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INVERSE PROBLEM FOR THE STURM�LIOUVILLE EQUATION

WITH PIECEWISE ENTIRE POTENTIAL AND PIECEWISE

CONSTANT WEIGHT ON A CURVE

A.A. GOLUBKOV

Abstract. A Sturm�Liouville equation with a piecewise entire potential
and a non-zero piecewise constant weight function on a curve of an
arbitrary shape lying on the complex plane is considered. For such equa-
tion, the inverse spectral problem is posed with respect to the ratio of
elements of one column or one row of the transfer matrix along the curve.
The uniqueness of the solution to the problem is proved with the help
of the method of unit transfer matrix using the study of asymptotic
solutions of the Sturm�Liouville equation for large values of the absolute
value of the spectral parameter. The obtained results allowed to consider
inverse problem for a previously unexplored class of Sturm�Liouville
equations with three unknown coe�cients on a segment of the real axis.

Keywords: inverse spectral problem on a curve, the method of unit
transfer matrix, asymptotics of solutions.

1. Introduction. Problem statement and main results

Inverse spectral problems for the Sturm�Liouville equation of the standard form

(1) u′′(z) + (Q(z)− λ2)u(z) = 0

on a segment of the real axis are well-studied in di�erent statements [1, 2, 3]. But
until recently, for curves on a complex plane only the problem on Sturm�Liouville
monodromy-free equations (1) with a potential summable on a piecewise closed
curve that constitutes a boundary of some bounded convex domain has been studied
[4]. The solution of that problem considerably supplemented the results, obtained
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earlier, on potential classes having a power-low growth or disappearing at in�nity,
with a trivial monodromy on the entire plane [5, 6, 7]. However, the requirement
on convexity of a closed curve signi�cantly limits the area of possible application
of the results of work [4], which makes their usage impossible, in particular, for
solving the inverse problem for the Sturm�Liouville equation on a non-closed curve
with given starting and ending points.

The �rst step in direction of removing the restrictions on the form of the curve
(�rst of all, in the sense that it is a priori unknown) when considering Sturm�
Liouville operators of the standard form was performed in work [8] by narrowing
the class of the considered potentials to piecewise entire functions, that is, functions
that coincide on di�erent regions of the curve with di�erent entire functions of the
complex variable z. That narrowing allowed to state the inverse problem for Sturm�
Liouville equation of the standard form by column or row of a transfer matrix
along non-given continuous recti�able curve of an arbitrary form (including self-
intersecting one) and to formulate the conditions on uniqueness of its solution.
Moreover, apart from traditional study of the asymptotics of solutions to the
Sturm�Liouville equation, for large values of the absolute value of the spectral
parameter, for the �rst time the method of the unit matrix was used. The method
focuses on �nding necessary and su�cient conditions for the equation of the class
under research on some unknown curve to have a unit transfer matrix for any
values of the spectral parameter. When that is done, obtaining the conditions on
the uniqueness of solution of the inverse problem by the transfer matrix becomes
relatively simple. In works [8, 9], it was additionally proved that the transfer matrix
of Sturm�Liouville equation, continuously di�erentiable along a recti�able curve
with a piecewise entire potential, is identically equal to the unit matrix if and only
if at least one of its elements is bounded on the entire complex plane of the spectral
parameter. From here, it is easy to obtain that the transfer matrix is uniquely
de�ned by the relation of the elements of its single column or single row, given on
the set of values of the spectral parameter that has at least one �nite limit point,
and therefore, to specify the conditions on uniqueness of solution of the inverse
problem by this relation. In work [10], the inverse problem by the whole transfer
matrix for the Sturm�Liouville equation (1) with a piecewise entire potential and
conditions of solution break, that do not depend on the spectral parameter, on a
continuous recti�able curve γ with a given starting point was stated and solved.
Moreover, the curve γ, the potential Q, the position of the break points on the
curve and the transfer matrix into them was a priori considered unknown.

In this paper, the results obtained in [8, 9] are generalized to the Sturm�Liouville
equations with a piecewise entire potential and nonzero peicewise constant weight,
which also allowed the study in Section 2 of the inverse problem on an interval of the
real axis for a class of Sturm�Liouville equations with three unknown coe�cients
that has not been studied before from this point of view. Such inverse problems
have a great practical value, since they emerge, for example, in spectroscopy of
one-dimentional non-homogenious media [11]. Section 3 of the paper is dedicated to
proving a number of auxiliary lemmas, and in Section 4, the main results formulated
in Theorems 1 and 2 are proved. Note that the piecewise entirety of the potential
Q is used in this paper only to have a possibility to deform the curves without
changing the transfer matrices. Hence, all results obtained in this article are also
true if each of the functions Qi (i = 0, N) in (3) is bounded on the region γi
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of the curve γ, that connects characteristic points zi and zi+1, and constitutes a
monodromy-free potential [5, 12] of Sturm�Liouville equation (2) in every �nite
region of the complex plane. Section 5 contains a re�ection on the possibility of
weakening of the requirement on piecewise entirety of the potential Q to a condition
of its piecewise analyticity, at the same time remaining in the framework of the
auxiliary results obtained in Section 3. It turns out that such weakening is possible
for polygonal chains possessing an additional a priory information (see de�nitions
16, 17). However, that does not mean that generalization of Theorem 2 for a
priori unknown curves in the case of piecewise analytical functions is completely
impossible. It merely means that it requires non-trivial additional research that
is out of the scope of our work. In the concluding sixth section, it is proved that
the statement of the inverse problem used in this article is mainly equivalent to
the classical inverse problem by two spectra, but in the case of a priori non-given
curves, it is more convenient and natural.

De�nition 1. We will call the function F piecewise constant (piecewise entire) on
the curve γ ⊂ C, de�ned parametrically by the function z = V (t), t ∈ [t0, tf ], if

there exists an integer M ≥ 0 and a set of numbers Ω = {τj}M+1
0 : t0 = τ0 < τ1 <

. . . < τM+1 = tf , such that

F (z) = Fi(z), if z = V (t), t ∈ (τi, τi+1), i = 0,M,

where all Fi are constant (entire) functions, moreover, if M ≥ 1, then for every
m ∈ {1, . . . ,M} functions Fm and Fm−1 are distinct.

De�nition 2. Let γ ⊂ C be a continuous recti�able curve, function R be nonzero
and piecewise constant on γ, function Q be piecewise entire on γ. Then we will
refer as an equation of class G to the following equation, considered on the curve
γ:

(2) u′′(z) + (Q(z)− λ2R(z))u(z) = 0.

In equation (2) and further, the prime will denote a derivative along some
continuous recti�able curve, given parametrically by the function z = V (t), that is,
it is supposed that f ′(z) = lim∆t→0[f(V (t+ ∆t))− f(V (t))]/[V (t+ ∆t)− V (t)]. If
the function f(z) is analytical in some domain of the complex plane, then in every
point of this domain it has derivatives along each of the recti�able curves passing
through that point, which coincide and equal a usual derivative df(z)/dz of the
function f(z) at this point.

Note that the results obtained in the article can be easily generalized to the
case when the functions R and Q coincide almost everywhere on the curve with
piecewise constant and piecewise entire functions, respectively.

The solutions of equation (2), obviously, depend on the parameter λ. However,
in our paper, this dependence will be explicitly mentioned only if it is necessary to
emphasize the presence of such dependence.

De�nition 3. Suppose that on the continuous recti�able curve γ ⊂ C, determined
parametrically by the function z = V (t) (t ∈ [t0, tf ]), a nonzero piecewise constant
function R and piecewise entire function Q are de�ned, that is, due to de�nition 1,
there exists an integer N ≥ 0 and a set of numbers T = {tj}N+1

0 : t0 < t1 < . . . <
tN+1 = tf , such that

(3) Q(z) = Qi(z), R(z) = Ri, if z = V (t), t ∈ (ti, ti+1) (i = 0, N).
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In (3), all Qi are entire functions and all Ri are nonzero complex constants. Moreover,
if N ≥ 1, then for every number n ∈ {1, . . . , N} ordered pairs {Qn, Rn} and
{Qn−1, Rn−1} are distinct.

Then we say that the points zi := V (ti) (i = 0, N), zN+1 ≡ zf := V (tf ) are

characteristic, and the ordered set W := {N, {zj}N+1
0 , {Qi, Ri}N0 } is the set of

characteristic data of the curve γ and the corresponding equation (2) of class G on
γ.

Proposition 1. The curve γ may have regions (points), that are passed through
more than one time, that is, they correspond to two or more intervals of values
(values) of the parameter t. We will make a distinction between such regions (points)
by the order of priority of the passing through, and we will consider the curves that
geometrically coincide, having a di�erent order of passing through the regions, as
distinct ones.

