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HKSS-COMPLETENESS OF MODAL ALGEBRAS

N. BAZHENOV

Abstract. The paper studies computability-theoretic properties of
countable modal algebras. We prove that the class of modal algebras
is complete in the sense of the work of Hirschfeldt, Khoussainov, Shore,
and Slinko. This answers an open question of Bazhenov [Stud. Log., 104
(2016), 1083–1097]. The result implies that every degree spectrum and
every categoricity spectrum can be realized by a suitable modal algebra.
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1. Introduction

The paper studies algorithmic properties of computable modal algebras. Recall
that a countable structure S is computable if the domain of S is a computable subset
of ω, and all signature predicates and functions of S are uniformly computable.
Equivalently, S is computable if its atomic diagram D(S) is a computable set.

In the paper, we work within the framework developed by Hirschfeldt, Khous-
sainov, Shore, and Slinko [1]. They introduced the notion of a class of structures
which is complete with respect to degree spectra of nontrivial structures, effective
dimensions, expansion by constants, and degree spectra of relations. For the sake
of brevity, here we follow [2] and call such classes HKSS-complete.

Informally speaking, the idea behind HKSS-completeness is as follows. If a
countable structure has a particular computability-theoretic property, then for any
HKSS-complete class K, there is a structure S ∈ K possessing the same prop-
erty. The formal definition of HKSS-completeness is provided in Section 2.1. We
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note that HKSS-completeness is closely related to the recently developed theory of
computable functors [3] (these functors act between classes of countable structures).

The paper [1] established that the following classes are HKSS-complete: undi-
rected graphs, partial orders, (non-modular) lattices, rings, integral domains (of
arbitrary characteristic), commutative semigroups, and 2-step nilpotent groups.
Further examples of HKSS-complete classes include: fields of arbitrary character-
istic [4], projective planes [5], structures with two equivalence relations [6, 7], and
contact algebras [8].

It is well-known that the class of Boolean algebras is not HKSS-complete. For
example, this follows from the result of Goncharov and Dzgoev [9]: they proved
that for a computable Boolean algebra B, the computable dimension of B is either
1 or ω.

Informally, one can say that the class of Boolean algebras is not universal in
the computability-theoretic sense. Hence, there is a natural question: how does ex-
panding the language of Boolean algebras affect computability-theoretic properties
of the class?

Following this line of research, Khoussainov and Kowalski [10] initiated system-
atic investigations of computable Boolean algebras with operators.

Definition 1 (see Definition 3.1 in [10]). Suppose that L = {fnk

k : k ∈ I} is a
functional language, and B is a Boolean algebra. A structure BL = (B, fk)k∈I is a
Boolean algebra with operators (BAO) if for any k ∈ I, i ≤ nk, and aj ∈ B, the
following hold:

(i) fk(a1, . . . , ai−1, 0
B, ai+1, . . . , ank

) = 0B, and
(ii) fk(a1, . . . , ai−1, b ∨ c, ai+1, . . . , ank

) = fk(a1, . . . , ai−1, b, ai+1, . . . , ank
)∨

fk(a1, . . . , ai−1, c, ai+1, . . . , ank
), for any b, c ∈ B.

Operations that satisfy (i) and (ii) are called operators. Unary operators are
called modalities. Modal algebra is a BAO for the language {f1}, and polymodal
algebra is a BAO for the language {f1

k : k ∈ I}, where the cardinality of I is at
least two.

Khoussainov and Kowalski [10, Theorem 7.3] proved that the class of BAOs for
the language {f2, g1} is HKSS-complete. Theorem 1 of [11] proved that the class of
polymodal algebras for the language {f1, f2, f3, f4} is HKSS-complete. Note that
in [11], HKSS-complete classes are called DS-complete.

The goal of this paper is to show that the class of modal algebras is rich from the
computability-theoretic point of view. We prove that the class of modal algebras is
HKSS-complete (Theorem 1). This result gives the positive answer to Question 1
from [11]. We note that our result implies that every degree spectrum of a countable
structure can be realized by a modal algebra (to be explained in Section 2.1).
Similarly, computable modal algebras realize all possible categoricity spectra [12].

The paper is arranged as follows. Section 2 provides the necessary preliminaries.
In Section 3, we prove Theorem 1. The last section contains further discussion.

2. Preliminaries

We consider only finite languages, and structures with domains contained in ω.
We identify first-order formulas with their Gödel numbers. For a structure S,
dom(S) denotes the domain of S, and D(S) is the atomic diagram of S. Let
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deg(S) denote the Turing degree of the set D(S). The reader is referred to [13, 14]
for the background on computable structures.

