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KLEENE STAR, SUBEXPONENTIALS WITHOUT

CONTRACTION, AND INFINITE COMPUTATIONS

S.L. KUZNETSOV

Abstract. We present an extension of intuitionistic non-commutative
linear logic with Kleene star and subexponentials which allow permuta-
tion and/or weakening, but not contraction. Subexponentials which al-
low contraction are useful for specifying correct terminating of computing
systems (e.g., Turing machines). Dually, we show that Kleene star ax-
iomatized by an omega-rule allows modelling in�nite (never terminating)
behaviour. Our system belongs to the Π0

1 complexity class. Actually, it is
Π0

1-complete due to Buszkowski (2007). We show Π0
1-hardness of the uni-

directional fragment of this logic with two subexponentials and Kleene
star (this result does not follow from Buszkowski's construction). The
omega-rule axiomatization can be equivalently reformulated as calculus
with non-well-founded proofs (Das & Pous, 2018). We also consider the
fragment of this calculus with circular proofs. This fragment is capable of
modelling looping of a Turing machine, but, interestingly enough, some
non-cyclic computations can also be captured by this circular fragment.

Keywords: linear logic, Kleene star, in�nite computations, complexity.

1. Introduction

We study non-commutative intuitionistic linear logic, or the multiplicative-addi-
tive Lambek calculus (MALC) [8], extended at the same time with subexponentials
and the Kleene star, axiomatized in an in�nitary way. We show, on some model
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examples, how this system can be used for specifying in�nite computations (�sur-
vival�). This is dual to the more traditional use of subexponentials for modelling
�nite (terminating) computations. For �nite computations, the necessary number
of copies of the machine instructions (transition rules) are obtained by applying
the contraction rule for one of the subexponentials. Here, dually, we reduplicate
instructions using the Kleene star, and contraction in our system is disallowed.

Notice that we consider in�nite computations of standard, �nite machines, op-
erating on �nite (at each moment of time) data, in contrast to frameworks with
ω-words, like the one proposed in [32]. Unlike the use of situation calculus for
specifying non-terminating processes [5], our approach here is purely propositional,
without quanti�ers and predicates. If compared to the algebraic framework for
in�nite computations proposed in [7], which is purely equational, our system is in-
equational in its nature, making the direction of computation process more explicit.
To this extent, our approach is close to µMALL [1, 21], which is an extension of
linear logic without (sub)exponentials with �xpoint operators. These �xpoint op-
erations also allow replication of formulae, and thus encoding of (co-)induction.
The system discussed in this paper is in a sense more speci�c: Kleene star is a
concrete (but very important) example of least �xpoint. However, our system is
non-commutative, that is why we need subexponentials locally allowing permuta-
tion.

We start with a Gentzen-style sequent calculus for MALC. Formulae of MALC
are built from a countable set of variables and constant 1 using �ve binary con-
nectives: · (product, or multiplicative conjunction), \ (left division), and / (right
division), ∧ (additive conjunction), and ∨ (additive disjunction). Division opera-
tions are non-commutative linear implications. Sequents are intuitionistic-style, of
the form Γ → C, where C is a formula and Γ is a sequence of formulae (possibly
empty).

In this sequential formulation of MALC, axioms and rules are as follows:

F → F
Id

Γ,∆→ C

Γ,1,∆→ C
1L → 1

1R
Π→ F Γ, F,∆→ C

Γ,Π,∆→ C
Cut

Π→ F Γ, G,∆→ C

Γ,Π, F \G,∆→ C
\L

F,Π→ G

Π→ F \G
\R

Γ, F,G,∆→ C

Γ, F ·G,∆→ C
·L

Π→ F Γ, G,∆→ C

Γ, G /F,Π,∆→ C
/L

Π, F → G

Π→ G/F
/R

Γ→ F ∆→ G
Γ,∆→ F ·G

·R

Γ, F,∆→ C

Γ, F ∧G,∆→ C
∧L

Γ, G,∆→ C

Γ, F ∧G,∆→ C
∧L Π→ F Π→ G

Π→ F ∧G ∧R

Γ, F,∆→ C Γ, G,∆→ C

Γ, F ∨G,∆→ C
∨L Π→ F

Π→ F ∨G ∨R
Π→ G

Π→ F ∨G ∨R

Linear logic, as introduced by Girard [6], includes a special unary connective
called the exponential. Under this connective, structural rules (contraction and
weakening) are allowed, while they cannot be applied to arbitrary formulae. A
further extension of linear logic with subexponentials [19] allows a more �ne-grained
control of structural rules. Each subexponential allows a speci�c subset of structural
rules to be applied.

One of the major applications of logical frameworks based on linear logic and
its subexponential extensions is connected to speci�cations of operational seman-
tics [33, 20, 22, 27]. Ordered logical frameworks [28, 27], or frameworks based on
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non-commutative linear logic [9], allow speci�cation of systems where order mat-
ters. The proof theory of subexponential in non-commutative settings is presented
in [10].

In order to introduce subexponentials, one �rst �xes a subexponential signature of
the form S = 〈I,�,W,P, C〉. Here I is the set of subexponential labels, that is, for
each s ∈ I we introduce a unary connective !s; � is a preorder on I. Finally,W, P,
and C are subsets of I, closed upwards under � (if s ∈ W and s � s′, then s′ ∈ W,
and the same for P and C). If s belongs to W, P, or C, then !s allows weakening,
permutation, or non-local contraction, respectively. Since non-local contraction and
weakening (see below) yield permutation, we require W ∩ C ⊆ P.

