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ON PL EMBEDDINGS OF A 2-SPHERE IN THE

4-DIMENSIONAL EUCLIDEAN SPACE

D.V. BOLOTOV

Abstract. We prove that there is no 2-convex PL embedding of S2 in
E4 in the form of a polyhedron, each vertex of which is incident to no
more than 5 edges.
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1. Introduction

Recall the notion of a k-convex subset of the Euclidean space (see [1]).

De�nition 1. The subset C ⊂ En of the Euclidean space is said to be k-convex if
for every point x ∈ En \ C, there exists a k-dimensional plane that passes through
x and does not interject C.

Note that the classic de�nition of a convex set corresponds to the case k = n−1.
The following question was posed by Zelinsky [1]:

Question 1. Does there exist an embedding of a 2-sphere S2 in the 4-dimensional
Euclidean space E4 in the form of a 2-convex subset.

We will call such embeddings 2-convex embeddings.

Remark 1. A standard Cli�ord torus is a 2-convex subset of the Euclidean space
E4 (see [1]).

In our earlier works, it was shown that there is no 2-convex C2-smooth embedding
of S2 in E4 [2]. In this paper, we provide a partial generalisation of this result for
a class of partially linear (PL) embeddings, i.e. such embeddings, which have a
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polyhedron in E4 that is homeomorphic to a 2-sphere as their image. The main
contribution can be stated as the following theorem:

Theorem 1. There is no 2-convex PL embedding of S2 in E4 in the form of a
polyhedron each vertex of which is incident to no more than 5 edges.

Despite the fact that the general idea and some elements of the proof are similar
to those in the "smooth" case considered in [2], we will nonetheless provide the
whole proof for the sake of completeness.

2. Preliminaries

Recall that an n − 1-segmented polygonal chain γ = A1A2 . . . An with vertices
Ai, i = 1 . . . n, is a connected series of n− 1 line segments [Ai, Ai+1], i = 1, . . . , n.
If A1 = An, a polygonal chain is said to be closed. Also, a polygonal chain is said
to be non-degenerate if no three consecutive vertices of that chain lie on the same
line. A natural ordering of vertices of a polygonal chain de�nes its orientation, i.e.

which segment [Ai, Ai+1] corresponds to a vector
−−−−−→
Ai, Ai+1.

A k-subchain of a polygonal chain γ is a polygonal chain that consists of segments
of γ. Every k-chain is de�ned by a sequence of vertices AiAi+1 . . . Ai+k or

AiAi−1 . . . Ai−k.

This order may be cyclic if a polygonal chain is closed. In the �rst case, the
orientation of a k-subchain is induced by the orientation of γ and so we say that
such a k-subchain is γ-oriented.

If γ is non-degenerate, then every 2-subchain de�nes a plane. Moreover, a γ-
orientation induces a γ-orientation of a plane in the following way: a 2-subchain

ABC de�nes a basis {
−−→
AB,

−−→
BC} of a plane, that passes through A,B,C.

By Lγ denote a convex hull of γ. We say that a 2-subchain of a non-degenerate
polygonal chain γ is a supporting subchain, if it belongs to a face of Lγ .

Lemma 1. Let γ = ABCD be a polygonal chain with the convex hull Lγ , which
is a tetrahedron. Then γ-oriented 2-subchains that have a common segment set the
γ-orientations of the corresponding faces that are induced by di�etent orientations
of ∂Lγ

1.

Proof. The orientations of ∂Lγ are given by the orientation of all of its faces. This
means that induced orientations on a common edge of two neighbouring faces must
be di�erenent. It is therefore obvious that γ-orientations of neighbouring faces are
not coherent. �

We will call a vertex of a polygonal chain a boundary vertex if it is incident to
only one segment of that chain (we will also call that segment a boundary segment).
The other segments and vertices will be called inner.

Let γ be a non-closed non-degenerate 3-segmented plane polygonal chain without
self-intersections with a convex hull Lγ . Then the following con�gurations of γ are
possible:

(1) Lγ is a triangle;
(a) the triangle contains a boundary vertex of γ (�g.1 a));
(b) the triangle contains an inner vertex of γ (�g.1 b));

1Note, that the boundary ∂Lγ is a PL-sphere, and is orientable.
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(2) Lγ is a quadrangle;
(a) all segments of γ belong to ∂Lγ (�g. 1 ñ));
(b) one of the diagonals of Lγ is a segment of γ (�g. 1 d)).

Fig. 1. 3-segmented plane polygonal chain

Noting the fact that the convex hull of 5 points in a 3-dimensional space, whose
boundary contains all �ve points and no four points among them lie in the same
plane, is a trigonal bipyramid, we give the following classi�cation of con�gurations
of a non-degenerate embedeed closed polygonal chain γ in a 3-dimensional space
that contains no more than �ve segments.

Classi�cation.

(1) γ is a 3-segmented polygonal chain (in this case it is obvious that it is a
plane polygonal chain).

(2) γ is a 4-segmented polygonal chain:
(a) Lγ is a tetrahedron (a general position case);
(b) γ is a plane polygonal chain.

(3) γ is a 5-segmented polygonal chain:
(a) There is no plane that contains 4 vertices of γ (a general position case):

(i) Lγ is a tetrahedron, with one of the vertices of γ strictly inside
of it.

