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Abstract. Non-Stop University CRYPTO is the International Olympi-
ad in Cryptography that was held for the eight time in 2021. Hundreds
of university and school students, professionals from 33 countries worked
on mathematical problems in cryptography during a week. The aim of
the Olympiad is to attract attention to curious and even open scienti�c
problems of modern cryptography. In this paper, problems and their
solutions of the Olympiad'2021 are presented. We consider 19 problems
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1. Introduction

Non-Stop University CRYPTO (NSUCRYPTO) [23] is the unique interna-
tional cryptographic Olympiad in the world. It contains scienti�c mathematical
problems for professionals, school and university students. Its aim is to involve
young researchers in solving curious and tough scienti�c problems of modern crypto-
graphy. From the very beginning, the concept of the Olympiad was not to focus on
solving olympic tasks but on including unsolved research problems at the intersection
of mathematics and cryptography. Everybody can participate the Olympiad as far
as it holds via the Internet. Rules and format of the Olympiad can be found at the
o�cial website [24].

Non-Stop University CRYPTO history started in 2014. We were inspired by
an experience of the Russian Olympiad in Mathematics and Cryptography for
school-students and decided to organize an International event with real scienti�c
content for students and professionals. Since then eight Olympiads were held and
more than 3000 students and specialists from 68 countries took part in it. The
Program committee consists of 31 members from cryptographic groups all over
the world. Between them are creators of several modern technologies and ciphers,
like AES, Chaskey, etc. Main organizers are Cryptographic center (Novosibirsk),
Mathematical Center in Akademgorodok, Novosibirsk State University, Sobolev
Institute of Mathematics, KU Leuven, Belarusian State University, Tomsk State
University and Kovalevskaya North-West Centre of Mathematical Research.

In 2021, the Olympiad was dedicated to the 100th anniversary of the Crypto-
graphic Service of Russian Federation. There were 746 participants from 33 countries;
32 participants in the �rst round and 40 teams in the second round from 21 countries
became the winners (see the list [25]). 19 problems were proposed to participants
and 4 of them included open questions.

According to the results of each Olympiad, scienti�c articles are published with
an analysis of the solutions proposed to the participants, including unsolved ones,
see [1, 2, 12, 13, 14, 15, 21].

2. An overview of open problems

A specialty of the Olympiad is that unsolved problems at the intersection of
mathematics and cryptography are formulated to the participants together with
problems with known solutions. All the open problems stated during the Olympiad
history as well as their current status can be found at the Olympiad website [26].
There are 26 open problems in this list.

The variety and di�culty of the problems are wide. In fact, we suggest problems
that are of great interest to cryptography over which many mathematicians are
struggling in search of a solution. For example, these problems include �APN
permutation� (2014), �Big Fermat numbers� (2016), �Boolean hidden shift and
quantum computings� (2017), �Disjunct Matrices� (2018), and others. For instance,
the problem �8-bit S-box� (2019) was inspired by [9].

Despite the fact that hard problems can be found in the list of the Olympiad
problems, participants are not afraid to take on such tasks. Indeed, some of the
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problems we suggested can be solved or partially solved even during the Olympiad.
For example, the problems �Algebraic immunity� (2015), �Sylvester matrices� (2018),
�Miller � Rabin revisited� (2020) were solved completely. Also, partial solutions
were suggested for the problems �Curl27� (2019), �Bases� (2020), �Quantum error
correction� (2021, see section 4.17) and �s-Boolean sharing� (2021, see section 4.16).

Furthermore, some researchers are working on �nding solutions after the Olym-
piad was over. In [19], a complete solution was found for the problem �Orthogonal
arrays� (2018). The authors have shown that no orthogonal arrays OA(16λ, 11, 2, 4)
exist with λ = 6 and 7. Another problem, �A secret sharing� (2014) was partially
solved in [10], [11], where particular cases were considered, and was recursively
solved in [3].

3. Problem structure of the Olympiad

There were 19 problems stated during the Olympiad, some of them were included
in both rounds (Tables 1, 2). Sections A, B of the �rst round each consisted of seven
problems. The second round was composed of ten problems; four of them included
unsolved questions (awarded special prizes).