The rules for subexponentials are as follows:

Γ, F,∆→ C

Γ, !sF,∆→ C
!L

!s1F1, . . . , !
snFn → F

!s1F1, . . . , !
snFn → !sF

!R, si � s

Γ,∆→ C

Γ, !wF,∆→ C
!Weak, w ∈ W

Γ, G, !pF,∆→ C

Γ, !pF,G,∆→ C
!Perm, p ∈ P

Γ, !pF,G,∆→ C

Γ, G, !pF,∆→ C
!Perm, p ∈ P

Γ, !cF,Φ, !cF,∆→ C

Γ, !cF,Φ,∆→ C
!NContr, c ∈ C

Γ, !cF,Φ, !cF,∆→ C

Γ,Φ, !cF,∆→ C
!NContr, c ∈ C

On the other hand, we have the Kleene star. Extensions of the multiplicative-
additive Lambek calculus with the Kleene star are variants of action logic. Action
logic with inductive-style axiomatization for Kleene star is due to Pratt [29] and
Kozen [12]. In this paper, however, we consider a stronger system, in�nitary action
logic [3], where the Kleene star is axiomatized by an ω-rule:

Γ,∆→ C Γ, F,∆→ C Γ, F, F,∆→ C Γ, F, F, F,∆→ C . . .

Γ, F ∗,∆→ C
∗L

Dually, the Kleene star on the left is introduced by one of the following rules:

Π1 → F . . . Πn → F

Π1, . . . ,Πn → F ∗
∗R (n ≥ 0)

(in particular, → F ∗ is an axiom).

As a matter of notation, we always suppose that unary operations have higher
priority than binary ones.

The system with both Kleene star and subexponentials, denoted by !SACTω,
however, appears to be of very high complexity. Namely, as shown in [17] using
results of Kozen [13], if C 6= ∅, then !SACTω is Π1

1-complete. In order to overcome
this issue, we disallow contraction for our subexponentials, thus, require C = ∅.
This yields a subsystem denoted by !wpS ACTω, which is going to be considered
throughout the paper.

In [17], it is also shown that if C = ∅, then !SACTω (in our notation, !wpS ACTω)
is Π0

1-bounded. On the other hand, the Π0
1 lower bound holds already forACTω [2].

Thus, !wpS ACTω has the same complexity as ACTω, namely, they are both Π0
1-

complete. In other words, adding subexponentials which do not allow contraction
does not raise algorithmic complexity.

The Π0
1-hardness proof for ACTω by Buszkowski [2] encodes the non-halting

problem for Turing machines, but in an indirect way, via the totality problem
for context-free grammars. Our subexponential extension of ACTω, the system
!wpS ACTω, allows modelling in�nite (�surviving�) computations in a more natural
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and straightforward way. Moreover, a re�nement of this encoding allows proving
Π0

1-hardness for the fragment with only /, ·, ∗, and two subexponentials, one of
which allows weakening and the other one allows only permutation. This yields a
result which is independent from the Π0

1-hardness results presented in [2] and [14].
A straightforward encoding of Turing computations is made possible by con-

trolled commutativity for formulae under a subexponential. On the other hand, the
system in general is kept non-commutative, which allows maintaining the order of
letters on the tape. In a fully commutative version of ACTω, letters would get
messed up; however, in the commutative situation it is possible to encode counter
(Minsky) machines, see [18] for terminating computations and [16] for in�nite ones.

The rest of this paper is organized as follows.
In Section 2 we establish several proof-theoretic properties of !wpS ACTω. Most

notably, we prove the *-elimination theorem, extending the corresponding result of
Palka [23] to include subexponentials. This yields the upper Π0

1 complexity bound
for !wpS ACTω. The material of Section 2 is quite standard, and we include it mostly
in order to make this article self-contained. On the other hand, the method used
here to prove the upper Π0

1 bound for !wpS ACTω is di�erent from the one used
in [17], and is close to Palka's one.

In Section 3 we show how to model in�nite computations (�survival� of a com-
putational system) in !wpS ACTω. Our main example is the in�nite run of Turing
machines, and we show di�erences between the deterministic and non-deterministic
cases. We also sketch a method of giving more subtle speci�cations of in�nite run,
namely, maintaining certain kind of computation invariants.

In Section 4, we consider a fragment of !wpS ACTω with circular proofs. We show
that derivations in this fragment model circular (looping) runs of Turing machines.
However, some non-looping in�nite runs are also captured by this circular fragment.

In Section 5, we present a re�ned encoding of Turing machine in�nite computa-
tions, which uses only /, ·, ∗, and two subexponentials: !w, !p, where w ∈ W, p ∈ P,
p /∈ W. This is a new result: Buszkowski's construction [2] used to establish Π0

1-
hardness of ACTω essentially uses, besides ∗ and /, at least one of the two additive
operations (∨ or ∧). A more recent Π0

1-hardness proof [14] for the multiplicative-
only non-commutative linear logic (the Lambek calculus) with Kleene star works
without ∨ and ∧, but the tradeo� is that now we have to use both divisions, \
and /, and the product, ·. In our result, the tradeo� is that we have to use two
subexponentials and the product. Complexity of the minimalist fragment of ACTω

itself, with only ∗, /, and maybe ·, remains an open question.
Section 6 is for concluding remarks.

2. Proof-Theoretic Properties of !wpS ACTω

In this section we quickly discuss proof-theoretic properties of !wpS ACTω. The
�rst one is cut elimination. We start with eliminating one cut rule:

Theorem 1. If Π→ F and Γ, F,∆→ C are derivable in !wpS ACTω without using
cut, then so is Γ,Π,∆→ C.

This theorem follows from a more general result of [17, Thm. 4.1]; however, in
the absence of contraction the proof becomes much simpler and actually follows
the line of Palka's proof [23]. The proof goes by nested trans�nite induction on the
following parameters:
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• the complexity (length) of the formula being cut;
• the rank, or the ordinal representing the height, of the derivation of Π→ F ;
• the rank of the derivation of Γ, F,∆→ C.

Corollary 1. Any sequent provable in !wpS ACTω can be proved without cut.

This corollary is proved, again, by trans�nite induction on the rank.
Cut elimination yields invertibility of some rules, most notably the ω-rule, ∗L,

and the polarized subformula property. Namely, each formula in a cut-free proof is
a subformula of the goal sequent, with the same polarity.