De�nition 4. Let u1(z), u2(z) be a continuously di�erentiable solutions of equation
(2) of class G along the recti�able curve γ and

(4) u1(zb) = 1, u′1(zb) = 0, u2(zb) = 0, u′2(zb) = 1 (zb ∈ γ).

We will refer as a transfer and reduced matrices of equation (2) between the points
zb and z of the curve γ respectively to the matrices

P̂ (γ, z, zb) =

(
u1(z) u2(z)
u′1(z) u′2(z)

)
, Ŝ(γ, z, zb) =

(
u2(z)/u1(z) u2(z)/u′2(z)
u′1(z)/u1(z) u′1(z)/u′2(z)

)
.

Lemma 1. The elements of the transfer matrix P̂ (γ, zf , z0) of equation (2) of class
G are entire functions of the parameter ρ (ρ := λ2), which are uniquely determined

by assignment of the set of characteristic data W of the curve γ; detP̂ ≡ 1 and for
every zc, z ∈ γ

(5) P̂ (γ, z, z0) = P̂ (γ, z, zc)P̂ (γ, zc, z0),

(6) P̂ (γ, z0, z) = P̂−1(γ, z, z0) =

(
u′2(z) −u2(z)
−u′1(z) u1(z)

)
.

Proof. Let u
(i)
α (z) (α ∈ {1, 2}, i ∈ {0, . . . , N}) be the entire solutions of the auxiliary

Sturm�Liouville equation

(7)
d2u(i)

dz2
+ (Qi − λ2Ri)u

(i) = 0, z ∈ C,

with the initial conditions of the form (4) at the point zi. We will determine the

entire functions ũ
(i)
α (z) by the following recurrent relations

ũ(0)
α (z) := u(0)

α (z),

ũ(n)
α (z) := ũ(n−1)

α (zn)u
(n)
1 (z) +

dũ
(n−1)
α (z)

dz
|
z=zn

u
(n)
2 (z),

where n ∈ {1, . . . , N} given N ≥ 1. Then, if γi is a region of an arbitrary continuous
recti�able curve γ, connecting the points zi and zi+1, then due to (3), the functions

uα(z), such that for every i ∈ {0, . . . , N} with z ∈ γi the equality uα(z) := ũ
(i)
α (z) is

true, are the continuously di�erentiable solutions of equation (2) of class G along γ,
satisfying conditions (4) at the point z0. Hence, Lemma 1 follows from the similar
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properties of solutions of linear di�erential equations with holomorphic coe�cients
(see, for example, ��2, 24 of work [13]). �

De�nition 5. We call a loop of the curve γ with a knot at the point z(d) a region
of the curve γ that starts and ends at the point of its self-intersection z(d). We will
refer to all the points of the loop apart from its knot as the inner ones.

De�nition 6. Suppose that on the curve γ, a piecewise constant function R and a
piecewise entire function Q are given. We call the loop of the curve γ an ½invisible
loop�, if its knot coincides with two sequential characteristic points of γ.

Lemma 2. Adding to or removing from the curve its ½invisible loop� does not
change the transfer and reduced matrices of the corresponding equation (2) of class
G along that curve, and also its starting and ending points.

Proof. The lemma follows from De�nitions 4, 6, Formula (5), and the fact that the
transfer matrix of equation (2) with entire coe�cients along every loop equals the
unit matrix [13, 14]. �

De�nition 7. We will call a curve with a piecewise constant and a piecewise entire
functions given on it ordinary, if there are no ½invisible loops� on the curve.

Lemma 3. The curve γ is ordinary if and only if all its characteristic points satisfy
the following conditions:

(8) ∆zi := zi+1 − zi 6= 0 (i = 0, N).

Proof. The lemma directly follows from De�nitions 5 � 7, since due to De�nition
6, the ful�llment of all conditions (8) is equivalent to the absence of the ½invisible
loops�. �

De�nition 8. Suppose that after successive removal of all ½invisible loops�, the
curve γ turns into an ordinary curve γmin with a set of characteristic data Wmin :=
{N, {zj}N+1

0 , {Qi, Ri}N0 }. We callWmin the set of basic data, and the points {zj}N+1
0

basic points of the curve γ and the corresponding equation (2) of class G on γ. If
after successive removal of all ½invisible loops� γ degenerates into a point, then we
will assume that the curve γ does not have basic points and its set of basic data is
empty.

After removing all the ½invisible loops� from the initial curve γ and renumbering
the characteristic points of the new curve, it can show up its own ½invisible loops�.
For example, the curve γ with a set of characteristic data {2, {z0, z1, z2 = z1, z3 =
z0}, {Q0, R0;Q1, R1;Q2 = Q0, R2 = R0}} has one ½invisible loop� with a knot at
the point z1. On the curve that results from its removal, the point z1 will not be a
characteristic one, and this curve also will have one ½invisible loop� with a knot at
the point z0. Hence, in De�nition 8 and further, we mention successive removal of
all ½invisible loops�. Note also that for an ordinary curve, the sets of characteristic
and basic data coincide.

After successively removing all the ½invisible loops�, the original curve either
transforms into an ordinary curve or degenerates into a point. Due to Lemma 2, in
the latter case we have P̂ ≡ Î and Ŝ ≡ 0̂, where Î and 0̂ are unit and zero matrices,
respectively.

The main results of this article are formulated in two following theorems, proved
in Section 4.
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Theorem 1. A transfer matrix P̂ of equation (2) of class G along some (non-
given) curve γ equals the unit matrix with all ρ ∈ C if and only if after successive
removal of all the ½invisible loops� γ degenerates into a point. In all the remaining

cases, all elements of P̂ are entire functions ρ of order 1/2 and of normal type.

Theorem 2. Suppose that two equations of class G have sets of characteristic data
W (1) and W (2) respectively on two ordinary curves γ(1) and γ(2) with a common

starting point, and also reduced matrices Ŝ(1) and Ŝ(2) along these curves. Then,

if there exist numbers α, β ∈ {1, 2} such that the functions S
(1)
αβ (ρ) and S

(2)
αβ (ρ)

meromorphic in C coincide, then W (1) = W (2).

Due to Lemma 1, detP̂ ≡ 1, and therefore, the elements of the matrix P̂ , located
in the same row or column do not simultaneously turn into zero, that is they do
not possess common zeros as function ρ, hence, by De�nition 4 and Theorem 1, the
following proposition is true.

Proposition 2. All elements Sαβ (α, β ∈ {1, 2}) of the reduced matrix of the
equation (2) of class G are either meromorphic functions ρ or identically equal
zero. Therefore, by uniqueness theorem (see, for example, part 20 in book [15]), in
Theorem 2 and in all following statements it su�ces to require that the elements
of the reduced matrices on the set of points of a complex ρ-plane that has at least
one �nite limit point ρs are given (coincide). Moreover, if ρs coincides with the pole
of order n of the meromorphic function Sαβ, then the uniqueness theorem can be
applied to the function (ρ− ρs)nSαβ.

Corollary 1. If at least one pair of corresponding elements of the reduced matrices
of two equations of class G along two curves, for which only one common starting
point is given, coincides on the complex ρ�plane, then these curves have similar sets
of basic data.

Proof. If after successive removal of all the ½invisible loops� at least one of the
curves degenerates into a point, then by Theorem 1 under the conditions of the
corollary, the second curve also degenerates into a point, that is, by De�nition
8, the sets of basic data of both curves are empty. Suppose that after successive
removal of all the ½invisible loops� the initial curves transform into ordinary curves

γ
(1)
min and γ

(2)
min, possessing di�erent sets of characteristic data. Then due to Lemma

2 under the conditions of the corollary, this contradicts Theorem 2. Therefore, the

sets of characteristic data of ordinary curves γ
(1)
min and γ

(2)
min coincide, and hence,

by De�nition 8, the original curves have similar sets of basic data. �

De�nition 9. We will refer to piecewise entire (piecewise constant) functions on the
curve γ as equivalent ones, if they coincide everywhere on γ, apart from, possibly,
its characteristic points.