Table 1. Problems of the �rst round

N Problem title Max score

1 Have a look and read! 4

2 2021-bit key 4

3 A conundrum 4

4 Related passwords 4

5 A space message 4

6 Two strings 4

7 A small present for you! 4

N Problem title Max score

1 Have a look and read! 4

2 Two strings 4

3 A space message 4

4 Elliptic curve points 4

5 The number of rounds 6

6 A present for you! 6

7 Try your quantum skills! 6

Section A Section B

Table 2. Problems of the second round

N Problem title Max score

1 A conundrum 4

2 Let's �nd permutations! open problem

3 Shu�e ballots 8

4 Let's decode! 6

5 Nonlinear hiding 7

6 Studying Feistel schemes 10

7 s-Boolean sharing open problem

8 Quantum error correction open problem

9 2021-bit key 4

10 Close to permutations 8

11 Distance to a�ne functions open problem

12 The number of rounds 6

13 A present for you! 6

4. Problems and their solutions

In this section, we formulate all the problems of 2021 year Olympiad and present
their detailed solutions paying attention to solutions proposed by the participants.
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4.1. Problem �Have a look and read!�

4.1.1. Formulation. Read a secrete message in Fig. 1(a).

4.1.2. Solution. This is a permutation cipher. The circles above the text are hints
how to read a message. Fig. 1(b) illustrates how to read the beginning of the
message. The rest lines can be read the same way.

After that, the rest letters can be read and form the whole message. The answer
is �Vladimir Kotelnikov, Soviet scientist, invented the unique secret equipment
SOBOL-P. It was not decrypted during the Second World War�.

(a) Formulation. (b) Solution.

Fig. 1. Illustrations for the problem �Have a look and read!�.

4.2. Problem �2021-bit key�.

4.2.1. Formulation. A pseudo-random generator produces sequences of bits (that
is of 0 and 1) step by step. To start the generator, one needs to pay 1 nsucoin and
the generator produces a random bit (that is a sequence of length 1). Then, given
a generated sequence S of length `, ` > 1, one of the following operations can be
applied on each step:

1. A random sequence of 4 bits is added to S, so a new sequence S′ has length
`+ 4. The charge for using this operation is 2 nsucoins.

2. A random sequence of 2` bits is added to S, so a new sequence S′ has length
3`. The charge for using this operation is 5 nsucoins.

Bob needs to generate a secret key of length exactly 2021 bits for his new cipher.
What is the minimal number of nsucoins that he has to pay for the key?

4.2.2. Solution. First of all, it should be noted that as soon as a multiplication by 3
appears in the sequence of actions, then further after it, no more than two additions
of 4 can be used. Indeed, if we assume three additions, we have `→ 3`+ 3 ∗ 4 that
equals 3∗(`+4) but is more expensive. Therefore, to minimize the cost, the sequence
has the form ((1 + 4 + 4 + . . .+ 4) ∗ 3 . . .), where after the �rst multiplication by 3
there are no more than two additions of 4 in a row.

Now let us �nd the sequence of actions starting from the end. If the length is
not divisible by 3, then it is necessary to subtract 4. If it is divisible by 3, then it
is necessary to check what is cheaper: to divide by 3 or to �ll this piece completely
by 4s.
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Thus, we come to the following sequence of actions:

1 2021− 4 = 2017 5 667− 4 = 663 9 213 : 3 = 71
2 2017− 4 = 2013 6 663 : 3 = 221 10 71− 4 = 67
3 2013 : 3 = 671 7 221− 4 = 217 11 67− 4 = 63
4 671− 4 = 667 8 217− 4 = 213 12 63 : 3 = 21

And here we can see that to get 21 by 4s is cheaper than multiplying by 3.
Therefore, the last steps all consist of subtracting fours.

Thus, at least 47 nsucoins is required to get a sequence of 2021 length.