Now, aiming to establish complexity bounds for !wpS ACTω, we prove *-eliminati-
on. Following Palka [23], we de�ne the n-th approximation of a sequent. Informally,
we replace each negative occurrence of F ∗ with 1∨F ∨F 2 ∨ . . .∨Fn. The positive
occurrences remain in their places, since they do not yield undecidability. This re-
placement has to be done in a nested way, and formally is captured by the following
mutual de�nition of two transformations on formulae, Pn and Nn (corresponding
to positive and negative polarities):

Pn(pi) = pi Nn(pi) = pi

Pn(1) = 1 Nn(1) = 1

Pn(E · F ) = Pn(E) · Pn(F ) Nn(E · F ) = Nn(E) ·Nn(F )

Pn(F \G) = Nn(F ) \Pn(G) Nn(F \G) = Pn(F ) \Nn(G)

Pn(G/F ) = Pn(G) /Nn(F ) Nn(G/F ) = Nn(G) /Pn(F )

Pn(F ∧G) = Pn(F ) ∧ Pn(G) Nn(F ∧G) = Nn(F ) ∧Nn(G)

Pn(F ∨G) = Pn(F ) ∨ Pn(G) Nn(F ∨G) = Nn(F ) ∨Nn(G)

Pn(!sF ) = !sPn(F ) Nn(!sF ) = !sNn(F )

Pn(F ∗) =
(
Pn(F )

)∗
Nn(F ∗) = 1 ∨Nn(F ) ∨

(
Nn(F ))2 ∨ . . . ∨

(
Nn(F ))n.

The n-th approximation of a sequent F1, . . . , Fm → G is de�ned as

Nn(F1), . . . , Nn(Fm)→ Pn(G).

Theorem 2. A sequent is derivable in !wpS ACTω if and only if so are its n-th
approximations for all n = 0, 1, 2, . . .

This theorem is called *-elimination, because in the n-th approximation there
are no more negative occurrences of Kleene star (which need the scary ω-rule in a
cut-free derivation).

Proof. The proof of *-elimination for !wpS ACTω resembles Palka's [23] one for
ACTω without subexponentials. The only principal di�erence is that in !wpS ACTω

we have permutation rules, which do not change complexity of the sequent. How-
ever, they can be dealt with quite easily (see below). Notice that here it is crucial
that C = ∅: contraction (!NContr) increases complexity (going upwards), which
makes the *-elimination argument fail. And indeed, !SACTω does not enjoy
*-elimination due to complexity reasons.

We start with establishing (by structural inducton on F ) derivability of the
following sequents (here k ≤ n):

F → Pn(F ); Nn(F )→ F ; Pn(F )→ Pk(F ); Nk(F )→ Nn(F ).
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The �rst two immediately yield the easy �only if� implication: if F1, . . . , Fm → G is
derivable, then Nn(F1), . . . , Nn(Fm) → Pn(G) is derivable using the cut rule with
Nn(F1)→ F1, . . . , Nn(Fm)→ Fm, and G→ Pn(G).

For the �if� direction, de�ne κ(F ) to be the complexity of F , counted as the total
number of connectives (including subexponentials and Kleene star) and constants
(1) in F . Next, for a sequent Γ → C let ci(Γ → C) be the number of subformula
occurrences in Γ→ C with κ(F ) = i. Now the complexity of Γ→ C is measured by
an in�nite vector (c0, c1, c2, . . .), and, obviously, for some i0 we have ci = 0 if i ≥ i0.
Thus, we can de�ne a lexicographic well-ordering on such vectors: (c0, c1, c2, . . .)�
(c′0, c

′
1, c
′
2, . . .), if for some i0 we have ci0 < c′i0 and ci = c′i if i > i0. Let us call such

vectors c-vectors.
We proceed by well-ordered (trans�nite) induction on � and prove the contra-

position. Suppose F1, . . . , Fm → G is not derivable in !wpS ACTω and prove that so
is Nn(F1), . . . , Nn(Fm)→ Pn(G) for some n. Consider two cases.

Case 1. Fi, for some i, is of the form E∗. Then F1, . . . , Fi−1, E
k, Fi+1, . . . , Fm →

G is not derivable for some k: otherwise the original sequent could be derived by ∗L.
This new sequent has a smaller (in the sense of �) c-vector than the original one.
Thus, by induction Nl(F1), . . . , Nl(Fi−1), (Nl(E))k, Nl(Fi+1), . . . , Nl(Fm)→ Pl(G)
is not derivable for some l. Let n = max{l, k}. The sequent

Nn(F1), . . . , Nn(Fi−1), (Nn(E))k, Nn(Fi+1), . . . , Nn(Fm)→ Pn(G)

is also not derivable: otherwise we could apply cut with Nl(Fi) → Nn(Fi) and
Pn(G) → Pl(G). Finally, since (Nn(E))k → Nn(E∗) is derivable, we get non-
derivability of the sequent

Nn(F1), . . . , Nn(Fi−1), Nn(E∗), Nn(Fi+1), . . . , Nn(Fm)→ Pn(G),

which is the n-th approximation of our original sequent.
Case 2. No Fi is of the form E∗. Following Palka, we perform one step of proof

search in order to apply induction. However, now we do not count !Perm as a step,
and proceed upwards to �nd a �real� rule application.

Let us non-deterministically construct a set A of sequents as follows. Given the
original sequent F1, . . . , Fm → G, apply !Perm several times (which is possible if
some Fj are of the form !pE, p ∈ W), and then attempt to derive it using one of
the other rules. The premises of this rule form the set A. Notice that this rule
cannot be ∗L (otherwise we are in Case 1), but could be ∗R. Thus, A is always
�nite. Also, recall that we can restrict ourselves to cut-free derivations, so the last
rule is not cut.

Let A be the set of all sets A that could be generated by the non-deterministic
procedure described above. EachA ∈ A includes a non-derivable sequent (otherwise
we could derive the original one), and the c-vector of this sequent is smaller (in the
sense of�) than the c-vector of the original sequent. Thus, we can apply induction
hypothesis and conclude that, for some kA, the kA-th approximation of this sequent
is also non-derivable.