Corollary 2. Let Ŝ(1) and Ŝ(2) be reduced matrices of two equations of class G
along given curve γ, and there exist numbers α, β ∈ {1, 2} such that the functions

S
(1)
αβ (ρ) and S

(2)
αβ (ρ) are known and coincide in C. Then the ordered sets of basic

points of these equations coincide and are uniquely de�ned, and their corresponding
coe�cients are equivalent everywhere on the curve γ, excluding, possibly, its loops
that are uniquely de�ned, among whose inner points there are no basic points of
these equations.
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Proof. By Corollary 1, the sets of basic points of the two mentioned equations
coincide and are uniquely de�ned. It is well known that the transfer matrix of
equation (2) with entire coe�cients along every loop equals the unit matrix [13, 14].
Due to that fact and property (5), substitution of the potential Q and (or) the value
of the weight function R on the loop of the curve γ, among whose inner points there
are no basic points, respectively by any entire function and (or) number does not
change the transfer matrix of the equation of class G along γ. Therefore, on such
loops, corresponding coe�cients of the two equations mentioned in the corollary
can di�er (or can coincide). If after removal of all loops, among whose inner points
there are no basic points, the curve γ degenerates into a point, then the corollary is
proved; if its transforms into some curve γmin, then this curve is an ordinary one,
because by construction it does not have any ½invisible loops�. Non-equivalency of
the corresponding coe�cients of two equations mentioned in the corollary on the
ordinary curve γmin by De�nitions 3, 9 would mean the sets of characteristic data
of these equations on γmin to be distinct, which is impossible under the conditions
of the corollary due to Lemma 2 and Theorem 2. �

Corollary 3. If at least one pair of corresponding elements of the reduced matrices

Ŝ(γ, zf , z0) and Ŝ(1)(γ(1), z
(1)
f , z

(1)
0 ) of two equations of class G coincide on a complex

ρ�plane, then the transfer matrices P̂ (γ, zf , z0) and P̂ (1)(γ(1), z
(1)
f , z

(1)
0 ) of these

equations also coincide.

Proof. Suppose that P̂ and Ŝ are respectively the transform and reduced matrices
of equation (2) of class G along the curve γ. Performing in (2) a substitution of the

variable x = z + τ (τ := z
(1)
0 − z0), after inverse redesignation of x on z we obtain

that P̂ and Ŝ are respectively the transform and reduced matrices of the equation of
class G with a potential Q(2)(z) = Q(z−τ) and weight function R(2)(z) = R(z−τ)

along the curve γ(2) starting at the point z
(1)
0 , which is obtained from the curve γ

by a parallel transfer. Since the matrices Ŝ and Ŝ(1) possess a common element, by
Corollary 1, the sets of basic data of the curves γ(2) and γ(1) coincide, and therefore,
P̂ ≡ P̂ (1) due to Lemmas 1, 2 and De�nition 8. �

2. Inverse problem for one class of Sturm�Liouville equations on

the interval of the real axis

Theorems 1, 2 and Corollaries 1 � 3 are helpful in studying di�erent kinds of
inverse problems for equations or systems of equations, reducible into equation (2)
of class G. Consider, for example, the system of two equations of �rst order on the
interval of the real axis:

(9)


dy

dx
= g(x)w(x),

dg

dx
= −w(x)

(
q(x)− r(x)λ2

)
y(x)

(x ∈ [x0, xf ])

and the Sturm�Liouville equation of a general form equivalent to it given w(x) 6= 0:

(10)
d

dx

(
1

w(x)

dy

dx

)
+ w(x)

(
q(x)− r(x)λ2

)
y(x) = 0.

Note that if w(x) equals zero almost everywhere on the interval [xs, xs + l] ⊆
[x0, xf ], then system (9) has a constant solution on it, and it can be excluded from
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consideration by simultaneous substitution of the variable x by the variable

x̃ =

{
x, if x ∈ [x0, xs];

x− l, if x ∈ (xs + l, xf ]

and of the coe�cients w(x), r(x), q(x) by the coe�cients w̃(x̃), r̃(x̃), q̃(x̃) using
the following rule:

f̃(x̃) =

{
f(x̃), if x̃ ∈ [x0, xs];

f(x̃+ l), if x̃ ∈ (xs, xf − l].

This procedure can be obviously generalized to the case when w(x) equals zero
almost everywhere on any number of parts of the interval [x0, xf ], and we will
assume that it has already been done.

De�nition 10. Suppose that the function w(x) is measurable, bounded, and almost
everywhere nonzero on the interval [x0, xf ], and that the functions r(x) and q(x)
can be represented in the form

(11) r(x) := R(V (x)), q(x) := Q(V (x)) (x ∈ [x0, xf ]).

Here, the function R is nonzero and piecewise constant on the curve γ, de�ned
parametrically by the relation

(12) z = V (x), where V (x) :=

x∫
x0

w(v)dv (x ∈ [x0, xf ]),

and the function Q is piecewise entire on γ. Then we will refer to the system of
equations (9) as a system of class A on the interval [x0, xf ], equivalent to equation
(2) of class G on the curve γ.

System of equations (9) is a system of class A on [x0, xf ], if, for example, on this
interval the functions w, r are piecewise constant and nonzero, and the function q
is piecewise entire. It is worth noting that every system of class A on some given
interval is equivalent to one equation of class G on the uniquely de�ned curve γ.
However, the reverse case in incorrect, since parametric representation of a curve
is not unique. That is, when studying one equation of class G on a given curve, we
study the family of systems of equations of class A. That means that the described
approach is technically inherently more convenient compared to direct investigation
of systems of equations of class A on the interval of the real axis.

De�nition 11. Let (yα, gα) (α ∈ {1, 2}) be the continuous solutions of systems of
equations (9) of class A on the interval [x0, xf ], and

y1(x0) = 1, g1(x0) = 0, y2(x0) = 0, g2(x0) = 1.

We will call the transfer and reduced matrices of this system between the points x0

and x of the interval [x0, xf ] respectively the matrices

P̂r(x, x0) =

(
y1(x) y2(x)
g1(x) g2(x)

)
and Ŝr(x, x0) =

(
y2(x)/y1(x) y2(x)/g2(x)
g1(x)/y1(x) g1(x)/g2(x)

)
.

Lemma 4. Transfer matrices of system of equations (9) on the interval [x0, xf ]
and equation (2) of class G equivalent to it (in the sense of De�nition 10) coincide
for all λ ∈ C.
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Proof. Suppose that (y, g) is a continuous solution of system of equations (9) of
class A on the interval [x0, xf ] with the initial conditions (y0, g0) at the point x0,
the curve γ is de�ned by relation (12), and u(z) is a solution of equation (2) of class
G, equivalent to the system of equations (9), continuously di�erentiable along γ,
with the initial conditions u(0) = y0, u

′(0) = g0. Since the function w is measurable
and bounded, it is summable on the interval [x0, xf ], and hence, the function V (x)
de�ned in (12) is absolutely continuous, therefore, the curve γ is continuous and
recti�able, moreover, dV/dx = w(x) almost everywhere on [x0, xf ] [16]. Since u(z)
is a solution of equation (2) of class G, continuously di�erentiable along γ, then
the function v(z) := u′(z) is continuous on γ, and therefore, the functions ỹ(x) :=
u(z) and g̃(x) := u′(z), where z = V (x), are continuous on the interval [x0, xf ],
and almost everywhere on this interval we have dỹ/dx = u′(z)w(x) = w(x)g̃(x),
dg̃/dx = u′′(z)w(x) = −w(x)

(
Q(V (x))−R(V (x))λ2

)
ỹ(x). The latter fact due to

(11) means that (ỹ, g̃) is a continuous solution of system of equations (9) of class A
with the initial conditions (y0, g0) at the point x0. But it is well known [14] that this
system, under the given initial conditions, has a unique continuous solution, and
hence, ỹ ≡ y and g̃ ≡ g on the interval [x0, xf ], that is, u(z) = y(x), u′(z) = g(x)
for every z = V (x) (x ∈ [x0, xf ]), which, taking into account De�nitions 4 and 11,
proves the lemma. �

De�nition 12. Let W be the set of basic data of equation (2) of class G, equivalent
(in the sense of De�nition 10) to system of equations (9) of class A. Then we will
refer to W as the set of basic data of this system of equations (9) on the interval
[x0, xf ], and to the basic points γ as the basic points of system (9), and to the points
of the interval [x0, xf ], mapped (12) into basic points, as the preimages of the basic
points.

De�nition 13. We will call a system of equations of class A on the interval
[0, 1] a system of class B in two following cases: 1) its set of basic data is not
empty, the function w is piecewise constant with a constant absolute value, and the
polygonal chain (possibly degenerated into an interval) de�ned by (12) coincides with
a polygonal chain that results from successively connecting of the basic points of the
system of equations; 2) w(x) = 1 given x ∈ [0, 1/2], w(x) = −1 given x ∈ (1/2, 1],
q(x) ≡ 0 and r(x) ≡ 1. In the latter case, we will refer to such system as a unit
system of class B.

Lemma 5. A system of equations of class B has an empty set of basic data if and
only if it is a unit one.