4.3. Problem �A conundrum�.

4.3.1. Formulation. Here is the conundrum sent by Alice to Bob:

b tn ztwobfc twxfc t hutek vptbwbfc t svbeo hukbfq nu vx

ntpo xlv wbfus b ztwo 6 nuvpus fxpvk vkuf 2 nuvpus zusv 5

nuvpus utsv 6 nuvpus sxlvk 3 nuvpus utsv 6 nuvpus fxpvk 4

nuvpus utsv 3 nuvpus sxlvk 3 nuvpus zusv 3 nuvpus fxpvk 6

nuvpus sxlvk 3 nuvpus fxpvk 4.24 nuvpus sxlvkutsv 3 nuvpus

utsv 1 nuvpu zusv 6 nuvpus fxpvk 1 nuvpu zusv 3 nuvpus utsv

6 nuvpus sxlvk 6 nuvpus fxpvk 6.49 nuvpus sxlvksxlvkutsv

6 nuvpus fxpvk 4 nuvpus utsv 3 nuvpus zusv 6 nuvpus sxlvk

3 nuvpus utsv 3 nuvpus fxpvk tfq 1 nuvpu zusv zktv bs vku

ftnu vktv b ktau zpbvvuf bf vku stfq?

Find an answer to Alice's question!

4.3.2. Solution. This is a classic substitution cipher: each letter in the cipher repre-
sents another in the plaintext. A good place to start decoding is the single letter
words �b� and �t�, which must correspond to the single letter words �a� and �I� in
English, though we don't immediately know which way round. Examination of two
and three letter words suggests that �vku� likely represents �the�, and so on. With
a bit of experimentation, we �nd the plaintext:

�I am walking along a beach with a stick to mark out lines on the
sand. I walk 6 metres north, then 2 metres west, 5 metres east,
6 metres south, 3 metres east, 6 metres north, 4 metres east, 3
metres south, 3 metres west, 3 metres north, 6 metres south, 3
metres north, 4.24 metres southeast, 3 metres east, 1 metre west, 6
metres north, 1 metre west, 3 metres east, 6 metres south, 6 metres
north, 6.49 metres southsoutheast, 6 metres north, 4 metres east,
3 metres west, 6 metres south, 3 metres east, 3 metres north and 1
metre west. What is the name that I have written in the sand?�

Following the instructions, we trace out the letters: TURING.

4.4. Problem �Related passwords�.

4.4.1. Formulation. Tim and Ann want to create curiously related passwords for
their cryptosystem. A password is a 9-digit decimal number. To start, they choose
a random number e1e2...e9 that has nine (not necessarily distinct) decimal digits.

• Tim �nds a password d1d2...d9 such that each of the numbers formed by
replacing just one of the digits di in d1d2...d9 by the corresponding digit ei
is divisible by 7.
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• Ann �nds a password f1f2...f9 in similar but not the same way: each of the
nine numbers formed by replacing one of the ei in e1e2...e9 by fi is divisible
by 7.

Show that for each i, di−fi is divisible by 7 for any of Tim's and Ann's passwords!

4.4.2. Solution. Let us denoteD = d1d2...d9 and E = e1e2...e9. Since (ei−di)109−i+
D = 0 (mod 7) for i = 1, ..., 9, then summing up all these equalities we get
E − D + 9D = 0 (mod 7). Hence, E + D is divisible by 7. Also, we have that
(fi−ei)109−i+E = 0 (mod 7) for i = 1, ..., 9. Therefore, (fi−di)109−i+D+E = 0
(mod 7) for any i. Since 10 is coprime with 7 and 7 divides E + D, we get that
di − fi is divisible by 7 for any i.

4.5. Problem �A space message�.

4.5.1. Formulation. What message do you get (see Fig. 2)?

Fig. 2. Illustration for the problem �A space message�.

4.5.2. Solution. It is easy to see fragments of words written in distinct directions
and re�ected vertically and horizontally. Once we combine all of them, we can read
the message

cosmos sends signals to us:

compassion

there is no signal

cosmos is empty

there is no signal

no signal

So, between confusing messages, we can read what the cosmos is actually sending
us: compassion.

