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RECONSTRUCTION OF A HIGH-FREQUENCY SOURCE TERM

OF THE WAVE EQUATION FROM THE ASYMPTOTICS OF

THE SOLUTION. CASE OF THE CAUCHY PROBLEM

E.V. KORABLINA, V.B.LEVENSHTAM

Abstract. We consider The Cauchy problem for the wave equation
with an unknown right hand side, that rapidly oscillates in time. This
right hand side is reconstructed from the three-term asymptotics of a
solution, which are given at one point of the domain. In this case, an
approach developed earlier by one of the authors of this article is used
to solve the inverse problems with rapidly oscillating data.

Keywords: wave equation, Cauchy problem, asymptotics of a solution,
reconstruction of an unknown high-frequency source term.

Introduction

In this paper we consider the Cauchy problem for a one-dimensional wave equation,
with a right hand side, that can be expressed as a product of two functions, with
one being a function of a time variable and a space variable and the other one
being a function of a time variable and a so-called fast time variable (Ïðèì. ñìûñë
"áûñòðîé âðåìåííîé"ïåðåìåííîé â ñòàòüå íå óòî÷íÿåòñÿ, â ïðåïðèíòå ñòàòüè
[5] èñïîëüçóåòñÿ òåðìèí "fast variable"). In the considered problem the second
function is unknown. We study the way of reconstructing it using the three-term
asymptotics of a solution, which are given at a certain point of the domain (in fact,
much less data is needed, see last paragraph of the introduction). In this paper
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we use the algorithm [1-5] for solving coe�cient inverse problems with rapidly
oscillating data.

Inverse problems of mathematical phyiscs (including the source term reconstruc-
tion problem) are widely researched and one can �nd many monographs (see, for
instance, [6-11]) and papers on these topics. However, inverse problems for equations
with rapidly oscillating (high-frequency) data were not studied as a part of classical
theory. At the same time they are often encountered in mathematical modeling
of physical, chemical and other processes, which take place in environments with
unknown characteristics, and, in addition, are subject to high-frequency actions of
electromagnetic, acoustic, vibrational and other �elds. Wave equation (1.1) refers
to equations of the indicated type; it simulates the vibrations of a string under
the in�uence of high-frequency external forces. This demonstrates the need for the
development of the theory of high-frequency coe�cient inverse problems.

In [1-5] as well as in this paper, we use a new method for stating and solving high-
frequency coe�cient inverse problems. This method is a combination of techniques
from theories of asymptotic methods and inverse problems. Because of that, in
every one of the aforementioned works the process of solving the inverse problems
is split into two steps, each corresponding to one of these �elds, which also raises
the need to track coherence of these parts (for instance, smoothness of the obtained
functions). The papers mentioned above study the inverse problems for parabolic
and hyperbolic equations with the unkown rapidly oscillating source term (cases
of initial boundary value problems are covered in [1-5], while this work studies
the case of the Cauchy problem). Additionally, this method is special in a sense
that the overdetermination condition does not use the exact solution, as is usually
the case in more classical techniques, but its partial asymptotic, the length of
which is computed during the �rst step of solving the inverse problem. Moreover,
the information, required for the overdetermination condition is given not for all,
but for some "basis" coe�cients (or their fast terms), from which the data for
other coe�cients is uniquely determined, and the "basis" coe�cients are used
to uniquely determine the data for other coe�cients. For example, in this paper
the overdetermination condition in the statement of the inverse problem uses the
coe�cients of the three-term asymptotics, that are computed in the certain point
of the domain, which are represented by functions q(t), φ(t) and ψ(t) + χ(t, ωt),
however we explicitly set only two of them: q(t) and χ(t, τ). In that case, the inverse
problem is uniquely solvable.

1. Construction of the asymptotics

Let T > 0, consider the strip Π = {(x, t) : x ∈ R, t ∈ [0, T ]} and the in�nite
right parallelepiped Ω = {(x, t, τ) : (x, t) ∈ Π, τ ∈ [0,∞)}. On the set Π consider
the following Cauchy problem with the large parameter ω utt − uxx = f(x, t, ωt)

u|t=0 = 0
ut|t=0 = 0

(1.1)

Here f(x, t, τ) is a real-valued function, which is de�ned (and continuous) on the
set Ω and is also 2π-periodic in τ . In this paper, the term "solution" is understood
in the classical sense. By F (x, t) denote the mean value of the function f(x, t, τ)
for the argument τ , i.e
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F (x, t) =< f(x, t, τ) >≡ 1

2π

∫ 2π

0

f(x, t, τ)dτ.