(ii) Lγ is a trigonal bipyramid. In that case, two possibilites arise:
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(A) one of the segments of γ connects two top-vertices of the
bipyramidal2 (�g. 2 b));

(B) all segments of γ are edges of the bipyramid (�g. 2 c)).
(b) γ - is a 5-segmented polygonal chain and at least 4 vertices of γ lie in

the same plane (degenerate case):
(i) γ is a plane polygonal chain;
(ii) three segments of γ lie at one plane and de�ne a plane non-close

polygonal chain γ′′ of one of the con�gurations described above.
(�g. 1), and the only vertex that does not lie at that plane is
connected to boundary vertices of γ′′.

In the �gure 2, one can see closed polygonal chains, which represent various
con�gurations of a 5-segmented space (not plane) polygonal chains.

Fig. 2. Con�gurations of γ

Consider γ = ABCDEA, a closed 5-segemented space polygonal chain without
intersections. By Lγsym

denote a convex polyhedron with right faces, that is combina-
torially equivalent to Lγ . For simplicity we will name its vertices with the same
letters that are used for Lγ . For con�gurations b) and c) (�g. 2) Lγsym is a bypirami-
dal, which is made up of two right tetrahedrons, and for con�gurations f) and g
(�g. 2) it is a half of a right octahedron.

In the case of Lγ being a bypiramidal, combinatorial correspondence of polyhed-
rons ABCDEA = Lγ ↔ Lγsym

= ABCDEA de�nes a polygonal chain γsym =

2By top-vertices we mean the vertices, that do not lie in the bases of a pyramid and bipyramid.
By the base of the bipyramid we mean the common base of two pyramids that make it up. These
notions are introduced in order to di�erentiate the vertices of a pyramid and bipyramid from the
vertices of a polyhedron.
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ABCDEA. If Lγ is a tetrahedon, then one of the vertices γ either lies inside of Lγ
or inside of one of the faces of Lγ . In that case, de�ne the corresponding vertex
γsym as a barycenter of Lγsym or a barycenter of a respective face of Lγsym , using
the same letter to name it. We will call this vertex a barycnter vertex. It is obvious
that γsym and γ have the same con�guration.

Consider the following action of a subgroup G′γ ⊂ Gγ of a symmetry group Gγ
of a convex hull Lγsym on the set of 5-segmented closed space polygonal chains that

have the same vertices as γ3, that leaves the set of vertices γsym invariant. Then
any symmetry g : Lγsym

→ Lγsym
, g ∈ G′γ induces a permutation of vertices of

Lγsym
. If there is a vertex of γsym that is a barycenter vertex, it is not "moved"

by g. Therefore we have a permutation of the set of vertices of a polygonal chain
γsym = ABCDEA

σg : {A,B,C,D,E} → {A,B,C,D,E}.
A new polygonal chain

gγ = σg(A)σg(B)σg(C)σg(D)σg(E)σg(A)

is an image of γ under the action of an element g of a symmetry group Gγ .

3. Preliminary results

Proposition 1. Let γ be a 5-segmented closed non-degenerate space polygonal
chain. Then

(1) gγ has the same con�guration as γ and all possible 5-segmented polygonal
chains of this con�guration which have the same set of vertices can be
presented as gγ, g ∈ G′γ .

(2) For g ∈ G′γ , images of supporting 2-subchains of γ are supporting 2-subchains
of gγ.

(3) If two segments of γ lie on skew lines then their images at gγ, g ∈ G′γ also
lie on skew lines.

Proof. The second statement follows directly from the �rst one, since the boundary
∂Lγsym

is invariant under the action G′γ .
We now consider the con�gurations of a polygonal chain γ that are presented in

�gure 2.
In the case a), the �rst statement follows from the fact thatG′γ contains symmetries

that induce a permutation of two vertices of Lγsym
. If we consider any two non-

neigbouring vertices of a polygonal chain γ of con�guration a), we can say that they
lie on skew lines since otherwise we would have that four vertices of γ lie in one
plane, which is impossible for this con�guration. The third statement follows from
the �rst one and the obvious fact that any symmetry g ∈ G′γ , being a bijection,
maps non-neighbouring vertices to non-neighbouring vertices.

In cases b) and c), the group G′γ �xes or permutes top-vertices of a bypiramid
Lγsym

, while leaving its base invariant. From this we can see that the polygonal
chain gγ, g ∈ G′γ , has the same con�guration as γ. Moreover, since G′γ contains
the symmetries that permute two given vertices of the base of Lγsym , while leaving
its top-vertices �xed, we can obtain all possible con�gurations γ for a given case
with the same set of vertices, thus proving the �rst statement. Note that for b) and

3Here by a symmetry group of Lγsym we understand a subgroup of the isometry group R3

which leaves the convex hull Lγsym invariant.
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c) a set of vertices of γ is equal to the set of vertices of a bypiramid Lγ . Using the
same reasoning as earlier, we can show that the third statement follows from the
�rst one.