The set A itself is �nite. Indeed, !p-formulae in the original sequent allow only
a �nite number of permutations, and for each of them there is a �nite number of
rules which could possibly be applied (thanks to cut-freeness). Let n = max{kA |
A ∈ A}. By monotonicity of approximations, in each A there is a sequent whose
n-th approximation is not derivable.
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Now take the n-th approximation of the original sequent. Suppose it is deriv-
able. In the bottom of the derivation, there could be a series of !Perm applications
(permutations of !-formulae), preceded by some other rule. The n-th approximation
does not include negative occurrences of ∗, so this rule is not ∗L. Thus, premises
of this rule are exactly n-th approximations of sequents from some A ∈ A. How-
ever, in each A there exists a sequent whose n-th approximation is not derivable.
Contradiction. �

Corollary 2. The derivability problem in !wpS ACTω belongs to Π0
1.

Proof. Derivability of sequents without negative occurrences of ∗ is decidable by
exhaustive proof search. The external �∀n� quanti�er (over all n-th approximations)
yields Π0

1. �

Actually, since !wpS ACTω includes ACTω, it is also Π0
1-hard [2].

3. Modelling Infinite Computations

In this section we show how !wpS ACTω can be used as a framework for specifying
in�nite behaviour of computation systems. Our main�and universal�example is
the speci�cation of in�nite run of a Turing machine on a given input.

We consider only single-tape, single-head Turing machines and allow the tape
to grow only to the right. (If the machine reaches the left end of the tape and
attempts to move further to the left, it terminates.) Turing machines considered
here are allowed to be non-deterministic.

A Turing machine is denoted by M. Let Σ be its internal alphabet and Q be
the set of states. We denote letters of Σ = {a1, . . . , an} by a, b, c (maybe with
subscripts) and elements of Q (states) by q0, q1, . . .; q0 is the initial state. We
suppose that Σ and Q are disjoint. A special blank symbol  ∈ Σ is added to the
tape when M reaches the right end and moves further to the right.

Con�gurations of Turing machines are encoded in a standard way. If the machine
is in state q, observing ai1 , . . . , aik observing letter aij , then its con�guration is
encoded by ai1 . . . aij−1

qaij . . . aik$. The special character $ /∈ Σ ∪ Q denotes the
right end of the tape. A slightly di�erent encoding is used when the machine starts
with an empty word on the tape. In this situation we add a blank: q $, in order
to have some symbol being �observed.�

Next, we suppose that all elements of Σ ∪ Q ∪ {$} are variables of !wpS ACTω,
and we represent con�gurations of M as elementary products:

ai1 · . . . · aij−1
· q · aij · . . . · aik · $.

Transition rules of M are of the form (q1, a) → (q2, b, d), where q1, q2 ∈ Q,
a, b ∈ Σ, and d ∈ {N,L,R}. This rule is applicable in the case when M is in state
q1 observing a on the tape, and instructs it to replace a by b, change the state to
q2, and perform a movement according to d: if d = L, move one cell left; if d = R,
move one cell right; if d = N , do not move.

We encode each transition rule by one or two Lambek formulae (that is, a formula
without subexponentials and Kleene star), according to the following table.
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Rule Formula(e)

(q1, a)→ (q2, b,N) (q2 · b) /(q1 · a)

(q1, a)→ (q2, b, L) (q2 · c · b) /(c · q1 · a), for any c ∈ Σ

(q1, a)→ (q2, b, R) (b · q2 · c) /(q1 · a · c), for any c ∈ Σ
(b · q2 ·  · $) /(q1 · a · $)

By EM we denote the additive conjunction (∧) of the formulae mentioned in the
table above for all rules of M: EM = A1 ∧ . . . ∧ AM , where M is the number of
transition rules.

Lemma 1. Let N be a natural number. The sequent

(!pEM)N , q0, ai1 , . . . , aik , $→ (a1 ∨ . . .∨an)∗ · (q0 ∨ q1 ∨ . . .∨ qm) · (a1 ∨ . . .∨an)+ · $

is derivable in !wpS ACTω if and only if M can make N moves, starting from state
q0 observing ai1 . . . aik on its tape.

The sequent in this lemma has the following informal reading: rules of M can
be successfully applied N times, starting from con�guration q0ai1 . . . aik$, yielding
again a valid con�guration. The fact that the con�guration is valid is expressed by
the regular expression on the right; here we use the standard shortcut F+ = F ·F ∗.
The subexponential !p is used for delivering commands of M to appropriate places
in the con�guration.

Proof. The �if� direction is trivial: for each move of M, we take one formula from
the instances of !pEM, move it to the location of q (the state) using !Perm, decompose
by !L and ∧L, and apply /L followed by ·L to execute the rule. In the end, we get
a derivable sequent of the form

a′i1 , . . . , a
′
ij−1

, q′, a′ij , . . . , a
′
ik′
, $→ (a1∨ . . .∨an)∗ ·(q0∨q1∨ . . .∨qm) ·(a1∨ . . .∨an)+.

For the interesting �only if� direction, we start with some rearrangings the proof,
which we call �disbalancing.� The transformations are essentially the same as used
by Pentus [24, 25] for his calculus Lcut, the only rule of which is cut. Here we
apply these transformations to logical rules in a cut-free derivation.

Consider a cut-free derivation of the sequent in question. We claim that the
derivation can be reorganized so that left premises of all applications of /L are
trivial, that is, of the form p1, . . . , p` → p1 · . . . · p`, where pi are variables.

Indeed, due to the polarized subformula property, the only rules which can be
applied in the derivation of the left premise of /L are the following ones: !L, !Perm,
∧L, /L, ·L, ·R. (Recall that the /-formula introduced by this rule came from EM,
thus, it is of the form (r1 · . . . · rµ) /(s1 · . . . sν), where ri and sj are variables.)

