R2

1(1− lnR1)− 1− lnR1

)
4 lnR1

+

+σp
4R3

1 ln
2R1 − 4R2

1 ln
2R1 − 4R3

1 lnR1 +R4
1 + 4R1 ln

2R1 + 4R1 lnR1 − 2R2
1 + 1

4R1(R1 − 1) ln2R1

.

For R1 = 0.5, Figures 1 (a) and 1 (b) show by curves 1, 2, and 3 the distributions
of mass velocity Uz of the gas in the channel obtained by formulae (40), (47), and
(51), respectively. It can be seen on Figures 1 (a) and (b) that given δ ≥ 10, the
pro�le of the value Uz approaches the solution of the Navierâ��Stokes equation with
boundary conditions of sliding (49). On Figure 2, the curves 1, 2, and 3 represent
the distributions of mass velocity of gas in the channel with R1 = 0.5, obtained
by formula (40) given δ = 0.1, 1, and 10. The dashed line 4 demonstrates the
distribution Uz in a free molecular mode, calculated with the help of (46). It follows
from Figure 2 that as the values of δ increase from 0 to 1, the values of Uz decrease
in their absolute value to the minimum, that takes place near δ = 1, which is
con�rmed in [4] and [13]. The results of the calculations of the reduced mass �ow
by formula (40) depending on δ for R1 = 0.5 are shown on Figures 3 and 4 by the
curve 1. The curve 2 on Figure 4 is constructed using cubic spline interpolation of
values of the mass �ow from [4]. It can be seen that the results of our work agree
well with the results of work [4]. The di�erence increases as the values of δ decrease,
achieving its maximum 2% given δ = 0.01. Starting from δ = 20, the curve 1 on
Figure 3 almost coincides with the curve 3, constructed by formula (56). Moreover,
the use of the boundary condition of adhesion is not satisfactory for the values of
δ < 100 (curve 2 on Figure 3). The point M on Figure 4 shows the free molecular
limit that equals JM = −0.8658, obtained by formula (3) with substituting in it
the expression (46). To compare the values of the reduced mass �ow (41) given
distinct relations R1 = R′1/R

′
2 with the results from [4], it is necessary to divide

the values obtained by (40) by 2(1 − R1), which is due to the introduction in [4]
of a hydrodynamic diameter of the channel 2(R′2 −R′1) as a distinctive linear size.
The results of test estimations show that the modi�ed collocational method with
the use of the properties of Chebyshev polynomial sums [11] and Hadamard's and
Kronecker's matrix products, proposed in this paper, provides a good accuracy of
calculations for di�erent values of relations of cylinder radii R1 = R′1/R

′
2 in a wide

spectrum of values of the rarefaction parameter δ. When choosing the number of
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knots to be ni = 11, 21 (i = 1, 2), and n3 = 11, in equation (34) the calculated
values of the reduced mass �ow by formula (40) do not di�er more than 2% for
0.1 ≤ δ ≤ 100.

(a) (b)

Figure 1. Distribution of mass velocity Uz of the gas in the channel for R1 = 0.5
given δ = 10 (a) and δ = 100 (b)

Figure 2. Distribution of mass velocity Uz of the gas in the channel for R1 = 0.5
given di�erent values of δ
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Figure 3. Dependence of the gas mass �ow JM of 0 < δ ≤ 100 for R1 = 0.5

Figure 4. Dependence of the gas mass �ow JM of 0 < δ ≤ 10 for R1 = 0.5

5. Conclusion

The problem of calculation of the mass �ow with the use of the linearized BGK
equation given isotermic �ow of a rare�ed gas in a long concentric annular channel
under the action of a constant gradient of pressure is solved with the help of
the Chebyshev collocation method. The realization of the collocation method is
performed using the properties of sums of Chebyshev polynomials and Hadamard's
and Kronecker's matrix products aiming at minimization of in�uence of rounding
errors when calculating the values of the required function, that satis�es the solution
of the linearized kinetic equation and the boundary condition at the collocation
points. We have obtained the values of the gas mass �ow for the �ow modes from
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the free molecular to the hydrodynamic one. It was shown that the application
of Chebyshev polynomials when studying the gas �ows provides a possibility to
e�ectively obtain the integral characteristics of these �ows with the subsequent
analysis of those.
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