Let LBA be the language {∨,∧,C; 0, 1}. We treat Boolean algebras as LBA-stru-
ctures. For a non-zero n ∈ ω, consider the language

Ln = LBA ∪ {f1, f2, . . . , fn},

where fi are unary functions.
For n ≥ 2, let PMn be the class of polymodal algebras in the language Ln. By

PM1 we denote the class of modal algebras (in the language L1). For a polymodal
algebra S, BA(S) denotes the Boolean reduct of S.

If x0, x1, . . . , xn are natural numbers, then 〈x0, x1, . . . , xn〉 is the Gödel number
of the tuple (x0, x1, . . . , xn). In the proof of Theorem 1, we identify tuples and their
Gödel numbers.

For a function f , dom(f) denotes the domain of f and ran(f) denotes the range
of f . For a set X, degT (X) is the Turing degree of X. As usual, we assume that
{ϕX

e }e∈ω is the standard effective enumeration of all unary partial X-computable
functions. We will (sometimes) use ≤ω to denote the standard ordering of ω.

2.1. HKSS-Complete classes. For a structure S, a copy of S is a structure A
such that A is isomorphic to S, and the domain of A is a computable subset of ω.
The degree spectrum of a structure S is the set

DgSp(S) = {deg(A) : A is a copy of S}.

A structure S is trivial if there is a finite set X ⊆ dom(S) with the following
property: any permutation f of dom(S), which keeps all elements of X fixed, is an
automorphism of the structure S. Knight [15] proved that the degree spectrum of
a nontrivial structure is closed upwards.

Let d be a Turing degree. For a computable structure S, the d-computable
dimension of S, denoted by dimd(S), is the number of computable copies of S up
to d-computable isomorphisms.

Suppose that S is a computable structure, and R is a relation on the domain of
S. The degree spectrum of R on S is the set

DgSpS(R) = {degT (f(R)) : A is a computable copy of S,
and f is an isomorphism from S onto A}.

A relation R is invariant if f(R) = R for any automorphism f of S.
Let C ∈ {∆0

1,Σ
0
1}. A relation R is intrinsically C on S if for any computable copy

A of S and any isomorphism f : S ∼= A, the relation f(R) belongs to the class C.
The relation R is called relatively intrinsically C on S if for any copy A of S and
any f : S ∼= A, the relation f(R) is in C(D(A)).

Definition 2 ([1, Definition 1.21], see also [2, Definition 4.6]). A class of structures
K is HKSS-complete if for every nontrivial countable graph G, there is a nontrivial
structure AG ∈ K with the following properties.

(1) DgSp(AG) = DgSp(G).
(2) If G has a computable copy, then the following hold:

(a) for any Turing degree d, dimd(AG) = dimd(G);
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(b) for any element c ∈ dom(G), there is an element a ∈ dom(AG) with

dim0(AG, a) = dim0(G, c);

(c) if R ⊆ dom(G), then there exists a relation Q ⊆ dom(AG) such that

DgSpAG
(Q) = DgSpG(R);

in addition, if R is intrinsically Σ0
1, then so is Q.

3. The Main Result

Theorem 1. The class of modal algebras is HKSS-complete.

Recall that Theorem 1 of [11] proved that the class PM4 is HKSS-complete. We
also note that a Boolean algebra is nontrivial if and only if it is infinite. Therefore,
it is sufficient to establish the following:

Proposition 1. Suppose that n is a non-zero natural number and

S = (dom(S),∨,∧,C; 0, 1; f1, f2, . . . , fn, fn+1)

is a countably infinite structure from the class PMn+1. There exists a countably
infinite structure A(S) ∈ PMn such that DgSp(A(S)) = DgSp(S). In addition, if
the structure S is computable, then A(S) satisfies the following:

(1) For any degree d, we have dimd(A(S)) = dimd(S).
(2) For any c ∈ dom(S), there is an element a ∈ dom(A(S)) with

dim0(A(S), a) = dim0(S, c);
(3) For any R ⊆ dom(S), there is a relation Q ⊆ dom(A(S)) such that

DgSpA(S)(Q) = DgSpS(R).

Moreover, if R is intrinsically Σ0
1, then so is Q.

Proof of Proposition 1. Note that it is sufficient to consider the typical case n = 2.
In other words, here we show how to transform an algebra with three modalities
into an algebra with two modalities. The rest of the proof (i.e. for n 6= 2) is a
straightforward modification of the described construction.

The proof is based on the idea from [10, p. 495]: essentially, we check that
the simulation technique of Kracht and Wolter [16] preserves all desired computa-
bility-theoretic properties. Our verification follows the outline of the proof from
Proposition 2.14 of [1].

Suppose that B1 is the two-element Boolean algebra. For an algebra S ∈ PM3,
the corresponding structure A(S) = (dom(A(S)),∨,∧,C; 0, 1; g1, g2) is defined as
follows:

BA(A(S)) = BA(S)×BA(S)× B1;

g1(〈a, b, c〉) =

{
〈b ∨ f1(a), a ∨ f2(b), 0〉, if c = 0,
〈1, a ∨ f2(b), 0〉, if c = 1;

g2(〈a, b, c〉) = 〈f3(a), f3(b), 0〉;

where a, b ∈ S and c ∈ B1. It is easy to show that A(S) is a deg(S)-computable
polymodal algebra.