The ·R rule is interchangable upwards will other rules from this list operating on
the left. For example, this is how it gets exchanged with /L:

Π→ F Γ, G,∆→ B

Γ, G /F,Π,∆→ B
/L Φ→ C

Γ, G /F,Π,∆,Φ→ B · C
·R

transforms into

Π→ F

Γ, G /F,Π,∆→ B Φ→ C

Γ, G,∆,Φ→ B · C
·R

Γ, G /F,Π,∆,Φ→ B · C
/L
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Thus, we can suppose that, unless the left premise of /L is not of the form
p1, . . . , p` → p′1 · . . . · p′`′ , then the lowermost rule applied in its derivation is not ·R.
In such situations, we apply disbalancing transformations:

Φ→ H Π1, E,Π2 → F

Π1, E /H,Φ,Π2 → F
/L Γ, G,∆→ C

Γ, G /F,Π1, E /H,Φ,Π2,∆→ C
/L

transforms into

Φ→ H

Π1, E,Π2 → F Γ, G,∆→ C

Γ, G /F,Π1, E,Π2,∆→ C
/L

Γ, G /F,Π1, E /H,Φ,Π2,∆→ C
/L

and if R is one of !L, !Perm, ∧L, or ·L, then the transformation is as follows:

Π̃→ F
Π→ F

R
Γ, G,∆→ C

Γ, G /F,Π,∆→ C
/L

 

Π̃→ F Γ, G,∆→ C

Γ, G /F, Π̃,∆→ C
/L

Γ, G /F,Π,∆→ C
R

Notice that p1, . . . , p` → p′1, . . . , p
′
`′ could only be derivable if ` = `′ and p′i = pi

for each i.
In the �main branch� of the derivation, which goes always to the right at /L,

we can also suppose that ·R, ∗R, and ∨R we applied immediately after the axiom:
otherwise, they can be shifted upwards.

Thus, our derivation is now just a sequence of applications of !L, !Perm, ∧L, /L,
and ·L, ending at a sequent of the form

a′i1 , . . . , a
′
ij−1

, q′, a′ij , . . . , a
′
ik′
, $→ (a1∨ . . .∨an)∗ ·(q0∨q1∨ . . .∨qm) ·(a1∨ . . .∨an)+.

Indeed, the right-hand side remains the same (all right rules shifted to the top), and
the form of the left-hand side is guaranteed by the formulae in EM: after applying
/L with such a formula, we replace one element of Q with another, thus maintaining
the fact that there is exactly one such letter in the sequence; $ is always the last
one.

Each /L application, with consequential applications ·L, which can be done im-
mediately by invertibility of this rule, exactly corresponds to one step of a Turing
machine computation. The total number is exactly N , since each of the EM's gives
one /-formula after its decomposition.

Thus, derivability of our sequent yields possibility to perform N steps of M on
the given input. �

This lemma immediately yields the following corollary:

Corollary 3. If M is deterministic, then it runs forever, starting from state q0
and input word ai1 . . . aik , if and only if the sequent

(!pEM)∗, q0, ai1 , . . . , aik , $→ (a1 ∨ . . .∨ an)∗ · (q0 ∨ q1 ∨ . . .∨ qm) · (a1 ∨ . . .∨ an)+ · $
is derivable in !wpS ACTω.

Indeed, a deterministic Turing machine can perform N moves for any N if and
only if it runs in�nitely (initial con�guration being �xed).

As noted above, the right-hand side of this sequent, (a1 ∨ . . . ∨ an)∗ · (q0 ∨
q1 ∨ . . . ∨ qm) · (a1 ∨ . . . ∨ an)+ · $, is a regular expression which describes the
language of all correct con�gurations of M. One can make it more restrictive, and
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thus express a more subtle speci�cation of M's in�nite run. For example, one can
impose restrictions like �in the in�nite run, whenever M is in state q2, it should
observe letter a6,� which is expressed by

(
(a1 ∨ . . .∨ an)∗ · (q0 ∨ q1 ∨ q3 ∨ . . .∨ qm) ·

(a1 ∨ . . .∨ an)+ · $
)
∨
(
(a1 ∨ . . .∨ an)∗ · q2 · a6 · (a1 ∨ . . .∨ an)∗ · $

)
. Notice that this

restriction can only apply to an individual con�guration. For such more restrictive
speci�cations we get corresponding variants of Lemma 1 and Corollary 3, yielding
the following result.

Theorem 3. Let M be a deterministic Turing machine with Σ = {a1, . . . , an} and
Q = {q0, q1, . . . , qm}, and let R be a regular expression which generates a subset of
the language generated by (a1 ∨ . . . ∨ an)∗ · (q0 ∨ q1 ∨ . . . ∨ qm) · (a1 ∨ . . . ∨ an)+ · $.
Consider R as a formula in the language of !wpS ACTω. Then the sequent

(!pEM)∗, q0, ai1 , . . . , aik , $→ R

is derivable in !wpS ACTω if and only if M, starting from state q0 and input word
ai1 . . . aik , runs forever and its con�guration at each step satis�es R.

Proof. Exactly as Lemma 1 and Corollary 3. �

Corollary 3, by the way, gives another proof of Π0
1-hardness of !

wp
S ACTω. How-

ever, Buszkowski's [2] result is stronger, since it establishes Π0
1-hardness already in

the fragment without subexponentials.
For non-deterministic machines the situation is a bit trickier.

Theorem 4. For an arbitrary Turing machine M, the sequent

(!pEM)∗, q0, ai1 , . . . , aik , $→ (a1 ∨ . . .∨ an)∗ · (q0 ∨ q1 ∨ . . .∨ qm) · (a1 ∨ . . .∨ an)+ · $
is derivable in !wpS ACTω if and only if there exists an in�nite sequence of con�g-
urations of M such that each con�guration (except the �rst one) is a successor of
the previous one.

In other words, derivability of the sequent is equivalent to the existence of an
in�nite execution trajectory of M, starting from the given initial con�guration.

Proof. The �if� part is trivial. Existence of an in�nite computation implies that for
any concrete N machine M can make N moves. By Lemma 1 this yields derivability
of

(!pEM)N , q0, ai1 , . . . , aik , $→ (a1∨ . . .∨an)∗ · (q0∨ q1∨ . . .∨ qm) · (a1∨ . . .∨an)+ ·$.
The necessary sequent is now derived by the ω-rule ∗L.

The proof of the �only if� part involves K�onig's lemma [11]. Consider all pairs
of the form (c, N), where N is a natural number and c is a con�guration of M. Let
us draw an edge between pairs (c, N) and (c′, N + 1), if c′ is a successor of c. This
yields a forest.