We now consider the cases d) and e). Then the convex hull Lγ is a tetrahedron
that can be presented as a pyramid with the base that has 4 vertices of γ. Since
the vertex γsym that lies inside the base of a pyramid should be invariant under
the action of G′γ , we can say that the top-vertex of a pyramid Lγsym

and its base
are also invariant under this action. In that case G′γ is a symmetry group of a right
triangle, which is a base of a pyramid Lγsym

. Since the boundary vertices of γ′′

are mapped to boundary vertices of its image gγ′′( g ∈ G′γ) and the barycenter
of a triangle is invariant under the action of G′γ , we have that gγ′′ has the same
con�guration as γ′′ and the polygonal chain gγ has the same con�guration as γ.
Note that G′γ contains symmetries, that permute two given vertices of the base
of Lγsym , while other vertices of γsym remain �xed. This allows us to obtain all
possible con�gurations of γ of this type with the same set of vertices, thus proving
the �rst statement. Now assume that two segments a and b of γ lie on skew lines.
This means that one of these segments contains a top vertex of a pyramid Lγ and
the other one lies in the base of that pyramid. But since both the vertex and the
base of Lγsym are invariant under the action of G′γ , we have that the properties
of a and b are also preserved, i.e. one of the images of these segments contains a
top-vertex of a pyramid Lγ , while the other one belongs to its base, therefore ga
and gb lie on skew lines, hence the third statement holds.

Finally, in cases f) and g) a convex hull Lγ is a pyramid with the quadrangle
as its base. The top-vertex of a pyramid Lγsym

and its base are again invariant
under the action of a group G′γ , since the quadrangle face is unique (other faces are
triangles) and therefore should stay invariant under any symmetry g ∈ G′γ . Note
that Lγsym is a half of a right octahedron. In that case G′γ is a group of symmetries
of a square. Since these symmetries map diagonals to diagonals, we have that the
polygonal chain gγ, g ∈ G′γ , has the same con�guration as γ. Since G′γ contains
symmetries that map a given side of a square to any other side of a square and
contains a symmetry that permutes the diagonals of a said square while leaving its
sides invariant. These symmetries allow us to obtain all possible con�gurations of
γ for the considered cases and with the same set of vertices. Therefore, the �rst
statement holds. The third statement holds by the reasoning, similar to the one
used when we considered two previous cases.

�

We will now prove the following proposition

Proposition 2. Let γ be an embedeed closed non-degenerate space polygonal chain
with no more than �ve segments and lying in a three-dimensional Euclidean space
Π. By Lγ denote its convex hull. Then

(1) There exists a plane τ ⊂ Π such that a projection pr−→m : Π → τ along
a direction −→m bijectively maps γ onto its image γ′ that can be one of the
following �at curves:
a) a convex polygonal chain;
b) a 5-segmented non-convex polygonal chain (see �g. 4 d)), which has two

parallel segments (A′E′ è C ′D′). In that case one of these segments
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(C ′D′) forms a unique concave 2-subchain (B′C ′D′), which forms an
angle, that is convex outside of the domain, which is bounded by γ′.

(2) The polygonal chain γ contains a pair of supporting 2-subchains, which
de�ne the γ-orientations, that are induced by di�erent orientations of ∂Lγ ,
of corresponding faces. The images of these subchains under pr−→m are non-
degenerate 2-subchains which are, in the case that γ′ is not convex (see �g. 4
d)) correspond to a subchain that connects the parallel segments (A′B′C ′)
and one of the 2-subchains (E′A′B′ or D′E′A′) of a 3-subchain that is
complement to a convex 2-subchain (D′E′A′B′).

Remark 2. The subchains in the brackets are corresponding to the �gure 4 d). If
instead γ has the same con�guration as shown in the �gure 5 d′), we should pick
the subchains accordingly.

Proof.
Case 1. γ = ABCDA corresponds to the con�guration type 2(a) of our classi�ca-

tion. Consider an a�ne projection of a tetrahedron Lγ on a plane that is parallel
to edges AC and BD that do not belong to γ (see �g. 3). We choose the direction
−→m of a projection as parallel to the segment that connects the middle points of the
aforementioned edges.

Under this projection γ will be mapped onto a quadrangle with inresecting
diagonals, meaning that the image of γ is a convex polygonal chain. From Lemma 1,
it follows that 2-subchains ABC and BCD are the required supporting 2-subchains.

Fig. 3. Projection of a tetrahedron

Case 2. γ corresponds to the con�guration type 3(a)i
We will consider the case, presented in �gure 2.
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Since the vertex D that is located inside of Lγ is connected to two vertices γ, it
is clear that the other part of γ is a 3-subchain (EABC) that consists of edges of a
tetrahedron Lγ . By Lemma 1, we can �nd a pair of γ-oriented supporting 2-chains
(EAB and ABC) that set the orientations of the corresponding faces Lγ , that are
induced by di�erent orientations of ∂Lγ .

Without the loss of generality, consider the subchain ABC. It is connected with
segments EA and CD, which lie on skew lines. Continue the segment CD until it
intersects the triangle ∆EAB. Denote the intersection point by D′′. Now draw a
line, passing through D′′ that is parallel to EA and by C ′” denote its intersection
point with AB. From this construction we obtain that the plane that contains the
triangle ∆CD′′C ′′ is parallel to the edges EA and CD. Denote by −→n a normal
vector to that plane. Let l be a line, passing through C and C ′′. Consider an
orthogonal projection pr−→v : Π → π⊥ onto a plane π⊥ that is orthogonal to l with
the direction set by the vector −→v . The image of γ in that case is presented in �gure
4 a). From our construction we have that −→n is parallel to the plane π⊥ and is not
orthogonal to the plane that contains the triangle ∆ABC. For a su�ciently small
turn φ ∈ SO(3) around the line with the direction set by vector −→n , an orthogonal
projection pr−→m : Π→ τ onto a plane τ := φ(π⊥) with the normal vector −→m de�nes
a bijection of γ to a plane polygonal chain γ′ = A′B′C ′D′E′A′ (see �g. 4 d)). The
choice of φ being a clockwise or a counter-clockwise turn is de�ned by the necessary
condition ∠E′A′C ′ < ∠E′A′B′. In that case we have that A′B′∩C ′D′ = ∅ (see.�g.
4 d)). The absolute value of |φ| can always be picked to be small enough so that
the continuation of a segment B′C ′ intersected A′E′ (see �g. 6). This proves the
�rst statement of our proposition. Additionally, subchains EAB and ABC satisfy
the second statement.
Case 3. γ corresponds to the con�guration type 3(a)iiA
In this case, Lγ is a bipyramid such that its top-vertices are connected by the