Proof. By De�nition 13, a set of basic data of any system of equations of class B,
possibly excluding the unit one, is not empty. On the other hand, a unit system
of equations of class B is equivalent (in the sense of De�nition 10) to equation (2)
of class G with Q ≡ 0, R ≡ 1 on the curve γ, generated by successive passing of
the intervals [0, 1/2] and [1/2, 0]. Obviously, γ consists of one ½invisible loop�, which
proves the lemma. �

De�nition 14. Two systems of equations of class B are called coinciding on an
interval, if their corresponding coe�cients coincide everywhere on this interval,
possibly apart from the preimages of the basic points.

Lemma 6. For every ordered set of data of the formW := {N, {zj}N+1
0 , {Qi, Ri}N0 },

where N ≥ 0 is an integer, z0 = 0, the points {zj}N+1
0 satisfy conditions (8), all
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Qi are entire functions, all Ri 6= 0 are complex constants, and, if N ≥ 1, then for
every n ∈ {1, . . . , N} the ordered pairs {Qn, Rn} and {Qn−1, Rn−1} are distinct,
there exists exactly one system of equations of class B with such set of basic data.

Proof. By De�nition 13, for every system of equations of class B, apart from unit
one, the function w is piecewise constant on the interval [0, 1], has a constant
absolute value, and the polygonal chain de�ned by (12) coincides with the polygonal
chain L resulting from successive connecting of the basic points of the system of
equations. From the latter condition, the fact that |w| is constant and (12), it follows

that |w| = p0, where p0 :=
∑N
i=0 |zi+1 − zi| is the length of the polygonal chain L.

We put

x0 = 0, wi := p0
zi+1 − zi
|zi+1 − zi|

, xi+1 := xi +
|zi+1 − zi|

p0
(i = 0, N),

(13)
w(x) = wi, q(x) = Qi(V (x)), r(x) = Ri, if x ∈ [xi, xi+1) (i = 0, N),

w(1) = wN , q(1) = QN (zN+1), r(1) = RN ,

where the function V (x) is de�ned in (12). It is easy to make sure that the set of
basic data of system of equations (9) with the coe�cients determined by relation
(13) coincides with the given in the statement of the lemma, the function w(x) is
piecewise constant, its absolute value is constant and equals p0, xN+1 = 1, and
the polygonal chain de�ned by (12) coincides with the polygonal chain L resulting

from successive connecting of the basic points {zj}N+1
0 . The existence is proved.

Assume that there exists a second system of equations of class B satisfying the
conditions of the lemma with the coe�cients q̃(x), r̃(x) and piecewise constant
function w̃(x), such that |w̃(x)| = p0. Considering successively all links of the
polygonal chain, successively connecting the basic points, we obtain that w̃(x) =

w(x) on the whole interval [0, 1], possibly apart from the points {xi}N+1
0 , which

are the preimages of the basic points. Therefore, due to relations (3), (11), (12) the

function Ṽ (x) ≡ V (x), and the functions q̃(x), r̃(x) coincide, respectively, with the

functions q(x), r(x) up to the values at the points {xi}N+1
0 , and hence, by De�nition

14 the lemma is proved. �

Lemma 7. De�ning on the set of points of a complex ρ�plane, that possesses at

least one �nite limit point, of any element of the reduced matrix Ŝr of system of
equations (9) of class A on some interval uniquely determines the transfer matrix

P̂r of that system on that interval.

Proof. Assume that there exist two systems of equations (9) of class A on some
two intervals, such that they have coinciding corresponding elements of reduced
matrices, but distinct transfer matrices. Then due to Lemma 4, equations (2) of
class G, equivalent to them (in the sense of De�nition 10) also have coinciding
corresponding elements of the reduced matrices, but distinct transfer matrices. But
this contradicts Corollary 3, which, taking into account Proposition 2, proves the
lemma. �

Proposition 3. Using Lemma 7, further for brevity we will be using the term
de�ning (coinciding) for the transfer matrices of system of equations (9), meaning
de�ning of one of the elements (coinciding of the corresponding elements) of the
reduced matrices on the set of points of the complex ρ�plane having at least one
�nite limit point.
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Theorem 3. Two systems of equations (9) of class A on some two intervals have
similar (in the sense of Proposition 3) transfer matrices if and only if their sets of
basic data coincide.

Proof. Let the sets of basic data of the two systems of equations of class A coincide.
Then due to Lemmas 1, 2, 4 and De�nitions 8, 12, their transfer matrices coincide.
The inverse is true due to Lemma 4, Corollary 1, and De�nition 12. �

Theorem 4. Let a system of equations of class A have on some interval a transfer

matrix P̂r. Then there exists a unique system of equations of class B with a similar
(in the sense of Proposition 3) transfer matrix.

Proof. Since every system of equations of class B is also a system of class A, then
by Theorem 3 the sets of basic data of all the systems of equations of class B with
a transfer matrix P̂r coincide. If the set of basic data is empty, that is, P̂r ≡ Î,
then existence and uniqueness of the system of equations of class B with a similar
transfer matrix follows from Lemma 5, or from Lemma 6 for the opposite case. �

Consider two systems of equations of class A. We will mark all the values
belonging to the �rst and the second systems by upper index of one or two,

respectively. For de�niteness, suppose that x
(2)
f ≥ x

(1)
f .

Theorem 5. Suppose that the transfer matrices of the two systems of equations of
class A on the intervals with a common starting point coincide and are known (in

the sense of Proposition 3); the function w(1) is de�ned on the interval [x0, x
(1)
f ], and

w(2) = w(1) almost everywhere on [x0, x
(1)
f ] (x

(2)
f ≥ x

(1)
f ). Then P̂

(2)
r (x

(2)
f , x

(1)
f ) ≡ Î,

and r(1) = r(2), q(1) = q(2) on the interval [x0, x
(1)
f ], possibly apart from the

preimages of the characteristic points and the regions of this interval that are
uniquely de�ned, each of which transfers while mapping (12) with w := w(1) into a

loop of the curve γ(1) which does not have any basic points among its inner points.

Proof. Consider two equations of class G, equivalent (in the sense of De�nition 10)
to the two systems of equations of class A described in the theorem. By Lemma 4
and the condition of the theorem, they have similar transfer matrices on the curves
γ(1) and γ(2), de�ned by relations (12) with the functions w(1) and w(2), respectively.
By Corollary 1, the sets of basic data of these curves coincide, and since w(2) = w(1)

almost everywhere on [x0, x
(1)
f ], then either γ(2) = γ(1) or the curve γ(2) results

from the curve γ(1) by adding to their common �nite point a region, degenerating
into a point if we successively remove the ½invisible� loops. In any of these cases,

P̂
(2)
r (x

(2)
f , x

(1)
f ) ≡ Î by Lemma 4, and therefore, the transfer matrices of the two

considered equations of class G on the curve γ(1) are equal. Hence, by Corollary 2,
the functions R(2), Q(2) are equivalent, respectively, to the functions R(1), Q(1) on
the given curve γ(1), possibly except from its uniquely de�ned loops, among whose
inner points there are no basic points. Since the function w(1) is de�ned on the

interval [x0, x
(1)
f ], then from (12) the preimages of these loops on [x0, x

(1)
f ] can also

be uniquely de�ned (taking into account Proposition 1). On the other hand, due to
relations (11) and De�nition 9, equivalence of the functions R(2), Q(2) respectively
to the functions R(1), Q(1) on some region of the curve γ(1) yields that r(1) = r(2),
q(1) = q(2) on the preimage of this region, possibly except from the preimages of
the characteristic points. Moreover, since w(1) is almost everywhere nonzero on the
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interval [x0, x
(1)
f ], then the preimage of every point of the curve γ(1) is a point on

the interval [x0, x
(1)
f ]. �

Note that the class of equations (10), which is equivalent for w(x) 6= 0 to system
of equations (9) of class A, considerably di�ers from the class of Sturm�Liouville
equations of the general form with piecewise analytical coe�cients, considered in
paper [17]. In particular, in this work, bounded and measurable functions w are
considered, but at the same time the weight function and the function w are
interrelated strongly enough, and in paper [17], the case when they are piecewise
analytical, but meanwhile completely independent, is studied. However, if we consider
such systems of equations of class A for which both Theorem 5 and the results of
work [17] are applicable, then the conditions following from Theorem 5, that are
su�cient for providing uniqueness of solution of the inverse problem by a known
(in the sense of Proposition 3) transfer matrix and a known function w(x) will be
noticeably weaker. In accordance with the results of work [17], for that, it su�ces
that all the values of the functions w(x) and w(x)r(x) belong to partially open
halves of the complex plane with boundaries passing through zero (see condition A
from work [17] and propositions to it), and additionally to w(x) one of the functions
r(x) or q(x) is de�ned. By Theorem 5, for that, it su�ces that the curve de�ned by
(12) does not have self-intersections. Another important advantage of Theorem 5 is
that it is applicable also to the case when the conditions of uniqueness of solution
of the inverse problem are not ful�lled.