Assume that F (x, t) is di�erentiable with respect to x on Π and both the function
and its derivative are continuous on Π. Consider the function φ(x, t, τ) = f(x, t, τ)−
F (x, t). Assume that it is four times di�erentiable and is, along with all of these
derivatives, continuous on Ω.

Let uω(x, t) be the solution of (1.1). Its asymptotics can be formally presented
as the following series

uω(x, t) ∼ u0(x, t) +
1

ω
u1(x, t) +

1

ω2
(u2(x, t) + v2(x, t, ωt))+

...+
1

ωk
(uk(x, t) + vk(x, t, ωt)) + ..., (1.2)

where functions uk(x, t) and vk(x, t, τ) are de�ned and continuous on Π and Ω and
are two times continuously di�erentiable in x and (t, τ), with vk(x, t, τ) also being
2π-periodic in τ such that

< vk(x, t, τ) >= 0.

All the functions considered in this paper are real-valued.
To state the theorem we introduce some notation. Firstly, we de�ne two types

of linear uniquely solvable problems. The �rst type contains the following problem
for the ordinary second-order di�erential equation

∂2s(x,t,τ)
∂τ2 = ψ(x, t, τ)

s(x, t, τ + 2π) = s(x, t, τ)
< s(x, t, τ) >= 0,

(1.3)

where ψ(x, t, τ) is de�ned and continuous on Ω and is a 2π-periodic function in
τ ∈ [0;∞) with zero mean value. It is known that the solution for (1.3) can be
represented as follows.

s(x, t, τ) =

∫ τ

0

(∫ z

0

ψ(x, t, s)ds−
〈∫ τ

0

ψ(x, t, s)ds
〉)
dz−

−
〈∫ τ

0

(∫ z

0

ψ(x, t, s)ds−
〈∫ τ

0

ψ(x, t, s)ds
〉)
dz
〉
.

In this paper the mean value < ... > is always computed with respect to the variable
τ . The second type contains the following Cauchy problem for the second-order wave
equation on the strip (x, t) ∈ Π utt(x, t)− uxx(x, t) = g(x, t)

u(x, t)|t=0 = a(x)
ut(x, t)|t=0 = b(x),

(1.4)

where functions g(x, t) and b(x) are continuously di�erentiable with respect to x,
de�ned on Π and R respectively (with gx being continuous on Π), while a(x) is a
two times continuously di�erentiable function, de�ned on R. The solution for (1.4)
can be represented by the d'Alembert formula:

u(x, t) =
1

2
(a(x− t) + a(x+ t)) +

1

2

∫ x+t

x−t
b(ξ)dξ +

1

2

∫ t

0

ds

∫ x+(t−s)

x−(t−s)
g(ξ, s)dξ.
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For every positive M de�ne the rectangle ΠM = {(x, t) : |x| ≤ M, t ∈ [0, T ]} and
consider the (k + 1)-term (k = 1, 2) asymptotics of the solution for (1.1) (see 1.2):

k
uω (x, t) = u0(x, t) +

1

ω
u1(x, t) + ...+

1

ωk
(uk(x, t) + vk(x, t, ωt)).

Theorem 1. The following asymptotic formula

||uω(x, t)− 2
uω (x, t)||C(ÏM ) = O(ω−3), ω →∞,

where un(x, t), n = 0, 1, 2, and v2(x, t, τ) are solutions for problems of type (1.4)
and (1.3) respectively, holds for every M > 0.

Äîêàçàòåëüñòâî. We start by formally substituting the series (1.2) into (1.1):

∂2u0(x,t)
∂t2 + 1

ω
∂2u1(x,t)

∂t2 + 1
ω2

(
∂2u2(x,t)

∂t2 + ∂2v2(x,t,ωt)
∂t2 + 2ω ∂

2v2(x,t,ωt)
∂t∂τ + ω2 ∂

2v2(x,t,ωt)
∂τ2

)
−

−∂
2u0(x,t)
∂x2 − 1

ω
∂2u1(x,t)
∂x2 − 1

ω2

(
∂2u2(x,t)
∂x2 + ∂2v2(x,t,ωt)

∂x2

)
+ ... = f(x, t, ωt)[

u0(x, t) + 1
ωu1(x, t) + 1

ω2

(
u2(x, t) + v2(x, t, ωt)

)
+ ...

]∣∣∣
t=0

= 0[
∂u0(x,t)

∂t + 1
ω
∂u1(x,t)

∂t + 1
ω2

(
∂u2(x,t)

∂t + ∂v2(x,t,ωt)
∂t + ω ∂v2(x,t,ωt)∂τ

)
+ ...