segment of γ. We consider the case depicted in the �gure 2 b).
For �nding the projection pr−→m : Π → τ we �rst act similarly to the previous

case: construct a line l with the directional vector −→v that is orthogonal to the
plane π⊥. For this, �nd an intersection point of a segment CD that connects the
top-vertices of a bipyramid with its base EAB and denote it by D′′. Then draw a
line through D′′ that is parallel to AE and �nd an intersection point of this line
with AB (dente this point by C ′′). The segment CC ′′ de�nes l. After that, the
reasoning used in case 2 can be applied. By using a small turn around the line
with the directional vector vn that is orhogonal to the plane containing ∆CC ′′D′′,
we get the projection pr−→m : Π → τ that maps γ to the polygonal chain γ′ that
has a con�guration presented in �gure 4 d). Note that −→n is parallel to π⊥ and is
not orthogonal to the plane, containing ∆ABC. Thus, the �rst statement of the
proposition is proved.

By applying Lemma 1, �rst to the polygonal chain EABC and then to DEAB,
we obtain that the supporting 2-subchains ABC and DEA are inducing γ-orientati-
ons of corresponding faces induced by di�erent orientations of ∂Lγ . The subchains
ABC and DEA satisfy the second statement of our proposition.
Case 4. γ corresponds to the con�guration type 3(b)ii and γ′′ corresponds to

con�gurations a), b), d) (see �gure 1).
These are the limiting cases of those already considered and the constructions

of pr−→m : Π → τ are completely similar. As in previous cases, γ′ = pr−→m(γ) has a
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con�guration, corresponding to the �gure 4 d). This proves the �rst statement of
our proposition.

By applying the Lemma 1 to a 3-subchain EABC for con�gurations d) and e)
(�g 2), we get that the EAB and ABC are the supporting chains mentioned in the
second statement.

In the case of con�guration f) (�g. 2) apply Lemma 1 to tetrahedrons ABCD
and CDEA. Note that 2-subchains BCD and CDE induce di�erent orientations of
the face BCED, hence the orientations of faces, induced by 2-subchains DEA and
ABC are induced by di�erent orientations of ∂Lγ . This proves the second statement
of our proposition in the case f) (�g. 2).
Case 5. γ corresponds to the con�guration type 3(b)ii γ′′ corresponds to con�gura-

tion c) (�g. 1).
We will consider the case pictured in the �gure 2 g). Note that segments CD

and EA lie on skew lanes, since otherwise γ would be a plane polygonal chain.
Hence the intersection of a plane, that passes through CD parallel to EA (and
has a normal vector −→n ) and a plane that contains ∆ABC de�nes a line l with the
directional vector v (this is similar th case 2). In that case, there are three possible
types of the projection pr−→v : Π → π⊥. If, as before, it has type a) (�g. 4), then,
by applying Lemma 1 to the subchain EABC we can show that 2-subchains EAB
and ABC are the required supporting chains. Note that in that case all 2-subchains
of γ are supporting subchains. If the images of points B and C under pr−→v (γ) are
merged (�g. 4 c)), we can, by applying a small rotation around the axis with the
directional vector −→n (similarly to case 2), make it so that the image γ′ = pr−→m(γ)
had a con�guration corresponding to the �gure 4 f). Note that the images of A and
B under pr−→v (γ) cannot be merged (see 5 c′)), as in that case the plane containing
ABDE must be parallel to CD, but this is impossoble (see �g. 2 g)). Moreover, it
can be seen that the case depicted in the �gure 5 a′) is also impossible.

In the other case, the projection pr−→v : Π → π⊥ can map γ bijectively onto its
image, which, in that case, will be a convex quadrangle, presented in �gure 4 b).
Similarly to the previous cases, by applying a small rotation around the axis with
the directional vector −→n we can make the image γ′ = pr−→m(γ) have a con�guration,
corresponding to the one shown in �gure 4 e). As in the previous case, we can pick
EAB and ABC as our supporting 2-subchains.
Case 6. γ corresponds to the con�guration type 3(a)iiB
We will consider the case, shown in �gure 2 c). In that case, all 2-subchains

but one (CDE) are supporting subhcains. Since we assume that the bypiramid
ABCDE is not a pyramid, we have that any two segments that are not adjacent
(in particular, EA and CD) lie on skew curves. Hence, the intersection of the plane
that passes through CD parallel to EA (and has a normal vector −→n ) and the plane
containing ∆ABC de�nes the line l with the directional vector −→v (this is similar
to case 2). Here, as in the previous case, three con�gurations of γ′ are possible
and all of them can be considered in the similar way as before. Apriori, in this
case pr−→v (γ) can merge points A and B (�g. 5 c′)). By applying a small rotation
around the axis with the directional vector −→n we can make the image γ′ = pr−→m(γ)
have a con�guration that corresponds the �gure 5 f ′). In that case, the 2-subchains
ABC and BCD will be the supporting subchains. Moreover, in that case a situation
symmetric to the case 4 d), that is shown in the �gure 5 d′) is also apriori possible. In
this scenario, ABC and BCD will also be the supporting subchains. In other cases
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EAB and ABC will be the supporting subchains instead. Hence the proposition is
proved for this case.