3. Asymptotics of the transfer matrix of the Sturm�Liouville

equation with a piecewise entire potential and nonzero piecewise

constant weight on the curve

Lemma 8. For every i ∈ {0, . . . , N}, K ∈ N and every set of numbers {µi,k}K1 ,

there exist numbers λi,K > 0, C
(0)
i,K > 0 and two continuously di�erentiable solutions

F
(i)
±K(z, λ) of corresponding equation (7), which for all λ 6= 0 and z ∈ C can be

represented in the form:

(14)

F
(i)
±K = C

(i)
±K(z, λ) exp{±λθi(z − zi)},

dF
(i)
±K
dz

= ±λθiE(i)
±K(z, λ) exp{±λθi(z − zi)},

where

(15) θi = (Ri)
1/2 6= 0, arg(θi) ∈ (−π

2
;
π

2
],

(16) C
(i)
±K(z, λ) := 1 +

K∑
k=1

(±1)k
Ci,k(z)

(λθi)k
+ (±1)K+1

B
(i)
±K(z, λ)

(λθi)
K+1

,

(17)

E
(i)
±K(z, λ) := 1 +

K∑
k=1

(
± 1

λθi

)k (
Ci,k(z) +

dCi,k−1(z)

dz

)
+

+(±1)K+1
H

(i)
±K(z, λ)

(λθi)
K+1

.
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Here all Ci,k(z) are entire functions z, Ci,0(z) := 1, Ci,j(zi) = µi,j (j = 1,K),

(18)
dCi,k
dz

:= −1

2

(
d2Ci,k−1

dz2
+Qi(z)Ci,k−1(z)

)
(k = 1,K + 1),

(19) H
(i)
±K(z, λ) :=

dCi,K(z)

dz
+B

(i)
±K(z, λ)± 1

λθi

dB
(i)
±K(z, λ)

dz
,

and B
(i)
±K(z, λ) for every �xed λ are analytical by z solutions of the following Cauchy

problems:

(20)

d2B
(i)
±K

dz2
± 2λθi

dB
(i)
±K
dz

+QiB
(i)
±K = ±2λθi

dCi,K+1(z)

dz
, z ∈ C,

B
(i)
±K(a±i, λ) =

dB
(i)
±K(z, λ)

dz

∣∣∣∣∣
z=a±i

= 0,

where

(21)
a+i = zi, a−i = zi+1, if Re{λθi (zi+1 − zi)} ≥ 0;
a+i = zi+1, a−i = zi, if Re{λθi (zi+1 − zi)} < 0.

Moreover, if |λ| ≥ λi,K , then �rst, on the segment Li, connecting the points zi and
zi+1, the following inequalities hold:

(22) |B(i)
±K(z, λ)| ≤ C(0)

i,K , |H(i)
±K(z, λ)| ≤ C(0)

i,K (z ∈ Li),

and second, F
(i)
±K(z, λ) are the linearly independent solutions of equation (7) for all

z ∈ C.

Proof. Formulae (14), (16) � (20) can be checked by substitution into (7). Since the
last statement of the lemma follows from the fact that Wronskian is constant for
every two solutions of equation (7) and its estimate for the solutions of (14) for a
given large |λ| at the point z = zi with the help of formulae (16), (17), (22), then
the estimates of (22) are key in this lemma. To prove them, we will use the fact
that the solutions of Cauchy problems (20) on the segment Li are at the same time
the solutions of the following integral equations on this segment (z ∈ Li, t ∈ Li):
(23)

B
(i)
±K(z, λ) =

z∫
a±i

(exp {∓2λθi(z − t)} − 1)

(
±Qi(t)

2λθi
B

(i)
±K(t, λ)− dCi,K+1(t)

dt

)
dt,

where the values of the parameter a±i are de�ned in (21). It is well known that the
solution of each of equations (23) exists and is unique given any value of λ and can
be found by the method of successive approximations. Taking into account (21), it
follows from (23) that given any λ the following inequalities hold:

(24) Bmax±i,K(λ) ≤ Qi0
|λθi|

Bmax±i,K(λ) + 2Cinti,K+1,

where
Bmax±i,K(λ) := max{|B(i)

±K(z, λ)|, z ∈ Li},

Qi0 :=

∫
Li

|Qi(t)||dt|, Cinti,K+1 :=

∫
Li

∣∣∣∣dCi,K+1(t)

dt

∣∣∣∣ |dt|.
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We put λi,K := 2Qi0/|θi|. Then due to (24) given |λ| ≥ λi,K , we have:

(25) Bmax±i,K(λ) ≤ 4Cinti,K+1.

Further, from (23) we obtain that (z ∈ Li, t ∈ Li)
(26)

dB
(i)
±K(z, λ)

dz
= ∓2λθi

z∫
a±i

exp {∓2λθi(z − t)}
(
±Qi(t)

2λθi
B

(i)
±K(t, λ)− dCi,K+1(t)

dt

)
dt.

From relations (21), (25) and (26) for |λ| ≥ λi,K , the following estimates follow:

(27)

∣∣∣∣∣dB
(i)
±K(z, λ)

dz

∣∣∣∣∣ ≤ 4Cinti,K+1Qi0 + 2|λθi|Cinti,K+1 ≤ 4|λθi|Cinti,K+1.

Putting C
(0)
i,K := max

{∣∣∣∣dCi,K(z)

dz

∣∣∣∣ , z ∈ Li}+ 8Cinti,K+1, we obtain that given |λ| ≥

λi,K , inequalities (22) follow from relations (19), (25), and (27). �

We will denote by the symbols O(1) and Ô(1) the functions and matrices of the
parameter λ, respectively, whose particular form is not important for us, bounded
for |λ| > λcr, where λcr is the �nite value (di�erent for distinct functions and
matrices).

Lemma 9. There exists an integer K0 ≥ 2, such that for any integer K ≥
K0 there exists such �nite λK > 0, that given |λ| ≥ λK , the transfer matrix

P̂ (γ, zf , z0) of equation (2) of class G with a set of characteristic data W =

{N, {zj}N+1
0 , {Qi, Ri}N0 } can be written in the form

(28) P̂ (γ, zf , z0) = Ĉ(f)T̂ (N)T̂ (N−1) . . . T̂ (2)T̂ (1)T̂ (0)Â(0),

where T̂ (0) = Î (unit matrix),

(29) Â(0) = − 1

D
(0)
K

(
λθ0E

(0)
−K(z0) C

(0)
−K(z0)

λθ0E
(0)
+K(z0) −C(0)

+K(z0)

)
,

(30) Ĉ(f) =

(
C

(N)
+K (zN+1) exp(λεN ) C

(N)
−K (zN+1) exp(−λεN )

λθNE
(N)
+K (zN+1) exp(λεN ) −λθNE(N)

−K (zN+1) exp(−λεN )

)
,

(31) T̂ (n) =

(
t
(n)
1 exp(λεn−1) t

(n)
− exp(−λεn−1)

t
(n)
+ exp(λεn−1) t

(n)
2 exp(−λεn−1)

)
(n = 1, N given N ≥ 1).

Here D
(0)
K = −λθ0

(
C

(0)
+K(z0)E

(0)
−K(z0) + C

(0)
−K(z0)E

(0)
+K(z0)

)
= −2λθ0(1 +O(1)/λ),

(32) εi = θi(zi+1 − zi) (i = 0, N),

and with N ≥ 1 for t
(n)
1 , t

(n)
2 , t

(n)
± (n = 1, N), the following relations are true:

(33) t
(n)
1 =

θn−1 + θn
2θn

+
O(1)

λ
, t

(n)
2 =

θn−1 + θn
2θn

+
O(1)

λ
,
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(34) t
(n)
± =


θn − θn−1

2θn
+
O(1)

λ
, θn 6= θn−1;

−δn
(
∓ 1

2λθn

)mn+2(
1 +

O(1)

λ

)
, θn = θn−1,

where the integers mn (mn ∈ [0,K0 − 2]) and the complex numbers δn (δn 6= 0) do
not depend on λ.

Proof. Due to Lemma 8 (see also the proof of Lemma 1), for every K ∈ N there
exist numbers λi,K > 0 (i = 0, N), such that given |λ| ≥ λi,K , the continuously
di�erentiable solutions u1(z), u2(z) of equation (2) of class G on the region γi of
the curve γ, connecting the points zi and zi+1, can be represented as a linear

combination of solutions F
(i)
±K(z, λ) with

(35)
{C0,k(z0)}K1 = 0 (when i = 0),

Ci,k(zi) = Ci−1,k(zi) (when N ≥ 1, i = 1, N, k = 1,K).