From this forest, let us pick up the tree rooted by (c0, 0), where c0 is the initial
con�guration. Since any con�guration c has only �nitely many successors, this tree
is �nitely branching.

On the other hand, for any N there exists a vertex (c, N) inside this tree. Indeed,
by cut with (!pEM)N → (!pEM)∗ we get derivability of

(!pEM)N , q0, ai1 , . . . , aik , $→ (a1∨ . . .∨an)∗ · (q0∨ q1∨ . . .∨ qm) · (a1∨ . . .∨an)+ ·$.
By Lemma 1 this implies that M can make N moves, starting from c0. In our tree,
this is a path of the form (c0, 0)→ (c1, 1)→ . . .→ (cN , N).
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Thus, our tree is in�nite. Being �nitely branching, by K�onig's lemma it should
include an in�nite path starting from the root: (c0, 0) → (c1, 1) → (c2, 2) → . . .
This path corresponds to an in�nite execution trajectory of M, starting from the
given initial con�guration c0. �

Unfortunately, this argument based on K�onig's lemma happens to be not ro-
bust, that is, fails when we try to make our speci�cation more restrictive. Our
speci�cation for in�nite computation is encoded in the right-hand of the sequent,
as a regular expression, (a1 ∨ . . . ∨ an)∗ · (q0 ∨ q1 ∨ . . . ∨ qm) · (a1 ∨ . . . ∨ an)+, and
merely states that after N steps of the computation the machine comes (in the non-
deterministic setting: can come) to a correctly formed con�guration. The following
trivial example shows what happens if we impose a more restrictive speci�cation.

Example 1. Consider a non-deterministic �nite automaton A with two states, q0
and q1, whose transitions are as follows:

q0 q1

a

a

The labels (�a�) on the transition edges are considered as output of the automa-
ton. Thus, its con�guration, after N moves, can be represented as aNq0 or aNq1.
The initial con�guration is q0. (Here we omit the sentinel $, since qi is always the
rightmost symbol of the con�guration. The blank symbol  , after qi, is also not
used.)

Following our encoding, the E formula for A is EA = ((a ·q0) / q0)∧ ((a ·q1) / q0).
Now let us consider the following speci�cation formula (regular expression) in the
right-hand side of the sequent: q0 ∨ (a+ · q1). Its meaning is as follows: A should
always be in state q1, except for the initial con�guration, where it is in state q0.

It is of course impossible to maintain this speci�cation for an in�nite execution
of A: once we reach q1, no further move is possible. The sequent (!pEA)∗, q0 →
q0 ∨ (a+ · q1), however, is derivable in !wpS ACTω. Indeed, for N > 0 one can derive
!p((a · q1) / q0), (!p((a · q0) / q0))N−1, q0 → aN · q1, thus (!pEA)N , q0 → a+ · q1. For
N = 0 we have just q0 → q0.

Non-determinism of A is crucial. The automaton, for any N , can perform a
computation which �nishes at a con�guration which obeys our speci�cation, but
these �partial� computations do not form an in�nite one.

In contrast, in Theorem 4 the in�nite computation was obtained from �partial�
ones by K�onig's lemma. The reason why it became possible is as follows: the speci-
�cation (a1∨. . .∨an)∗ ·(q0∨q1∨. . .∨qm)·(a1∨. . .∨an)+ is automatically maintained
not only for the last step of the computation, but also for all intermediate steps.
Thus, a variant of Theorem 4 holds for a special class of regular speci�cations:

Theorem 5. Let M be a non-deterministic Turing machine and let R be a regular
expression speci�cation (as in Theorem 3), with the following additional property:
for any run of M, if one con�guration satis�es R, then so do all the previous ones.
Then (!pEM)∗, q0, ai1 , . . . , aik , $ → R is derivable in R if and only if there exists
an in�nite run of M starting from state q0 and input word ai1 . . . aik .

Proof. Lemma 1 holds for an arbitrary R. In the proof of Theorem 4, we now
consider only vertices of the form (c, N), where c satis�es speci�cation R. For each
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N , Lemma 1 yields a sequence (path) of con�gurations (c0, 0) → (c1, 1) → . . . →
(cN , N) and guarantees that the last con�guration, cN , satis�es R. On the other
hand, our condition on R guarantees that so do all ci's, for i = 0, 1, . . . , N − 1, N .
We �nalize the proof by K�onig's lemma, which yields an in�nite path in which all
con�gurations satisfy R. �

Though in this section we discussed only Turing machine computations, both
deterministic and non-deterministic, the framework based on !wpS ACTω is capable
of specifying in�nite behaviour in a broader context. Let us give just one simple
example.

Example 2. Suppose we have several letter �a� in the memory, the state is always q
(thus, the con�guration is qa . . . a$), but now we have two controlling actors. One
does nothing (just retains the q), thus, its rule can be formalized as q / q. The
second one is evil, it removes one letter a at each step: q /(q · a).

The following speci�cation requires both of them to perform arbitrary many
moves: (q / q)∗, (q /(q · a))∗ (compare with ((q / q) ∧ (q /(q · a)))∗, which requires
only the total number of moves to be arbitrarily large). Thus, the sequent

(!p(q / q))∗, (!p(q /(q · a)))∗, q, a, . . . , a, $→ q · a∗ · $

is not derivable, since the evil actor will eventually remove all a's.
Notice that here the process is non-deterministic (we do not impose any order of

operations), so the equivalence between derivability and surviving of computation
is proved via K�onig's lemma, as in Theorem 4.

Finally, the term �evil� for the second actor here is not exactly appropriate: the
game is actually cooperative, and we seek for a joint �winning strategy� for both
players. For example, the following sequent is derivable: (!p((q · a) / q))∗, (!p(q /(q ·
a)))∗, q, a, $→ q ·(a∨1) ·$. The meaning of it is as follows: two actors can interleave
their moves, when one removes the a and the other puts it back. The con�guration
after each step is either qa$ or q$.

4. Circularity in Proofs and Computations

In this section, we consider a fragment of !wpS ACTω which is de�ned using circu-
lar proofs, and show the relations between derivations in this fragment and circular
behaviour of in�nite Turing computations.