4.6. Problem �Two strings�.

4.6.1. Formulation. Carol takes inspiration from di�erent strings and comes up
with unusual ways to build them. Today, she starts with a binary string An construc-
ted by induction in the following way. Let A1 = 0 and A2 = 1. For n > 2, the string
An is de�ned by concatenating the strings An−1 and An−2 from left to right, i. e.
An = An−1An−2.

Together with An consisting of �0�s and �1�s, Carol constructs a ternary string
Bn consisting of �−1�s, �0�s and �1�s. Let An = a1...am for appropriate m, where
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ai ∈ {0, 1}; then Bn = b1...b`, where ` = dm/2e and bi ∈ {−1, 0, 1} is de�ned as
follows:

bi = a2i−1 − a2i for i = 1, ..., ` (the exceptional case b` = am if m is odd).

Help Carol to �nd all n such that Bn has the same number of �1�s and �−1�s.

Example. The strings An and Bn for small n are the following:

A3 = A2A1 = 10, A4 = A3A2 = 101, A5 = A4A3 = 10110, A6 = A5A4 = 10110101.

B3 = 1, B4 = 11, B5 = 100, B6 = 10(−1)(−1).

4.6.2. Solution. Let us consider An as a decimal number. Then, by construction,
the string Bn has the same number of �1�s and �−1�s if and only if the number An
is divisible by 11. So, we need to �nd all n such that An = 0 (mod 11).

The number of digits in An is the n-th Fibonacci number Fn. It follows that An
modulo 11 satis�es a recursion:

An = 10Fn−2An−1 +An−2 = (−1)Fn−2An−1 +An−2 (mod 11).

It is easy to see that Fn is even if and only if 3 divides n. Hence, (−1)Fn−2 is
periodic with period 3. Computing An modulo 11 for small n using the recursion,
we �nd A1, ..., A8 = 0, 1,−1, 2, 1, 1, 0, 1 (mod 11). By induction, we deduce that
An+6 = An (mod 11) for all n. Thus, An is divisible by 11 if and only if n = 1
(mod 6).

4.7. Problem �A present for you!� This problem was given in two variants. The
original one that is described below was for �university students� and �professio-
nals�. A small variant of the problem was for �school students�. It considered the
bit permutation for 16 bits of the cipher small-present.

4.7.1. Formulation. Alice wants to implement on a chip the lightweight block cipher
present. She starts with the bit permutation that is de�ned in Table 3 and
illustrated in Fig. 3. Clearly, many lines are intersecting, and this would cause
a short circuit if the lines were metal wires. Is it possible to avoid this problem
by using several �layers,� i.e., parallel planes? That is to draw the lines without
intersections on each layer. We assume that

• the work area is a rectangle bounded by the lines where input and output
bits are placed and the lines of the outermost connections P (0) = 0 and
P (63) = 63;

• input and output bits are ordered; connections are represented by curves;
• color of a line indicates its layer; a line can change color several times;
• the point where a line changes color indicates a connection from one layer
to another.

Q1 What is the minimun number of layers required for implementing in this
way the present bit permutation?

Q2 Find a systematic approach how to draw a valid solution for the minimum
number of layers found in Q1 and present the drawing!
For your help (but not necessarily), you can use a speci�c online tool [28]
and download [29] the present bit permutation as in Fig.3

https://app.diagrams.net/
https://nsucrypto.nsu.ru/media/MediaFile/present-orig.drawio
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Table 3. De�nition of the bit permutation used in present. Bit
i is moved to bit position P (i).

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P (i) 0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
P (i) 4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
P (i) 8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
P (i) 12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63

Fig. 3. Illustration of present bit permutation.

4.7.2. Solution. A �rst attempt to solve this problem, would be to try and connect
some inputs and outputs. However, it will not take long to get stuck without a
systematic approach.

An observation is that lines with several di�erent angles create a problem, as it
becomes di�cult to predict where they might intersect with other lines. A way to
overcome this is to work with only horizontal and vertical lines. The vertical lines
can be in one color, and the horizontal lines in another color. This approach gives
us an idea to use two layers. Let us show how to draw a scheme. All lines of the
same color are parallel, however some lines might overlap. To see how to address
this, consider the simple case of swapping two inputs, as shown in Fig. 4 (a). As
the drawing shows, overlapping lines can be avoided by moving the second input
slightly to the right. This is just done to make the drawing a bit easier; note that
it does not a�ect the validity of the solution as the order of the inputs is preserved.