Hence, when |λ| ≥ λK := max{λi,K , i = 0, N}, taking into account the initial
conditions of the form (4) at the point z0 and the fact that the solutions u1(z), u2(z)
are continuously di�erentiable at the characteristic points of the curve γ, we obtain
that for P̂ (γ, zf , z0) the representation (28) holds, in which the matrices Â(0), Ĉ(f)

and T̂ (n)(n = 1, N given N ≥ 1) satisfy the relations (29) � (31). Moreover,

(36)

(
t
(n)
1 t

(n)
−

t
(n)
+ t

(n)
2

)
=

(
1 + C

(n−1)
−K (zn)W

(n)
+K C

(n−1)
−K (zn)W

(n)
−K

−C(n−1)
+K (zn)W

(n)
+K 1− C(n−1)

+K (zn)W
(n)
−K

)
+
Ô(1)

λK+1
,

where

(37) W
(n)
±K = ± λ

D
(n)
K

(
θnE

(n)
±K(zn)− θn−1E

(n−1)
±K (zn)

)
(n = 1, N given N ≥ 1).

HereD
(n)
K = −λθn(C

(n)
+K(zn)E

(n)
−K(zn)+C

(n)
−K(zn)E

(n)
+K(zn)), moreover, from formulae

(16), (17), (22), given |λ| ≥ λK , we have that:

(38) D
(i)
K = −2λθi

(
1 +

O(1)

λ

)
6= 0 (i = 0, N).

We will prove that (33), (34) are true. When N ≥ 1, for every n ∈ {1, . . . , N} by
De�nition 3 either the numbers Rn−1 and Rn are distinct or the entire functions
Qn−1 and Qn are so, or both the numbers and the functions di�er. From (17), (37),
(38), we have:

(39) W
(n)
±K = ±θn−1 − θn

2θn
+
O(1)

λ
(n = 1, N when N ≥ 1).

Substitution of (39) into (36) taking into account (16) completely proves (33), and
also (34) given θn 6= θn−1, that is, due to (15) in the case when Rn 6= Rn−1.

Now let Rn = Rn−1, and therefore, due to (15), we have that θn = θn−1, and
the functions Qn and Qn−1 are distinct. Hence, there exist an integer mn ≥ 0 and
a complex number δn 6= 0, such that given z = zn,

dmQn
dzm

− dmQn−1

dzm
=

{
0, if mn ≥ 1,m = 0,mn − 1;
δn, if m = mn.
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In work [9], it was proved that in this case

(40)
d (Cn,k(z)− Cn−1,k(z))

dz
|
z=zn

=


0, 0 ≤ k ≤ mn;(

−1

2

)k
δn, k = mn + 1.

Substituting (17) into (37) and using (35) and (40), and also (16), (22), (36), and
(38), we obtain that relation (34) also holds when θn = θn−1. �

We will denote (N + 1)−dimensional vectors by a letter with an arrow above
it, and their dot product by round brackets. For example, ~ε := (ε0, ε1, . . . , εN );

~αs := (α
(s)
0 , α

(s)
1 , . . . , α

(s)
N ), where α

(s)
i ∈ {±1} (i = 0, N), moreover, s = 1 +

N∑
i=0

(1 +

α
(s)
i )2i−1, that is, s ∈ {1, . . . , 2N+1} (as in the binary system); (~ε, ~αs) =

N∑
i=0

α
(s)
i εi .

Since due to (15) θi + θj 6= 0 for every i, j ∈ {0, . . . , N}, then Lemma 9 yields
the following corollary.

Corollary 4. Under the conditions of Lemma 9 given K ≥ K0 and |λ| ≥ λK , the

elements of the matrix P̂ (γ, zf , z0) can be written in the form

(41) pαβ =

2N+1∑
s=1

d
(s)
αβ(λ) exp {λhs} (α, β ∈ {1, 2}).

Here the coe�cients hs = (~ε, ~αs) do not depend on λ and all functions d
(s)
αβ(λ) can

be represented in the form

d
(s)
αβ(λ) =

(
1

λ

)m(s)
αβ

δ
(s)
αβ

(
1 +

O(1)

λ

)
6= 0 (α, β ∈ {1, 2}, s = 1, 2N+1),

where the integers m
(s)
αβ and the complex numbers δ

(s)
αβ (δ

(s)
αβ 6= 0) do not depend on

λ.

A part of exponents in the right-hand sides of equalities (41) can coincide, and
there emerges a question whether in (41) the senior terms of coe�cients are reduced
for the exponential functions that grow the fastest with the increase of |λ|. A
negative answer to this question for the elements of the transfer matrix of equation
(2) of class G along an ordinary curve is given by Lemma 10, which coincides up
to notation with Lemma 4 from work [9].

Lemma 10. Suppose that hmax := max{|hs|, s = 1, 2N+1}, where hs := (~ε, ~αs).
Then there exist at least two distinct numbers s0 ∈ {1, . . . , 2N+1} such that |hs0 | =
hmax, moreover, if ~ε 6= ~0, then hmax > 0. Apart from that, if εi 6= 0 for all values
of i = 0, N , then for every coe�cient hsm such that |hsm | = hmax, and for every
number s ∈ {1, . . . , 2N+1}\{sm}, the inequality hsm 6= hs holds.

4. Proof of Theorems 1 and 2

Due to Lemma 1, all elements of the transfer matrix P̂ are entire functions of
the parameter ρ. If the curve γ after successive removal of all the ½invisible loops�
degenerates into a point, then by Lemma 2, the transfer matrix P̂ ≡ Î.
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Suppose that after successive removal of all the ½invisible loops� γ turns into an
ordinary curve γmin with a set of characteristic dataW := {N, {zj}N+1

0 , {Qi, Ri}N0 }.
Then P̂ can be calculated along γmin.

In this case, from relations (15), (32) and Lemmas 3, 10, it follows that among the

coe�cients hs := |hs| exp {iΨs} (s = 1, 2N+1) (i is an imaginary unit), belonging
in the formula (41) to the exponents, there is a coe�cient hs0 such that |hs0 | =
hmax > 0 and for every number s ∈ {1, . . . , 2N+1}\{s0} at least one of the two
inequalities hold: Ψs0 6= Ψs, |hs0 | > |hs|. Consider λ = |λ| exp {−iΨs0}, where
|λ| > 0. Then λhs0 = |λ|hmax > 0 and for every number s ∈ {1, . . . , 2N+1}\{s0}
the following inequality holds:

<{λhs} = |λ||hs| cos (Ψs −Ψs0) < |λ|hmax.

Due to the latter inequality and the �niteness of the number N , we obtain that
given |λ| → ∞ along the considered ray, formula (41) can be represented in the
form

pαβ = d
(s0)
αβ (λ) exp {hmax|λ|}

(
1 +

O(1)

|λ|

)
(α, β ∈ {1, 2}).

Hence, all elements of the transfer matrix P̂ are entire functions ρ of order 1/2 and
of normal type σ = hmax > 0 (see, for example, Section 1 of Chapter I in [18]).
Theorem 1 is proved.

Note that formulae (41) up to denotations coincide with formula (46) for a
characteristic function of the boundary value problem, studied in detail in work
[19]. Hence, using the results obtained in [19], we can �nd the indicator of elements

of the matrix P̂ and the angular density of distribution of their zeroes on the
complex plane of the parameter λ.

To prove Theorem 2, we will need two simple lemmas.

Lemma 11. Suppose that in C the meromorphic functions S11 and S̃11 or S22 and

S̃22 coincide, where Ŝ and
ˆ̃
S are the reduced matrices. Then at least one of non-

diagonal elements of the matrix P̂ (0) =
ˆ̃
P (P̂ )−1 equals zero for all ρ ∈ C, where P̂

and
ˆ̃
P are the corresponding transfer matrices.

Proof. Multiplying the matrices, we obtain:

P̂ (0) =

(
p22p̃11 − p21p̃12 p11p̃12 − p12p̃11

p22p̃21 − p21p̃22 p11p̃22 − p12p̃21

)
.

From here, taking into account De�nition 4, we have that: if S11 ≡ S̃11, then

p
(0)
12 ≡ 0, and if S22 ≡ S̃22, then p

(0)
21 ≡ 0. �

Lemma 12. Suppose that in C the meromorphic functions S12 and S̃12 or S21

and S̃21 coincide, where Ŝ and
ˆ̃
S are the reduced matrices. Then at least one of

non-diagonal elements of the matrix P̂ (0) = (P̂ )−1 ˆ̃
P equals zero given all ρ ∈ C,

where P̂ and
ˆ̃
P are the corresponding transfer matrices.