The definition of A(S) is a modification of the definition of the algebra Asim

from [16, p. 116]. Informally speaking, the key difference in two definitions is the
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following: while the modality from [16] is the necessity operator �, our modality is
the possibility operator ♦ = ¬�¬.

First, we list some simple properties of A(S) that will be used in the subsequent
lemmas:

(A) g1(〈1, 1, 1〉) = 〈1, 1, 0〉 and g1(〈0, 0, 1〉) = 〈1, 0, 0〉;
(B) g1(〈a, 0, 0〉) = 〈f1(a), a, 0〉 for any a ∈ S;
(C) g1(〈0, b, 0〉) = 〈b, f2(b), 0〉 for any b ∈ S;
(D) g1(〈0, b, 1〉) = 〈1, f2(b), 0〉 for any b ∈ S.

Lemma 1. The elements c1 = 〈1, 0, 0〉, c2 = 〈0, 1, 0〉, and c3 = 〈0, 0, 1〉 are definable
by quantifier-free L1-formulas in A(S).

Proof. We only need to show that c1 and c3 are definable. By (A), we have c3 =
C(g1(1)) and c1 = g1(c3). �

We define the following auxiliary (L2 ∪ {c1, c2, c3})-formulas:

Dom(x) = (x ≤ c1),

Mod1(x, y) = Dom(x) &Dom(y) & (g1(x) ∧ c1 = y),

Φ(x, y) = (y ≤ c2) & (g1(y) ∧ c1 = x),

Mod2(x, y) = Dom(x) &Dom(y) &∃z (Φ(x, z)&Φ(y, g1(z ∨ c3) ∧ C(c1))) ,

Mod3(x, y) = Dom(x) &Dom(y) & (g2(x) = y).

By Lemma 1, we may assume that Dom, Mod1, Φ, and Mod3 are quantifier-free
L2-formulas, and Mod2 is an existential L2-formula. The next lemma is a simple
consequence of the properties (A)–(D) above.

Lemma 2. (1) Dom[A(S)] = {〈a, 0, 0〉 : a ∈ S}.
(2) Φ[A(S)] = {(〈a, 0, 0〉, 〈0, a, 0〉) : a ∈ S}.
(3) For every i ∈ {1, 2, 3}, Modi[A(S)] = {(〈a, 0, 0〉, 〈fi(a), 0, 0〉) : a ∈ S}.
(4) The relation Mod2 is definable by the universal formula:

Mod2,∀(x, y) = Dom(x) &Dom(y) &∀z (Φ(x, z)→ Φ(y, g1(z ∨ c3) ∧ C(c1))) .

Since Mod2 is definable by both ∃- and ∀-formulas, we obtain the following:

Corollary 1. The relations Dom and Modi, i ∈ {1, 2, 3}, are relatively intrinsically
computable, invariant relations on A(S).

For x ∈ ω, let F (x) = 〈x, 0, 0〉. For a structure B with dom(B) ⊆ ω, define the
mapping

FB = F � dom(B).

Lemma 3. Suppose that S1 and S2 are computable copies of S, and h is an iso-
morphism from S1 onto S2. Then there is a unique isomorphism h̃ from A(S1)

onto A(S2) such that h̃ � Dom[A(S1)] = FS2 ◦ h ◦ F−1S1 . Moreover, the map h̃ is
degT (h)-computable.

Proof. For a, b ∈ S1 and c ∈ B1, set h̃(〈a, b, c〉) = 〈h(a), h(b), c〉. It is easy to show

that h̃ is a degT (h)-computable isomorphism from A(S1) onto A(S2). In addition,

we have h̃(〈a, 0, 0〉) = FS2 ◦ h ◦ F−1S1 (〈a, 0, 0〉) for all a ∈ S1.

Now assume that h̃′ is an isomorphism satisfying the conditions of the lemma,
and u = 〈a, b, c〉 is an element from A(S1). It is evident that h̃′(〈a, 0, 0〉) =
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〈h(a), 0, 0〉. Lemma 1 implies that h̃′(〈0, 0, c〉) = 〈0, 0, c〉. Let y = 〈0, b, 0〉. By
Lemma 2, x = 〈b, 0, 0〉 is the unique element such that A(S1) |= Φ(x, y). In

addition, h̃′(x) = 〈h(b), 0, 0〉; thus, y′ = 〈0, h(b), 0〉 is the unique element with

A(S2) |= Φ(h̃′(x), y′). Hence, h̃′(〈0, b, 0〉) = 〈0, h(b), 0〉 and h̃′(u) = h̃(u). �

Let B be a copy of A(S). The L3-structure S̃(B) is defined as follows. The

domain of S̃(B) is equal to Dom[B], the Boolean operations of S̃(B) are induced

by the operations of BA(B), and for i ∈ {1, 2, 3}, the graph of the function f
S̃(B)
i

is defined by Modi[B].