By Proposition 1, the argument, presented above for the polygonal chains of
types, that are depicted in the �gure 2 can also be applied if we consider polygonal
chains g′γ, g′ ∈ G′γ without any loss of generality.

Fig. 4. Projections of γ

�

4. Proof ot Theorem 1

Consider an embedding of a sphere S2 in the 4-dimensional Euclidean space E4

in the form of a 2-dimensonal polyhedron P 2 ⊂ E4. Since the sphere is compact,
there exists a ball B4 in E4 that contains P 2. We will decrease the radius of the
said ball, until its boundary S3 := ∂B4 will not touch the polyhedron P 2. The inner
points of an edge or a face of P 2 cannot touch S3 as in that case P 2 could not be
contained inside B4, hence only one or a few vertices of P 2 can touch S3. Let p be a
vertex of P 2, such that S3 and P 2 both contain it. Consider a 3-dimensional plane
in E4, that is tangent to S3 and another plane Π that is parallel and su�ciently
close to the �rst one, such that Π separates p from other vertices of P 2. This can
be done by, for instance, choosing Π to be so close to the tangent plane, that it
cuts o� a convex body Bp from B4, with this body having a diameter, that is
guaranteed to be smaller than the minimal distance between vertices of P 2. In that
case, the intersection Π∩P 2 is connected and is a closed polygonal chain γ ⊂ P 2, the
segments of which are generated by intersections of Π with faces, that are incident
to p.
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Fig. 5. Projections of γ

Our proof is by contradiction. Assume that for every point x ∈ E3 \ P 2, there
exists a two-dimensional plane πx that passes through x, such that

πx ∩ P 2 = ∅. (∗)
Case 1. γ is a plane polygonal chain that lies in some two-dimensional plane

α ⊂ Π.
In that case, by Jordan's theorem, γ splits the plane α into two connected

components, one of which is gomeomorphic to a 2-dimensional disk D2. For every
point x ∈ int D2, an intersection πx∩Π is a line lx that intersects D

2 in one point x,
where πx satis�es (∗). Otherwise, πx ∩Π intersects γ and this contaridcts (∗). This
means that γ is a non-trivial element of a fundamental group π1(E4 \πx), since the
skew projection p : E4 → α, parallel to πx does not move points of α and de�nes
a deformation retraction E4 \ πx → α \ x and, therefore, induces an isomorphism
of fundamental groups π1(E4 \ πx) ∼= π1(α \ x) = Z. It is clear that γ represents a
generator of π1(α \ x). On the other hand, γ ⊂ P 2 ⊂ E4 \ πx and γ is contracted
over P 2 into a point, since π1(P 2) = 0. Thus, we obtain a contradiction.
Case 2. γ is a non-plane polygonal chain.
Consider a projection pr−→m : Π→ τ from Proposition 2. By G′ denote an domain

in the plane τ that is bounded by the polygonal chain γ′ and by S′ ⊂ G′ denote
a subset of points of G′ such that every line, passing through y ⊂ S′, intersects
γ′ in two points. It is clear that if G′ is a convex set, then S′ = int G′, and if G′

corresponds to the �gure 4 d), then S′ is an inside of a convex quadrangle A′F ′C ′L′,
where F ′ = lB′C′ ∩ lA′E′ and L′ = lD′C′ ∩ lA′B′4. Said quadragnle is presented in

4By lXY we denote a line that passes through points X and Y .
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�gure 6. The case of γ′ corresponding to the �gure 5 d') can be dealt with in a
similar way.

Fig. 6. Domain G′

Since γ is connected, we have that any 2-dimensional plane in Π, that passes
through x ∈ Lγ \ γ must intersect γ. This contradicts our assumption. Hence, if πx
satis�es (∗), then πx ∩Π, x ∈ Lγ \ γ is a line, which we will denote lx. Therefore, if

x ∈ pr−1−→m (S′)∩Lγ , then the image l′x′ := pr−→m(lx) is a line or a point, that contains
the point x′ = pr−→m(x) ∈ S′. Then l′x′∩γ′ either consists of two points, which we will

denote x′1 and x′2, or is empty. Note that the domain S := pr−1−→m (S′) ∩ Lγ does not
contain γ, since the image of this domain under the map pr−→m does not contain γ′

and, since it is an intersection of two convex sets pr−1−→m (S′) and Lγ , is also a convex
set

We will divide all lines {lx, x ∈ S} into 4 types, depending on whether lx passes
"over" or "under"γ in the sence of ordering (<) de�ned by the directional vector
−→m on lines pr−1−→m (x′i), i = 1, 2. Denote by {x1, x2} ∈ γ and {y1, y2} ∈ lx preimages
of points {x′1, x′2} under the projection pr−→m , provided that these preimages are not
empty sets.