Proof. Multiplying the matrices, we obtain:

P̂ (0) =

(
p22p̃11 − p12p̃21 p22p̃12 − p12p̃22

p11p̃21 − p21p̃11 p11p̃22 − p21p̃12

)
.



968 A.A. GOLUBKOV

From here, taking into account De�nition 4, we have that if S12 ≡ S̃12, then p
(0)
12 ≡ 0,

and if S21 ≡ S̃21, then p
(0)
21 ≡ 0. �

Suppose that

W (1) := {N (1), {z(1)
j }

N(1)+1
0 , {Q(1)

i , R
(1)
i }N

(1)

0 },
W (2) := {N (2), {z(2)

j }
N(2)+1
0 , {Q(2)

i , R
(2)
i }N

(2)

0 }
are the sets of characteristic data of the two considered equations along the ordinary
curves γ(1) and γ(2), respectively, P̂ (1) and P̂ (2) are the corresponding transfer

matrices, moreover, by the condition of the theorem, z
(1)
0 = z

(2)
0 := z0. We will

prove Theorem 2 by considering two cases.
Case 1. Suppose that for the elements of the reduced matrices Ŝ(1) and Ŝ(2) at

least one of the two identities S
(1)
11 ≡ S

(2)
11 , S

(1)
22 ≡ S

(2)
22 is ful�lled. From (5), (6),

it follows that the transfer matrix of equation (2) of class G along the curve γ,
resulting after a successive traverse, �rst, through the curve γ(1) from the point

z
(1)

N(1)+1
to the point z0, and then through the curve γ(2) from the point z0 to the

point z
(2)

N(2)+1
, will be equal P̂ = P̂ (2)(P̂ (1))−1. Then due to Lemma 11 and Theorem

1, the curve γ is not ordinary, since one of the elements of the transfer matrix P̂
along it equals zero.

By the condition of the theorem, z
(1)
0 = z

(2)
0 := z0. Hence, there exists an integer

i0 ≥ 0 such that z
(2)
i = z

(1)
i = zi (i = 0, i0), Q

(2)
i = Q

(1)
i , R

(2)
i = R

(1)
i (i = 0, i0 − 1

given i0 ≥ 1), but at the same time if i0 ≤ min{N (1), N (2)}, then the ordered triplets
{z(2)
i0+1, Q

(2)
i0
, R

(2)
i0
} and {z(1)

i0+1, Q
(1)
i0
, R

(1)
i0
} are distinct. Further we will assume for

de�niteness that N (1) ≤ N (2).

Assume that i0 ≤ N (1) and the ordered pairs {Q(2)
i0
, R

(2)
i0
} and {Q(1)

i0
, R

(1)
i0
}

are distinct. Then after successive removal from the curve γ the ½invisible loops�,
generated by regions of the curves γ(1) and γ(2) from the point z0 to the point zi0 ,
the remaining curve γmin will �rst coincide with a region of the ordinary curve γ(1)

from the point z
(1)

N(1)+1
to the point zi0 , and then with a region of the ordinary

curve γ(2) from the point zi0 to the point z
(2)

N(2)+1
. Moreover, due to Lemma 3 the

transfer matrix along the curve γmin still equals P̂ , and the point zi0 will be the
characteristic one for the curve γmin, since by the assumption the ordered pairs

{Q(2)
i0
, R

(2)
i0
} and {Q(1)

i0
, R

(1)
i0
} are distinct. Therefore, the curve γmin is ordinary,

which, due to Theorem 1, contradicts the fact that one of the elements of the
transfer matrix P̂ along it equals zero. Hence,

(42) Q
(1)
i0

= Q
(2)
i0
, R

(1)
i0

= R
(2)
i0
.

Suppose that i0 ≤ N (1) and (42) is ful�lled, but z
(2)
i0+1 6= z

(1)
i0+1. Then due to (42),

the point zi0 will not be the characteristic one of the curve γmin, and the distinct

points z
(1)
i0+1, z

(2)
i0+1 will be the successive characteristic points. Therefore, the curve

γmin will again be ordinary, which contradicts the fact that one of the elements of
the transfer matrix P̂ along it equals zero. Hence,

(43) z
(1)
i0+1 = z

(2)
i0+1.

Formulae (42), (43) contradict the de�nition of the number i0 given i0 ≤ min{N (1),
N (2)}. Therefore, i0 = N (1) + 1. If at the same time N (1) < N (2), then after
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successive removal of all the ½invisible loops�, the curve γ will only have a region of

the ordinary curve γ(2), connecting the points z
(1)

N(1)+1
= z

(2)

N(1)+1
and z

(2)

N(2)+1
, which

contradicts the fact that one of the elements of the transfer matrix P̂ along it equals
zero. To summarize, N (1) = N (2), i0 = N (1) + 1, that is, the sets of characteristic
data W (1) and W (2) coincide, which proves the theorem for the �rst case.

Case 2. Suppose that at least one of the two identities S
(1)
12 ≡ S

(2)
12 , S

(1)
21 ≡ S

(2)
21 is

ful�lled. Let τ := z
(1)
f − z

(2)
f . Performing in equation (2) of class G with a potential

Q(2)(z) and a weight function R(2)(z) a substitution of the variable: x = z + τ ,

after inverse redesignation of x by z, we obtain that the matrix Ŝ(2) is reduced
for equation (2) of class G with a potential Q(2)(z − τ) and a weight function

R(2)(z − τ) between the points z
(2)
0 + τ and z

(2)
f + τ = z

(1)
f of the ordinary curve

γ̃(2), resulting from γ(2) by parallel transfer. Consider the curve γ, resulting after

successive traverse, �rst, through the curve γ(1) from the point z
(1)
0 to the point

z
(1)

N(1)+1
≡ z

(1)
f , and later through the curve γ̃(2) from the point z

(2)

N(2)+1
+ τ ≡ z

(1)
f

to the point z
(2)
0 + τ . Applying to it the reasonings used for considering Case 1,

with a substitution of Lemma 11 by Lemma 12, we obtain that

N (2) = N (1) = N,

and for all i = 0, N

(44) Q
(2)
i (z − τ) = Q

(1)
i (z), R

(2)
i = R

(1)
i , z

(2)
i + τ = z

(1)
i .

By the condition of the theorem, z
(2)
0 = z

(1)
0 , hence, from (44) given i = 0 it follows

that τ = 0, and therefore, W (1) = W (2), which proves Theorem 2 for the second
case.

5. Inverse problem for a Sturm�Liouville equation with a piecewise

analytical potential and piecewise constant weight on a standard

polygonal chain

In this section, we consider a case when it is a priori known that the curve γ is
a polygonal chain with some a priori known characteristics, and the potential Q in
equation (2) is piecewise analytical.

De�nition 15. Suppose that on a continuous recti�able curve γ ⊂ C, given paramet-
rically by the function z = V (t) (t ∈ [t0, tf ]), a nonzero piecewise constant R and
a piecewise analytical function Q are de�ned, that is, there exists an integer N ≥ 0
and a set of numbers T = {tj}N+1

0 : t0 < t1 < . . . < tN+1 = tf such that

(45) Q(z) = Qi(z), R(z) = Ri, if z = V (t), t ∈ (ti, ti+1) (i = 0, N).

In (45), all functions Qi are analytical in some neighbourhood Φi of the region
γi := {V (t), t ∈ (τi, τi+1)} of the curve γ and all Ri are nonzero complex constants.
Moreover, if N ≥ 1, then for every number n ∈ {1, . . . , N} the ordered pairs
{Qn, Rn} and {Qn−1, Rn−1} are distinct.

Then we will refer to equation (2) considered on the curve γ as an equation
of class GA, to the points zi := V (ti) (i = 0, N), zN+1 ≡ zf := V (tf ) as the

characteristic points, and to the ordered set W := {N, {zj}N+1
0 , {Qi, Ri}N0 } as the

set of characteristic data of the curve γ and the corresponding equation (2) of class
GA on γ.
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De�nitions 4 as well as Lemmas 1, 11, and 12 are transferred to equations of
class GA without any changes.

De�nition 16. We will refer to a polygonal chain with a piecewise analytical and
a piecewise constant functions de�ned on it as standard one, if the ordered set of
its vertices coincides with the ordered set of its characteristic points.