Lemma 4. (1) The structure S̃(B) is a deg(B)-computable copy of S.
(2) If A1 and A2 are computable copies of A(S) and G is an isomorphism from
A1 onto A2, then G � Dom[A1] is a degT (G)-computable isomorphism from

S̃(A1) onto S̃(A2).
(3) For a computable copy S1 of S, FS1 is a computable isomorphism from S1

onto S̃(A(S1)).
(4) Suppose that A1 is a computable copy of A(S). Then there is a computable

isomorphism H from A1 onto A(S̃(A1)) such that H � Dom[A1] = FS̃(A1)
.

Proof. The first three claims easily follow from Lemma 2, Corollary 1, and the
first-order definitions of the relations Dom and Modi, i = 1, 2, 3.

We now define the isomorphism H from the fourth claim. For an element u from
A1, we find the element v such that A1 |= Φ(v, u ∧ cA1

2 ) and we set

H(u) = 〈u ∧ cA1
1 , v, u ∧ cA1

3 〉.

It is not difficult to verify that the map H is a desired computable isomorphism. �

Now we are ready to prove that the transformation S 7→ A(S) preserves our
computability-theoretic properties. The omitted technical details can be easily
recovered from Propositions 2.10–2.13 in [1].

Lemma 5. DgSp(A(S)) = DgSp(S).

Proof. Recall that every infinite polymodal algebra is a nontrivial structure. Hence,
the degree spectra of S and A(S) are both closed upwards. The rest follows from
the deg(S)-computability of A(S) and Lemma 4.1. �

Lemma 6. For any Turing degree d, we have dimd(A(S)) = dimd(S).

Proof. Claims 2 and 3 from Lemma 4 imply the following: if S1 and S2 are com-
putable copies of S and there is no d-computable isomorphism from S1 onto S2, then
A(S1) and A(S2) are not d-computably isomorphic. Thus, dimd(A(S)) ≥ dimd(S).

Lemma 3 and Lemma 4.4 guarantee the following property: if A1
∼= A2

∼= A(S)

and A1 and A2 are not d-computably isomorphic, then S̃(A1) 6∼=d S̃(A2). Hence,
dimd(A(S)) ≤ dimd(S). �

Lemma 7. For any x ∈ S, there is an element u ∈ A(S) with dim0(A(S), u) =
dim0(S, x).

Proof. For an element x ∈ S, choose u = 〈x, 0, 0〉. The rest of the proof is similar
to Lemma 6. �
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Lemma 8. Suppose that R ⊆ dom(S). There exists a relation Q ⊆ dom(A(S))
such that DgSpA(S)(Q) = DgSpS(R). Moreover, if R is intrinsically Σ0

1, then so is
Q.

Proof. For R ⊆ dom(S), set Q = {〈x, 0, 0〉 : x ∈ R}. First, suppose that h is an iso-
morphism from S onto a computable structure S1. Define Q′ = {〈h(x), 0, 0〉 : x ∈
R}. Evidently, (A(S1), Q′) is isomorphic to (A(S), Q). Hence, DgSpS(R) ⊆
DgSpA(S)(Q).

Assume that h is an isomorphism from A(S) onto a computable structure A1.

Note that h(Q) ⊆ Dom[A1]. By Lemma 4.2, the structures (S̃(A(S)), Q) and

(S̃(A1), h(Q)) are isomorphic via h � Dom[S̃(A(S))]. In turn, the structures (S, R)

and (S̃(A(S)), Q) are isomorphic via fS . This implies that degT (h(Q)) lies in the
degree spectrum of R. In other words, we have DgSpS(R) ⊇ DgSpA(S)(Q). �

Lemmas 5–8 together establish Proposition 1. This concludes the proof of The-
orem 1. �

4. Further discussion

First, we give an interesting consequence of Theorem 1. The paper [17] proved
that the index set of computably categorical structures is Π1

1-complete — infor-
mally speaking, this means that there is no simple syntactic characterization of
computably categorical graphs. By employing this result, similarly to Section 4.1
of [11], one can obtain the following:

Corollary 2. The index set of computably categorical modal algebras is Π1
1-complete.

Second, the following question is left largely open:

Problem 1. Study the HKSS-completeness for familiar varieties V of modal alge-
bras.

For example, a modal algebra (B, f) is a closure algebra if it satisfies the following
two additional axioms:

a ≤ f(a) and f(f(a)) ≤ f(a).

Is the class of closure algebras HKSS-complete?
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