This method can be extended to an arbitrary number of inputs. A full solution
for the present bit permutation is given in Fig. 4 (b).

(a) Swapping (b) Illustration of present bit permutation using two layers.
two lines.

Fig. 4. Illustrations to the solution for �A present for you!�
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4.8. Problem �Elliptic curve points�.

4.8.1. Formulation. Alice is studying elliptic curve cryptography. Her task for today
is in practice with basic operations on elliptic curve points. Let Fp be the �nite �eld
with p elements (p > 3 prime). Let E/Fp be an elliptic curve in Weierstrass form,
that is a curve with equation y2 = x3 + ax+ b, where a, b ∈ Fp and 4a3 +27b2 6= 0.
Recall that the a�ne points on E and the point O at in�nity form an abelian group,
denoted

E(Fp) = {(x, y) ∈ F2
p : y

2 = x3 + ax+ b} ∪ {O} .
Assume that b = 0. Let R ∈ E(Fp) be an element of odd order, R 6= O. Consider

H = 〈R〉 that is the subgroup generated by R.
Help Alice to show that if (u, v) ∈ H, then u is a quadratic residue mod p.

Remark 1. For the Weierstrass form, P1 + P2 for P1, P2 ∈ E(Fp) is calculated as
follows:

• P1 +O = P1.
Next, we assume that P1, P2 6= O and P1 = (x1, y1), P2 = (x2, y2).
• P1 + (−P1) = O. Note that −(x1, y1) = (x1,−y1).
Next, we assume that P1 6= −P2.
• P1 + P1 = P3 = (x3, y3) can be calculated in the following way:

x3 =
(3x21 + a)2

(2y1)2
− 2x1, y3 = −y1 −

3x21 + a

2y1
(x3 − x1).

Next, we assume that P1 6= P2.
• P1 + P2 = P3 = (x3, y3) can be calculated in the following way:

x3 =
(y2 − y1)2

(x2 − x1)2
− x1 − x2, y3 = −y1 −

y2 − y1
x2 − x1

(x3 − x1).

4.8.2. Solution. Let Q = (x′, y′) ∈ H \{O} and n be the order of Q. It is clear that
n is a divisor of the order of R. Thus, n is odd too. Next, it is straightforward that
Q = 2P , where P = (x, y) = n+1

2 Q. Note that y 6= 0. Indeed, (x, 0) + (x, 0) = O,
but Q = 2(x, 0) 6= O. By the formula of doubling points (P + P ), we have that

x′ =
(3x2 + a)2

(2y)2
− 2x =

9x4 + 6ax2 + a2 − 8xy2

(2y)2
=

9x4 + 6ax2 + a2 − 8x(x3 + ax)

(2y)2

=
x4 − 2ax2 + a2

(2y)2
=
(x2 − a

2y

)2
.

Hence, x′ is a quadratic residue mod p.

4.9. Problem �The number of rounds�.

4.9.1. Formulation. A famous cryptographer often encrypts his personal data using
his favourite block cipher. The block cipher has three variants with r1 = 10, r2 = 12
and r3 = 14 rounds. On this occasion, the cryptographer no longer remembers which
of the variants he used.

Fortunately, the cryptographer did ask his students to write down the number
of rounds for him. However, in a creative mood, the students decided to encrypt it
using a custom cipher Ek with a 4-bit block size. As illustrated in Fig. 5, round i
of their construction XORs the ith nibble ki of the key k = k1‖k2‖ . . . ‖kr+1 with
the state and then applies the function S given in Table 4. Lacking con�dence



A.18 A.A. GORODILOVA ET AL.

in their own abilities, the students decided to instantiate the cipher Ek with r =
r1 · r2 · r3 + 1 = 1681 rounds.

S S . . . S

k1 k2 kr kr+1

Fig. 5. The students' encryption method.

Table 4. Lookup table for S (in hexadecimal notation).