Obviously, for a standard polygonal chain, relations (8) are ful�lled. Moreover,
Lemma 8 remains true for the neighbourhood Φi of the region γi := {V (t), t ∈
(τi, τi+1)} of a standard polygonal chain. Hence, for a standard polygonal chain
Lemma 9 and Corollary 4 continue to hold as well. All of that means that the
following theorem similar to the statement of the second part of Theorem 1 is true.

Theorem 6. All elements of the transfer matrix P̂ of equation (2) of class GA
along some (unknown) standard polygonal chain γ are entire functions ρ of order
1/2 and of normal type.

Unfortunately, Theorem 2 in the framework of the results already obtained in
this work does not transfer on two arbitrary standard polygonal chains. But it
can be proved for the case with additional a priori information given for the two
considered polygonal chains.

De�nition 17. We will call a vertex of a polygonal chain a turning vertex, if it is
a common end of two successive links of the polygonal chain that do not lie on one
straight line.

We will refer to two polygonal chains as mainly coinciding if they have common
turning vertices, starting and ending points and, moreover, all the turning vertices
during the movement from the start of each polygonal chain to its end are passed by
in a similar order and the number of characteristic points between every correspon-
ding turning vertices to the two polygonal chains coincide. If the polygonal chain
does not have any turning vertices, then we will call them mainly coinciding even
if only their starting points coincide and both of these degenerate polygonal chains
belong to one straight line.

Note that it is possible that a part of the links of one of the two standard mainly
coinciding polygonal chains does not overlap the links of the second polygonal chain,
and in the absence of turning vertices, such degenerate polygonal chains can have
a di�erent number of vertices and even a single common point (the starting one).

Theorem 7. Suppose that two equations of class GA have sets of characteristic
dataW (1) andW (2) respectively on two standard mainly coinciding polygonal chains

γ(1) and γ(2), and also the reduced matrices Ŝ(1) and Ŝ(2) along these polygonal
chains. Then, if there exist numbers α, β ∈ {1, 2} such that meromorphic in C

functions S
(1)
αβ (ρ) and S

(2)
αβ (ρ) coincide, we have that W (1) = W (2).

Proof. If the considered polygonal chains do not have any turning vertices, then
the proof of Theorem 7 completely repeats the proof of Theorem 2 provided above,
since all the emerging ½invisible loops� of the curve (now the polygonal chain) γ
described in that proof inherently belong to one straight line in the areas where
the coe�cients of equation (2) are analytical, and therefore, their removal does
not change the transfer matrix (this circumstance makes the reference to Lemma 3
still relevant). One thing to note is that in the text of the proof of Theorem 2,
we should substitute the references to Theorem 1 by the references to Theorem 6,
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the word ½curve� by the word ½polygonal chain�, and the notion of an ½ordinary
curve� by the notion of a ½standard polygonal chain�. If the considered polygonal
chains have turning vertices, then all the ½invisible loops� emerging in this case
belong to the same straight line in the areas where the coe�cients of equation (2)
are analytical due to the condition on coinciding of the starting and ending points
of these polygonal chains, all their turning vertices and similarity of the number
of characteristic points of each of the polygonal chains between the corresponding
turning vertices of these polygonal chains. Hence, in this case too, the proof of
Theorem 7 is obtained from the proof of Theorem 2 by the method described
above. �

6. Inverse problem for equations of class G by two spectra

Along with equation (2) of class G on the curve γ, de�ned parametrically by the
function z = V (t), t ∈ [t0, tf ], consider the equation

(46) u′′(z) + (Q(1)(z)− λ2R(1)(z))u(z) = 0

on the curve γ(1), de�ned parametrically by the function z = z0 + η(V (t)− z0), t ∈
[t0, tf ], where η is a nonzero complex number. In (46),

Q(1)(z) =
1

η2
Q

(
z0 +

z − z0

η

)
, R(1)(z) =

1

η2
R

(
z0 +

z − z0

η

)
.

Obviously, equation (46) is an equation of class G on the curve γ(1), moreover, the
starting points of the curves γ and γ(1) coincide.

Lemma 13. Let P̂ and ˆP (1) be the transfer matrices of equations (2) and (46) on

the curves γ and γ(1) respectively. Then

(47) P
(1)
11 = P11, P

(1)
21 =

1

η
P21, P

(1)
12 = ηP12, P

(1)
22 = P22.

Proof. Let u1(z), u2(z) be the continuously di�erentiable solutions of equation (2)
of class G along the recti�able curve γ, satisfying the boundary conditions (4) given
zb := z0. Then using direct substitution it is easy to see that the functions

(48) u
(1)
1 (z) = u1

(
z0 +

z − z0

η

)
, u

(1)
2 (z) = ηu2

(
z0 +

z − z0

η

)
are the continuously di�erentiable solutions of equation (46) of class G along the
recti�able curve γ(1), satisfying the boundary conditions (4) given zb := z0. The
statement of the lemma directly follows from De�nition 4 and relations (48). �

De�nition 18. We will refer as boundary value problems L and L1 to equation (2)
of class G along the recti�able curve γ, supplemented respectively by the boundary
conditions

(49) u(z0) = 0, u(zf ) = 0.

and

(50) u(z0) = 0, u′(zf ) = 0.

Suppose that {λn}n≥0 and {µn}n≥0 are the sets of all eigenvalues (taking into
account their multiplicity) of the boundary value problems L and L1 respectively.
Along with the boundary value problems L and L1, we will consider the boundary
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value problems L̃ and L̃1 of the same form, but with di�erent coe�cients in equation
(2), and, possibly, on di�erent curves. Moreover, let us agree that if some symbol
σ denotes an object relevant to the problem L (L1), then the symbol σ̃ will denote

a similar object relevant to the problem L̃ (L̃1).

Theorem 8. If γ and γ̃ are ordinary curves that have two similar �rst characteristic

points and λn = λ̃n, µn = µ̃n, n ≥ 0, then W = W̃ . That is, de�ning the spectra
{λn, µn}n≥0 of the boundary value problems L and L1 for equation (2) on some
(not completely de�ned) ordinary curve γ, and also two �rst characteristic points
of this curve (including its starting point), uniquely determines the set of basic data
of equation (2) of class G on this curve.

Proof. Due to De�nitions 4 and 18, de�ning the spectra of the boundary value
problems L and L1 is equivalent to de�ning the zeroes of the elements of the transfer
matrices p12(λ) := u2(zf , λ) and p22(λ) := u′2(zf , λ), which by Theorem 1 are the
entire functions ρ = λ2 of order 1/2, and therefore, are de�ned by their zeroes up
to constants multipliers. Hence, there relation is also determined up to the constant
multiplier. Assume that

(51)
p̃12(λ)

p̃22(λ)
= η

p12(λ)

p22(λ)
.

Then due to relation (51) and Lemma 13,

(52)
p̃12(λ)

p̃22(λ)
=
p

(1)
12 (λ)

p
(1)
22 (λ)

,

and hence, since z
(1)
0 = z0 = z̃0, then W

(1) = W̃ by Theorem 2, and, in particular,

z
(1)
1 = z̃1. But z

(1)
1 − z(1)

0 = η(z1 − z0) by the de�nition of the curve γ(1), provided
after equation (46) , and z0 = z̃0, z1 = z̃1 by the condition of the theorem, moreover,
z̃1 − z̃0 6= 0, since the curve γ̃ is ordinary by condition. Therefore, η = 1, which

yields W = W̃ due to relation (51) and Theorem 2. Theorem 8 is proved. �

Note that as it follows from the proof, in Theorem 8 the requirement of coinciding
for the two curves of their �rst two characteristic points can be substituted with
coinciding of any two corresponding characteristic points, given that these two
points are distinct. In particular, for an a priory open curve we can de�ne its
starting and ending points. But in any case, it turns out that it is necessary to have
at least minimal initial information about the curve on which the boundary value
problems are considered. Moreover, this requirement is substantial since it �xes the
scale on the complex plane z. The case is that as it follows from Lemma 13, for
every η 6= 1 boundary value problems of the form L and L1 for equations (2) and
(46) will have similar spectra but distinct sets of basic data, if at least one of these
curves possesses a non-empty set of basic data, that is, it does not degenerates into
a point after successive removal of all "invisible loops".

That is why when considering inverse problems on curves that are not de�ned
at all (except for de�ning their starting point) it is much more convenient to use
the relation between the elements of the transfer matrix instead of the spectra of
the boundary value problems, since in this case, the scale on the plane z is �xed
automatically. Moreover, in many applied problems, the elements of the transfer
matrix are connected by simple algebraic relations to the values measurable by
experiment (for example, to the coe�cients of re�ection and transmission of light
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in spectroscopic problems for linear [20] and nonlinear [21] media with an arbitrary
frequency dispersion), which also makes their usage in these cases more natural.
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