]∣∣∣
t=0

= 0.

In each one of the last three equalities, equate the coe�cients of ω0, ω−1, ω−2, ω−3

and then apply the averaging operation with respect to τ, τ = ωt. As a result we
obtain the following set of problems

∂2u0(x,t)
∂t2 − ∂2u0(x,t)

∂x2 = F (x, t)
u0(x, t)|t=0 = 0
∂u0(x,t)

∂t

∣∣∣
t=0

= 0;

(1.5)


∂2v2(x,t,τ)

∂τ2 = φ(x, t, τ)
v2(x, t, τ + 2π) = v2(x, t, τ)
< v2(x, t, τ) >= 0;

(1.6)


∂2u1(x,t)

∂t2 − ∂2u1(x,t)
∂x2 = 0

u1(x, t)|t=0 = 0
∂u1(x,t)

∂t |t=0 + ∂v2(x,t,τ)
∂τ |t,τ=0 = 0;

(1.7)


∂2v3(x,t,τ)

∂τ2 = −2∂
2v2(x,t,τ)
∂t∂τ

v3(x, t, τ + 2π) = v3(x, t, τ)
< v3(x, t, τ) >= 0;

(1.8)


∂2u2(x,t)

∂t2 − ∂2u2(x,t)
∂x2 = 0

u2(x, t)|t=0 + v2(x, t, τ)|t,τ=0 = 0
∂u2(x,t)

∂t |t=0 + ∂v2(x,t,τ)
∂t |t,τ=0 + ∂v3(x,t,τ)

∂τ |t,τ=0 = 0;

(1.9)


∂2v4(x,t,τ)

∂τ2 = ∂2v2(x,t,τ)
∂x2 − ∂2v2(x,t,τ)

∂t2 − 2∂
2v3(x,t,τ)
∂t∂τ

v4(x, t, τ + 2π) = v4(x, t, τ)
< v4(x, t, τ) >= 0;

(1.10)


∂2u3(x,t)

∂t2 − ∂2u3(x,t)
∂x2 = 0

u3(x, t)|t=0 + v3(x, t, τ)|t,τ=0 = 0
∂u3(x,t)

∂t |t=0 + ∂v3(x,t,τ)
∂t |t,τ=0 + ∂v4(x,t,τ)

∂τ |t,τ=0 = 0.

(1.11)
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Set
3

ûω (x, t) =
3
uω (x, t) + 1

ω4 v4(x, t, ωt). Then:
(

3

ûω (x, t))tt − (
3

ûω (x, t))xx = f(x, t, ωt) + z(x, t, ωt)
3

ûω (x, t)|t=0 = w(x)

(
3

ûω (x, t))t|t=0 = r(x),

(1.12),

where functions z(x, t, τ), w(x) and v(x) can be written as follows:

z(x, t, τ)

=
1

ω3

(∂2v3(x, t, τ)

∂t2
−∂

2v4(x, t, τ)

∂x2
+2

∂2v4(x, t, τ)

∂t∂τ

)
+

1

ω4

(∂2v4(x, t, τ)

∂t2
−∂

2v4(x, t, τ)

∂x2

)
,

w(x) =
1

ω4
v4(x, 0, 0),

r(x) =
1

ω4

∂v4(x, t, τ)

∂t

∣∣∣
t,τ=0

.

From this we obtain the following asymptotic equalities

z(x, t, τ) = O(ω−3), ω →∞, uniformly with respect to (x, t, τ), (x, t, τ) ∈ Ω, |x| ≤M,

w(x) = O(ω−4), ω →∞, uniformly with respect to x, |x| ≤M,

r(x) = O(ω−4), ω →∞, uniformly with respect to x, |x| ≤M.

Therefore,

‖ uω(x, t)− 2
uω (x, t) ‖C(ÏM )

≤‖ uω(x, t)−
3

ûω (x, t) ‖C(ÏM ) + ‖
3

ûω (x, t)− 2
uω (x, t) ‖C(ÏM )

= O(ω−3) +O(ω−3) = O(ω−3), ω →∞
And the statement of the theorem follows from the obtained estimates. �

2. The inverse problem

Let T and Π be the same as in the previous section. On the strip Π consider the
following Cauchy problem utt − uxx = f(x, t)r(t, ωt)

u|t=0 = 0
ut|t=0 = 0

(2.1)

We make some assumptions regarding functions f(x, t) and r(t, τ): f(x, t) is de�ned
on Π and is, along with its derivative with respect to x is four times continuously
di�erentiable with respect to (x, t), while r(t, τ) is de�ned and continuous on the
set Q = {(t, τ) : t ∈ [0, T ], τ ∈ [0;∞)} and can be presented as follows: r(t, τ) =
r0(t) + r1(t, τ), where r0(t) is continuous on the segment [0;T ] and r1(t, τ) is four
times di�erentiable by t and is, along with all of these derivatives, continuous on Q
and is 2π-periodic in τ with its mean value equal to zero, i.e.