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) 3 e 6 8 0 c b 4 1 d 5 a 7 9 f 2

The students wrote down that the encryption of r1 = 10 is 5 and of r2 = 12 is
0, that is Ek(1, 0, 1, 0) = (0, 1, 0, 1) and Ek(1, 1, 0, 0) = (0, 0, 0, 0). Of course, the
students forgot the key, but they still remember that it was an ASCII-encoding of
a passphrase consisting only of upper- and lower case English letters. After hearing
this, the famous cryptographer exclaims that the students have made a mistake.

How did he know that something was wrong?

4.9.2. Solution. Let u = (1, 1, 0, 0), then

u>S(x1, x2, x3, x4) = x1x2 ⊕ x3 := f(x1, x2, x3, x4) .

In addition, it holds that

f(S(x1, x2, x3, x4)⊕ (0, 1, a, b)) = x1 ⊕ x2 ⊕ a⊕ 1 = u>x⊕ a⊕ 1 .

Let Fi = S(x ⊕ ki). Since the �rst four bits of an ASCII-encoding of an upper- or
lowercase letter are always of the form (0, 1, a, b), it follows that ki = (0, 1, ai, bi)
for all odd i. Hence, for odd i,

u>Fi(Fi−1(x)) = f(Fi−1(x)⊕ ki) = u>(x⊕ ki−1)⊕ ai ⊕ 1 ,

Iterating this for an odd number of rounds r shows that there exists a constant c
such that

u>(Fr ◦ Fr−1 ◦ · · · ◦ F1)(x) = f(x)⊕ c .
The constant c depends on the key. Using the observations above, it is possible
to show that the plaintext/ciphertext combinations reported by the students are
incompatible:

(1) We have f(1, 0, 1, 0) = 1 and u>(0, 1, 0, 1) = 1. Hence, c = 0.
(2) We have f(1, 1, 0, 0) = 1 and u>(0, 0, 0, 0) = 0. Hence, c = 1.
(3) The above is a contradiction.

4.10. Problem �Try your quantum skills!�
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4.10.1. Formulation. In oder to use the quantum cryptanalysis techniques one
should be able to work with quantum bits. Daniel knows little about quantum
circuits but wants to try his hand at a new �eld! A quantum circuit is a scheme
where we operate with some set of qubits. The operations include one- or multi-qubit
transformations provided by so called quantum gates. They are characterized by
unitary operators that act on the space of qubits. An example of a quantum circuit
is the following:

|0〉 H
1√
2
(|00〉+ |11〉)

|0〉

It transforms the state |00〉 to the state 1√
2
(|00〉+|11〉). The upper wire corresponds

to the action on the �rst qubit while the lower corresponds to the second one. Here,
we have the following transformations:

|00〉 H, 1st qubit−−−−−−−−→ 1√
2
(|0〉+ |1〉)⊗ |0〉 CNOT , both qubits−−−−−−−−−−−−−→

1√
2
CNOT |00〉+ 1√

2
CNOT |10〉 = 1√

2
(|00〉+ |11〉).

Q1 Given the state |ψ〉 = 1√
2
(|00〉+ |11〉), design a circuit that transforms |ψ〉

to the state 1√
2
(|01〉 − |10〉).

Q2 Design the circuit that distinguishes between the entangled states 1√
2
(|00〉+

|11〉), 1√
2
(|01〉+ |10〉) and 1√

2
(|01〉 − |10〉). Distinguishing means that after

the measurement of the �nal state we can exactly say what the state from
these three was given. Use the gates 1�5 from Table 5.