We start with a reformulation of !wpS ACTω as a system with non-well-founded
proofs, which we denote by !wpS ACT∞. This calculus forms a natural subexponen-
tial extension of the corresponding non-well-founded system for in�nitary action
logic by Das and Pous [4]. In this system, the rules for Kleene star are formulated
as follows:

Γ,∆→ C Γ, E,E∗,∆→ C

Γ, E∗,∆→ C
∗′L → E∗

∗R1
Γ→ E ∆→ E∗

Γ,∆→ E∗
∗R2

All other rules are the same as in !wpS ACTω. Notice that now all rules are �nitary;
however, in !wpS ACT∞ derivations are allowed to have in�nite branches, that is, be
non-well-founded. In order to avoid vicious circles (say, an in�nite branch consisting
only of applications of !Perm), the following progressivity condition is imposed: for
each in�nite branch, there exists an occurrence of a formula of the form E∗ which
inherits upwards the branch and undergoes ∗′L in�nitely often.
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Theorem 6. A sequent has a correct non-well-founded proof in !wpS ACT∞ if and
only if it is derivable in !wpS ACTω.

Proof. We give only a sketch of proof. For the easy �if� part, it is su�cient to show
that the ∗L and ∗R rules of !wpS ACTω are derivable in !wpS ACT∞ (for ∗L, which is
the ω-rule, we get an in�nite branch obeying the progressivity condition). For the
�only if� part, we �rst perform cut elimination, which is done as in [4, Thm. 15]:
subexponentials without contraction do not alter the cut elimination procedure.
Next, for a �xed n, we replace each sequent in the cut-free proof with its n-th
approximation. The result can be transformed into a valid derivation. The only
interesting case is ∗′L, which translates into ∨L, reducing n, or just disappears, if
n = 0. Thus, in this derivation all in�nite branches get cut o�. Next, one simulates
∗R1 and ∗R2 in !wpS ACTω. This gives a derivation for each n-th approximation.
Applying Theorem 2 yields derivability of the original sequent in !wpS ACTω. �

A non-well-founded proof is called regular, if it includes only a �nite number of
non-isomorphic subtrees. In an equivalent notation, one can locate each occurrence
of a subtree root, which already appeared (as an isomorphic copy) lower in the
proof tree, and replace the subderivation above it with a backtrack. This yields a
�nite object which represents a regular proof and is called a circular proof. The
fragment of !wpS ACT∞ which allows only circular (regular) proofs is denoted by
!wpS ACTcirc.

As noticed in [4], unlike !wpS ACT∞, the circular fragment !wpS ACTcirc does not
enjoy cut elimination: the counter-example is A,A∗ → A∗ ·A.

Let us consider the circular fragment !wpS ACTcirc from the point of view of
Corollary 3, that is, from the point of view of modelling Turing machine behaviour.
We shall consider the same encoding, i.e., the sequent

(!pEM)∗, q0, ai1 , . . . , aik , $→ (a1 ∨ . . .∨an)∗ · (q0 ∨ q1 ∨ . . .∨ qm) · (a1 ∨ . . .∨an)+ · $,

which we shall denote by (∗), expresses the statement �M runs forever on input
word ai1 . . . aik �. (For simplicity, here we consider only deterministic machines.)

Since any sequent provable in !wpS ACTcirc is also provable in !wpS ACTω, deriv-
ability of (∗) implies an in�nite run of M on ai1 . . . aik . The converse does not hold,
since !wpS ACTcirc has a recursively enumerable (Σ0

1) set of theorems.
Quite naturally, derivations in the circular fragment can represent circular in�-

nite runs of M:

Theorem 7. Let M be a deterministic Turing machine and have a circular run
on input word ai1 . . . aik , that is, starting from con�guration c0 = q0, ai1 . . . aik , it
returns to some con�guration c′ in which it already was before. Then the sequent
(∗) is derivable in !wpS ACTcirc.

Proof. The proof is performed by a slight modi�cation of the argument of Lemma 1.
At each step of the in�nite run, from con�guration c to con�guration c1, we do the
following (here and further we write just E for EM):

c, $→ R

... (!pE)∗, c1, $→ R

!pE, (!pE)∗, c, $→ R
!Perm,∧L, /L

(!pE)∗, c, $→ R
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Here R = (a1 ∨ . . . ∨ an)∗ · (q0 ∨ q1 ∨ . . . ∨ qm) · (a1 ∨ . . . ∨ an)+ · $ and c, $→ R is
derivable since c is a valid con�guration code. The left premise of /L is an axiom-
like sequent like q1, a→ q1 · a, which validates applicability of a concrete transition
rule taken from E by ∧L. Finally, the progressivity condition is maintained by the
fact that we decompose the same (!pE)∗ each time.

Now, if M runs into a loop, the same sequent (!pE)∗, c′, $ → R appears in the
in�nite derivation branch twice, and we replace the rest of the derivation with a
backtrack. �

In the non-deterministic case, this theorem also holds. However, in this case the
original run could have been non-circular: after returning to the same con�guration
c′, the machine is not obliged to follow the old trajectory. When the derivation gets
truncated via the backtrack, however, the corresponding run gets circularized.

Interestingly enough, however, there exist also non-circular runs for which (∗) is
provable in !wpS ACTcirc.

Example 3. Consider a very simple Turing machine which just in�nitely populates
its tape with copies of one letter a. Namely, let Σ = {a}, Q = {q}, q0 = q, and the
only transition rule be (q,  ) → (q, a,R). The in�nite run of M, starting with an
empty word (more precisely,  ), is de�nitely non-circular: the words on the tape
are of the form an , and they are all di�erent.

However, for this Turing machine the sequent (∗) has a circular proof! The E
formula here is very simple: EM = (a · q ·  · $) /(q ·  · $). In order to construct
the desired circular derivation, we �rst show that (!pE)∗ can be exchanged to the
right with a (Figure 1(a)) and then prove (∗) itself, as shown on Figure 1(b). (The
regular expression on the right-hand side here is more restrictive, than the original
R. The sequent (∗) itself is obtained by cut with a∗ ·q · ·$→ (a∨ )∗ ·q ·(a∨ )+ ·$.)