(1) Type ∅ : pr−→m(lx) = x′ ∈ S′ (the line lx is projected onto a point);
(2) Type +− : x1 < y1; x2 > y2 or x1 > y1; x2 < y2;
(3) Type −− : x1 > y1; x2 > y2;
(4) Type ++ : x1 < y1; x2 < y2.

If lx belongs to the type ∅, then γ can be deformed along the generatrices of a
cylinder pr−1−→m (γ′), which are, in the case considered, parallel to lx to turn into γ′,
that lies in the plane τ . We can choose τ in such a way that τ∩γ 6= ∅ and take any of
the intersection points as a marked point in the space E4\πx è τ\x′. This means that
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[γ] = [γ′] ∈ π1(E4 \πx). The polygonal chain γ′ represents a generator of the group
π1(τ \ x′) = Z and therefore also represents a generator of the group π1(E4 \ πx),
since τ \x′ is a deformation retract of E4\πx with respect to the projection E4 → τ
that is parallel to πx. On the other hand, γ ⊂ P 2 ⊂ E4\πx and γ can be contracted
over P 2 into a point, since π1(P 2) = 0. And since [γ] = [γ′] ∈ π1(E4\πx), we obtain
a contradiction.

Now assume that lx belongs to the type +−. By τ1 denote a plane, passing
through the point {x1, x2} ∈ γ and consider the case when restriction of a projection
pr−→m |τ1 : τ1 → τ is a bijective map. Then there exists a deformation γt, t ∈ [0, 1]
of a polygonal chain γ =: γ0 along the generatrices of a cylinder pr−1−→m (γ′) onto a
polygonal chain γ1 ⊂ τ1, such that γt ∩ lx = ∅ ∀t ∈ [0, 1]. Note that the points
x1, x2, y1, y2 lie in the plane pr−1−→m (lx′1x′2). Since lx belongs to the type +−, we have
that the segments [y1, y2] and [x1, x2] intersect in some point z0 ∈ (x1, x2). The
reverse function (pr−→m |τ1)−1 : τ → τ1 maps G′ into G1, which is bounded by the
polygonal chain γ1 and maps the segment [x′1, x

′
2] ⊂ G′ into the segment [x1, x2] ⊂

G1. Therefore lx ∩ τ1 = z0 ∈ int G1 and [γ1] is a generator of a group π1(Π \ lx) ∼=
π1(τ1 \z0) ∼= Z since τ1 \z0 is a deformation rectract of Π\ lx under the deformation
rectraction Π→ τ1 along the parallel lines ith the directional vector −→m. And since
[γ] = [γ1] ∈ π1(Π \ lx), we have that γ also represents a generator of a group
π1(Π \ lx) ∼= Z. Now note that the projection E4 \ πx → Π \ lx along any direction,
that is transversal to Π and parallel to πx is a deformation retraction and induces
an isomorphism of fundamental groups. Therefore [γ] is a generator of a group
π1(E4 \ πx). But on the other hand, since π1(P 2) = 0 and γ ⊂ P 2 ⊂ E4 \ πx, we
have that γ can be contracted over P 2 into a point. The resulting contradiction
�nishes the proof in the case that the set of lines lx of type +− is not empty.

Now consider the case, when the sets of lines lx, x ∈ S, corresponding to types
∅ and +− are empty. Recall that lx = πx ∩ Π, where πx is a plane that contains
x and satis�es (∗), which, by our assumption, exists ∀x ∈ E4 \ γ. We will show
that in this case the set of {lx, x ∈ S} must contain lines, corresponding to both
remaining types ++ and −−.

Without the loss of generality we can assume that the con�guration corresponds
to one of those presented in �gure 2. Consider the supporting subchain ABC and
let the point x ∈ int ∆ABC be chosen in such a way, that x′ = pr−→m(x) ∈ S′. Such a
point exists because int ∆A′B′C ′ ∩S′ 6= ∅. Since the line lx cannot lie in the plane,
containing the triangle ∆ABC (as in that case it would intersect γ ⊂ P 2), we have
that lx∩∆ABC = x. Note that at least one of the points {x′1, x′2} = l′x′ ∩γ′ belongs
to the subchain A′B′C ′ of a polygonal chain γ, since l′x′ ∩ int ∆A′B′C ′ 6= ∅. If both
points {x′1, x′2} belonged to the said subchain we would get that the type of lx is +−,
since lx would tranversely intersect int ∆ABC and points y1, y2 would lie on the
di�erent sides of a plane, containing ABC thus vectors −−→x1y1 è −−→x2y2 would be facing
in di�erent directions. Therefore only one of the points {x′1, x′2} belongs to A′B′C ′.
For the sake of clarity we will assume that it is x′1. Since ABC is a supporting
subchain, we have that one of the semi-intervals (x, y2] ∈ lx or [y1, x) ∈ lx lies
outside of the convex hull Lγ and the other one intersects it. Assume that (x, y2] lies
outside of Lγ . Since the plane containing ∆ABC separates the points y1 and y2 and
x1 ∈ ∆ABC, we have that vectors −−→x2y2 and −−→x1y1 are facing in di�erent directions.
But this means that lx is of type +−, which is impossible by our assumption. From
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this we derive that −→xy2 is directed inside the convex hull Lγ and y1 and Lγ lie on
the di�erent sides of the plane containing ∆ABC.