< r1(t, τ) >= 0

For the sake of brevity we will call the function r(t, τ), which satis�es the aforemen-
tioned conditions the function of the (I) class. In this section, f and r are assumed
to be known and unkown respectively.

Consider the following predetermined objects: point x0, such that f(x0, t) 6= 0,
t ∈ [0, T ]; the continuous and two times continuously di�erentiable on the segment
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[0, T ] function q(t), such that q(0) = q′(0) = 0; function χ(t, τ), continuous on
Q and 2π-periodic in τ with its mean value equal to zero. Moreover, χ(t, τ) is
two times continuously di�erentiable with respect to τ and χ′′τ2(t, τ) is four times
di�erentiable by t and is, along with all of these derivatives, continuous. Consider
two additional functions

φ(t) = ũ1(x0, t),

ψ(t) = ũ2(x0, t),

where ũ1(x, t), ũ2(x, t) are the solutions of problems (1.7)-(1.9), such that v2(x, t, τ) =
f(x,t)χ(t,τ)
f(x0,t)

.

De�nition. The problem of �nding an (I) class function r(t, τ), such that the
solution for (2.1) on the segment (x0, t), t ∈ [0, T ], satis�es the following condition∣∣∣∣∣∣uω(x0, t)− q(t)−

1

ω
φ(t)− 1

ω2
(ψ(t) + χ(t, ωt))

∣∣∣∣∣∣
C([0,T ])

= O(ω−3), ω →∞, (2.3)

is called the inverse problem.

Theorem 2. The inverse problem is uniquely solvable.

Äîêàçàòåëüñòâî. By Theorem 1, the solution of the Cauchy problem (2.1) satis�es
the following condition:∣∣∣∣∣∣uω(x, t)−u0(x, t)− 1

ω
u1(x, t)− 1

ω2
(u2(x, t)+v2(x, t, ωt))

∣∣∣∣∣∣
C(ÏM )

= O(ω−3), ω →∞,

where ui, vi are the same as in the previous section. From this, while considering
(2.3) we derive that

u0(x0, t) +
1

ω
u1(x0, t) +

1

ω2
(u2(x0, t) + v2(x0, t, ωt)) =

= q(t) +
1

ω
φ(t) +

1

ω2
(ψ(t) + χ(t, ωt)) +O(ω−3) (2.4)

Equate the coe�cients of ω0, ω−1, ω−2 in (2.4). From this, while considering the
averaging operation with respect to τ, τ = ωt we get that

u0(x0, t) = q(t); (2.5)

u1(x0, t) = φ(t); (2.6)

u2(x0, t) = ψ(t); (2.7)

v2(x0, t, τ) = χ(t, τ). (2.8)

From the previous section we obtain that

u0(x0, t) =
1

2

∫ t

0

r0(s)

∫ x0+(t−s)

x0−(t−s)
f(ξ, s)dξds.

From this and (2.5), it follows that the equality

q(t) =
1

2

∫ t

0

r0(s)

∫ x0+(t−s)

x0−(t−s)
f(ξ, s)dξds.

holds. By di�erentiating it twice with respect to t we obtain the Volterra equation
of the second kind:

q′′(t) = r0(t)f(x0, t) +
1

2

∫ t

0

r0(s)[f ′x(x0 + (t− s), s)− f ′x(x0 − (t− s), s)]ds,
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which implies the existense and uniquness of the continuious solution r0. Now, by
di�erentiating (2.8) twice with respect to τ and considering (1.6) we obtain that

f(x0, t)r1(t, τ) =
∂2χ(t, τ)

∂τ2

Therefore, the function r1(t, τ) can also be uniquely determined. Due to conditions,
imposed on functions q(t) and χ(t, τ), we get that the resulting function r(t, τ) =
r0(t) + r1(t, τ) is an (I) class function.

It can be easily shown that the solution of the Cauchy problem (2.1) with
the obtained function r(t, τ) satis�es the asymptotic formula (2.3). Therefore, the
theorem is proved.

�
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