Notice that, unlike the natural encoding in Theorem 7, the derivation on Figure 1
is quite sophisticated and essentially uses cut. Possibly, a version of !wpS ACTcirc

without cut (which is weaker than !wpS ACTcirc itself) would capture exactly circular
in�nite executions. However, systems with inadmissible cut are weird from the
logical point of view.

5. Undecidability with One Division

In this section we prove that !wpS ACTω is Π0
1-hard in the smaller fragment, with

only /, ·, ∗, and two subexponentials left in the language. We start with a well-
known fact from the theory of regular expressions (Kleene algebra).

Lemma 2. For any formula of the form (B1 ∨ . . .∨Bn)∗ there exists an equivalent
(in !wpS ACTω) formula which uses only · and ∗.

Proof. Induction on n. If n = 1, then we have just B∗1 , which is already in the
desired language. Now let B1 ∨ . . . ∨ Bn−1 = C and Bn = D. Recall that (C ∨
D)∗ = (C∗ · D)∗ · C∗ is generally true in Kleene algebra, and therefore derivable
in !wpS ACTω. By induction hypothesis, C∗ = (B1 ∨ . . . ∨ Bn−1)∗ is equivalent to
a formula C ′ in the language of · and ∗. Then (B1 ∨ . . . ∨ Bn)∗ = (C ∨ D)∗ is
equivalent to (C ′ ·D)∗ · C ′. �

Now let M be a deterministic Turing machine. Recall that in Section 3 we
encoded transition rules ofM as formulae A1, . . . , AM and combined these formulae
using ∧: !pEM = !p(A1 ∧ . . .∧AM ). Formulae Ai are built using only · and /. The
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Figure 1. Derivations for Example 3

∧ connective here, according to the ∧L rule, implements the choice of one transition
rule out of M possible at each computation step.

It happens that the same can be implemented using · and !w, where w ∈ W
(that is, allows weakening). Namely, let t be a new variable and de�ne ẼM =
!w(!pA1 / t) · . . . · !w(!pAM / t) · t. Here t is the �tick counter.� The use of t guarantees
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that exactly one of !pAi / t gets introduced by !L, and otherM−1 ones get weakened.
(Otherwise one could just weaken all these formulae immediately after decomposing
∗, and M would not be forced to perform N steps, as desired.) An analog of
Lemma 1 is now as follows:

Lemma 3. Let N be a natural number. The sequent

ẼNM, q0, ai1 , . . . , aik , $→ (a1 ∨ . . . ∨ an ∨ q0 ∨ q1 ∨ . . . ∨ qm ∨ $)∗

is derivable in !wpS ACTω if and only if M can perform N computation steps, starting
from state q0 with input word ai1 . . . aik .

Notice that here we have relaxed the regular expression on the right: now we
accept any word in the language of Σ ∪Q ∪ {$}.

Proof. The �if� part is easy: we again directly encode each rule application, but
now instead of using ∧L we apply !Weak for all formulae in ẼM, except for the
necessary !w(!pAi / t). For this formula, we apply !L removing !w, then apply /L
which �cancels� the t instances, and then use permutation to deliver the formula to
the necessary place.

For the �only if� part, we disbalance the proof (as explained in the proof of
Lemma 1). (Disbalancing works with !Weak also.) Now we see that each application
of /L which decomposes !pAi / t has t→ t as its left premise. Moreover, the number
of t's should be balanced: this means that exactly N instances of !w(!pAi / t) are
introduced by !L, while others get weakened. Now we are exactly in the setting of
Lemma 1: we have N instances of !pAi (with di�erent i's), each of which, in the
disbalanced proof, implements one step of M. �

Corollary 4. Let M be a deterministic Turing machine. The sequent

Ẽ∗M, q0, ai1 , . . . , aik , $→ (a1 ∨ . . . ∨ an ∨ q0 ∨ q1 ∨ . . . ∨ qm ∨ $)∗,

is derivable in !wpS ACTω if and only if M runs forever, starting from state q0 and
input word ai1 . . . aik .

Now, using Lemma 2, we replace (a1 ∨ . . . ∨ an ∨ q0 ∨ q1 ∨ . . . ∨ qm ∨ $)∗ with a
formula using · and ∗, and get the following theorem.

Theorem 8. The derivability problem for fragment of !wpS ACTω with only /, ·, ∗,
and two subexponentials, !w and !p, where w ∈ W, p ∈ P, p /∈ W, is Π0

1-complete.

6. Conclusion and Future Work

In this paper, we have considered an extension of multiplicative-additive Lam-
bek calculus (that is, multiplicative-additive non-commutative intuitionistic linear
logic) with the Kleene star (as in in�nitary action logic) and a family of subexponen-
tials, for which we can allow permutation and/or weakening, but not contraction.
Algorithmic complexity remains the same as of in�nitary action logic itself: the
system is Π0

1-complete. (If we allow contraction, complexity rises up to Π1
1.) The

system presented here can be used as a framework for modelling non-terminating
computations, dually to the usage of subexponential extensions of linear logic for
modelling terminating computations. This works perfectly well for deterministic
computations; for the non-deterministic case, some precautions are required. Fi-
nally, we prove a new Π0

1-hardness result, in a fragment with only one division,
product, Kleene star, and two subexponentials.
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The following questions are left open for future research. First, the complex-
ity of the minimalist fragment of ACTω with only / and ∗ is yet unknown. A
potentially easier question is to prove Π0

1-hardness of the corresponding fragment
of !wpS ACTω, with /, ∗, and also two subexponentials, !w and !p. We hope that
this can be done using the techniques of Section 5. The motivation for studying
one-division fragments comes from the fact that in the purely multiplicative lan-
guage such a fragment is polynomial-time decidable [30], while richer fragments
are NP-complete [26, 31]. Second, it would be interesting to build a focused proof
system for !wpS ACTω (like the one presented in [9], but with in�nite proofs). The
disbalancing technique used in the proof of Lemma 1 is actually an ad hoc attempt
of proof reorganization, which should be done in a more uniform manner.
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