Now apply similar reasoning to the second supporting subchain. By Proposition
2, it is either the subchain EAB, DEA (then the projection of γ corresponds to the
one presented in �gure 4), or one of the subchains BCD and CDE (in this case the
projection of γ corresponds to the one presented in �gure 5). Since similar reasoning
can be applied for the cases presented in �gure 5, we will assume that one of those
shown in �gure 4 takes place. Note that ∆ E′A′B′ ∩S′ 6= ∅ and ∆ D′E′A′ ∩S′ 6= ∅
(see �g. 6).

Without the loss of generality consider the subchain EAB. From our previous
results, it follows that there exists a point z ∈ int ∆ EAB, such that z′ = pr−→m(z) ∈
S′.

By {z1, z2} ∈ γ and {w1, w2} ∈ lz denote the preimages of {z′1, z′2} = l′z′ ∩ γ′
under the projection pr−→m , where l

′
z′ := pr−→m(lz). Without the loss of generality

we can assume that z′1 belongs to the subchain E′A′B′, while z1 belongs to the
subchain EAB. By reasoning similar to the one used for y1, we can say that
w1 and Lγ lie on di�erent sides of the plane containing the triangle ∆EAB.
Considering the orientation of supporting subchains (see Proposition 2), we obtain

that {
−−→
AB,

−−→
BC,−−→y1x1} and {

−→
EA,
−−→
AB,−−→w1z1} are forming bases, that present di�erent

orientations of the space Π. Therefore the bases {
−−−→
A′B′,

−−−→
B′C ′,−−→y1x1} and

{
−−→
E′A′,

−−−→
A′B′,−−→w1z1},

that are equivalent to them also represent di�erent orientations of Π. At the same

time {
−−−→
A′B′,

−−−→
B′C ′} and {

−−→
E′A′,

−−−→
A′B′} are forming equivalent bases of the plane τ .

From this we conclude that −−→y1x1 and −−→w1z1 are facing in di�erent directions and, if
the line lx is of the type −− then lz will be of the type ++ and conversely if lx is
of the type ++ then lz is of the type −− .

De�ne the sets C+ ⊂ S and C− ⊂ S as follows: x ∈ C+(C−) if there exists a
line lx that belongs to the type ++ (−−). We showed that in the case that the
subsets of types ∅ and +− of the set of lines {lx, x ∈ S} are empty, both sets C+

and C− are not empty and S = C+ ∪ C−. Since planes πy, y ∈ S, that are close
and parallel to πx will still satisfy (∗) and the lines ly := πy ∩Π will have the same
type as lx we conclude that C+ and C− are open in S. Recall that the set S is
convex and therefore it is connected. From this we get that C+ ∩C− 6= ∅ and there
exists a point s ∈ S, such that there exist lines l+ := π+ ∩ Π and l− := π− ∩ Π of
types ++ and −− respectively that pass through it. Here π+ ⊂ E4 è π− ⊂ E4 are
two-dimensional planes that satisfy (∗). Moreover, by slightly moving one of the
planes, for instance π+, in such a way that leaves point s �xed, we can always make
it so that π+ and π− are in the similar position and still satisfy (∗). By η denote
the plane, that is generated by lines l+ and l−. Assume that the restriction of the
projection pr−→m onto η degenerates into a line, that passes through the points x′1, x

′
2

of a polygonal chain γ′. Let {y+1 , y
+
2 } ∈ l+, {y

−
1 , y

−
2 } ∈ l−, {x1, x2} ∈ γ genote the

preimages of points {x′1, x′2} under the projection pr−→m . Then, on the other hand,
we must have that y−1 < x1 < y+1 , while y

−
2 < x2 < y+2 , which is impossible in

our case, since [y−1 y
−
2 ] ∩ [y+1 y

+
2 ] = s. Then either y+1 < y−1 or y+2 < y−2 , which is

impossible (see �g. 7). Hence we conclude that pr−→m does not degenerate on η.
Consider a variation of parallel planes π−t along the vector m:
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Fig. 7. Plane η

−→r ′ = −→r + t−→m,

where −→r is a radius vector of a plane π−.
If t = 0 we have the original plane π−, while for small t > 0 we get that π−t

and π+ still satisfy (∗) while being in a similar position. In that case, the lines
l−t := π−t ∩ Π and l+ will not intersect and will still belong to the types −− and

++ respectively. Let l′
−
t := pr−→m(l−t ) and l′

+
:= pr−→m(l+). A polygonal chain γ has

a non-trivial link with l−t and l+, i.e. we cannot have an isotropy of γ over the set
Π \ l−t ∪ l+ into a curve, that completely lies inside the ball B ⊂ Π \ l−t ∪ l+. The
diagram of this link is de�ned by a map pr−→m : Π→ τ (see �g. 8).

We will show that

π1(Π \ (l−t ∪ l+)) = Z ∗ Z.

Indeed, note that Π \ (l−t ∪ l+) is homotopically equivalent to the Euclidean plane
without two points. To construct the corresponding homotopy, we �rst need to
homeomorphically map Π onto itself in such a way, so the lines become parallel
and then deform the image Π \ (l−t ∪ l+) onto a plane without to points that is
orthogonal to said lines. It is known that the Euclidean plane without two points
is homotopically equivalent to the bouqet of 2 circles (also known as a rose with 2
petals) S1 ∨ S1 and π1(S1 ∨ S1) = Z ∗ Z.

We will now show that γ represents a commutant αβα−1β−1 of generators α, β
of a fundamental group π1(Π \ (l−t ∪ l+)).

Let −→st := −→s +t−→m where −→s è −→st are radius vectors of points s and st respectively.
It is clear that st ∈ l−t . Let {x+1 , x

+
2 } ∈ γ and {x−1 , x

−
2 } ∈ γ denote the preimages
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Fig. 8. Link diagram

of the points

{x′+1 , x′
+
2 } = pr−→m(l+) ∩ γ′

and

{x′−1 , x′
−
2 } = pr−→m(l−t ) ∩ γ′ = pr−→m(l−) ∩ γ′

under the projection pr−→m |γ : γ → γ′.

By {y−1t, y
−
2t} ∈ l

−
t denote the preimages of points {x′−1 , x′

−
2 }, while {y+1 , y

+
2 } ∈ l+

denote the preimages of � {x′+1 , x′
+
2 } under the projection pr−→m . Since y

−
1t < x−1 ,

y−2t < x−2 , y
+
1 > x+1 , y

+
2 > x+2 , we have that l

−
t ∩ [x−1 , x

−
2 ] = ∅ and l+ ∩ [x+1 x

+
2 ] = ∅.

Otherwise, by the above reasoning we obtain the contradiction (see �gure 7). Let
s′ = pr−→m(s). De�ne the points s+ ∈ [x+1 x

+
2 ], s− ∈ [x−1 x

−
2 ] in the following way:

pr−→m(s+) = pr−→m(s−) = pr−→m(s) = s′. From our construction we have that st > s and
thus we have the following ordering of points on the line pr−1−→m (s′): s+ < s < st < s−.

This means that the segments [x−1 , x
−
2 ], [x+1 , x

+
2 ] do not intersect each other and

the lines l+t and l−.

Since [x′
−
1 , x

′−
2 ] ∩ [x′

+
1 , x

′+
2 ] = s′ 6= ∅ we conclude that the ordering of points

on γ′ is cyclic: x′
−
1 x
′+
1 x
′−
2 x
′+
2 . This implies that the ordering of the points on γ

is also cyclic: x−1 x
+
1 x
−
2 x

+
2 . Consider the following paths a := γx−1 x

+
1
, b = γx+

1 x
−
2
,

c = γx−2 x
+
2
, d = γx+

2 x
−
1
, e = [x−2 , x

−
1 ], f = [x+1 , x

+
2 ]. It can be easily seen that

closed paths α = abe and β = d−1f−1a−1 can be chosen as representatives of a
fundamental group π1(Π \ (l−t ∪ l+)). Here degree −1 means the reverse path. It is
clear that the path ᾱ = e−1b−1a−1 is reverse to alpha, while the path β̄ = afd is

4γxy denote the segment of a path on γ that starts at the point x and ends at the point y.
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reverse to β. It is also easy to see that the path β′ = e−1cf−1be is homotopic to β
and that the following homotopy takes place

αβ′ᾱβ̄ = abee−1cf−1bee−1b−1a−1afd ∼ abcd
This means that [γ] = [α][β][α]−1[β]−1 and is precisely what was stated.
Let E4

+ è E4
− be the half-spaces of the Euclidean space E4, that are separated

by the three-dimensional plane Π ⊂ E4. One of the disks, on which γ splits a
polyhedron P 2 lies in E4

− and the other one lies in E4
+. Recall that the planes π

−
t

and π+ are in the similar position and are intersecting only by one point, which we
denote by o. Withouth the loss of generality we can assume that o ∈ E4

−. Since the
retraction

r : E4
+ \ (π−t ∪ π+)→ Π \ (l−t ∪ l+)

that maps e ∈ E4
+ to an intersection point leo ∩Π of a line leo that passes through

points e and o with the plane Π is a deformation retraction, we have that γ is a
non-trivial element of a group

π1(E4
+ \ (π−t ∪ π+)) ∼= π1(Π \ (l−t ∪ l+)) = Z ∗ Z,

more speci�cally, a commutant of its generators. But, as was stated before, one of
the two-dimensional disks, on which γ splits P 2 lies in E4

+. And since P 2 ∩ (π−t ∪
π+) = ∅ (by our construction), we have that γ bounds the disk in E4

+ \ (π−t ∪ π+),

which means that [γ] = 0 in π1(E4
+ \ (π−t ∪ π+)). Thus, we obtain a contradiction.

Therefore the assumption that for every point x ∈ E4 outside of P 2 there exists a
plane πx that passes through x such that πx ∩ P 2 = ∅ is incorrect. The theorem is
proved.

5. Conclusion

In this paper we showed that the property "being 2-convex" does not hold for
any PL-embeddings of a 2-sphere in the 4-dimensional Euclidean space, if valence
of the vertices does not exceed 5. While attempting to apply similar ideas for cases
of higher valence, one may encounter additional di�culties: �rstly, the polygonal
chain γ may be knotted and secondly we lose the precense of two supporting 2-
chains at the boundary of the convex hull Lγ , which is a key element in our proof.
Therefore, in our opinion, it is interesting to �nd another proof that can be applied
for these cases aswell.

We also note another problem that is still open even in the case of smoothness
(at least, the author of this paper is not aware of it being solved).

Does there exist a 2-convex embedding of a surface M2
g g, g ≥ 2 in the Euclidean

space E4?
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