Remark 2. A qubit is a two-level quantum mechanical system whose state |ψ〉 is
the superposition of basis quantum states |0〉 and |1〉. The superposition is written
as |ψ〉 = α0 |0〉+α1 |1〉, where α0 and α1 are complex numbers that possess |α0|2 +
|α1|2 = 1. The amplitudes α0 and α1 have the following physical meaning: after the
measurement of a qubit which has the state |ψ〉, it will be found in the state |0〉 with
probability |α0|2 and in the state |1〉 with probability |α1|2. In order to operate with
multi-qubit systems, we consider the bilinear operation ⊗ : |x〉 , |y〉 → |x〉 ⊗ |y〉 on
x, y ∈ {0, 1} which is de�ned on pairs |x〉 , |y〉, and by bilinearity is expanded on the
space of all linear combinations of |0〉 and |1〉. When we have two qubits in states |ψ〉
and |ϕ〉 correspondingly, the state of the whole system of these two qubits is |ψ〉⊗|ϕ〉 .
In general, for two qubits we have |ψ〉 = α00|0〉 ⊗ |0〉+α01 |0〉⊗ |1〉+α10 |1〉⊗ |0〉+
α11 |1〉 ⊗ |1〉 . The physical meaning of complex numbers αij is the same as for one
qubit, so we have the essential restriction |α00|2 + |α01|2 + |α10|2 + |α11|2 = 1. We
use more brief notation |a〉 ⊗ |b〉 ≡ |ab〉. For the case of multi-qubit systems with n
qubits the general form of the state is |ψ〉 =

∑
(i1i2...in)∈{0,1}n

αi1i2...in |i1i2 . . . in〉 .

4.10.2. Solution. Q1. The required transformation can be described by the following
circuit

1√
2
(|00〉+ |11〉) 1√

2
(|01〉 − |10〉)

Z X
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Table 5. Quantum gates

1 Pauli-X gate |x〉 X |x⊕ 1〉 acts on a single qubit in the state |x〉,
x ∈ {0, 1}

2 Pauli-Z gate |x〉 Z (−1)x |x〉 acts on a single qubit in the state |x〉,
x ∈ {0, 1}

3 Hadamard gate |x〉 H
|0〉+(−1)x|1〉√

2
acts on a single qubit in the state |x〉,
x ∈ {0, 1}

4 controlledNOT
(CNOT) gate

|x〉 |x〉

|y〉 |y ⊕ x〉
acts on a pair of qubits in the states
|x〉 , |y〉, x, y ∈ {0, 1}

5 SWAP gate
|x〉 |y〉

|y〉 |x〉
acts on a pair of qubits in the states
|x〉 , |y〉, x, y ∈ {0, 1}

6 To�oli gate

|x〉 |x〉
|y〉 |y〉

|z〉 |z ⊕ (x · y)〉

acts on a triple of qubits in the states
|x〉 , |y〉 , |z〉, x, y, z ∈ {0, 1}

Q2. In order to distinguish between the mentioned quantum states

|ψ1〉 =
1√
2
(|00〉+ |11〉), |ψ2〉 =

1√
2
(|01〉+ |10〉), |ψ3〉 =

1√
2
(|01〉 − |10〉)

one can consider the following circuit:

|ψi〉
H

|ϕi〉

Here |ϕi〉 denotes the output for the corresponding state. At the same time, the
analysis of the output state yields the required information about the unknown
input one. This distinguishing procedure comes from the results below:

for |ψ1〉, we get |00〉; for |ψ2〉, we get |01〉; for |ψ3〉, we get |11〉.

4.11. Problem �Let's �nd permutations!�

4.11.1. Formulation. A function F from F2n to itself is called APN (almost
perfect nonlinear) if for any a, b ∈ F2n with a 6= 0 the equation F (x)+F (a+x) = b
has at most 2 solutions. APN functions possess an optimum resistance to di�erential
cryptanalysis and are under the extreme interest in cryptography! For example,
when the unique 1-to-1 APN function in 6 variables was found in 2009, it was
immediately applied in construction of the known lightweight cipher FIDES.

Let F (x) = xd. It is known that F is APN for the following exponents d:

• d = 22i − 2i + 1, gcd(i, n) = 1, 2 6 i 6 n/2;
• d = 2t + 3, n = 2t+ 1;
• d = 2t + 2t/2 − 1 for t even and d = 2t + 2(3t+1)/2 − 1 for t odd with
n = 2t+ 1;

• d = 22t − 1, n = 2t+ 1;
• d = 24i + 23i + 22i + 2i − 1 with n = 5i.

Q1 Problem for a special prize! Describe (characterize or make a list of)
all linear functions L1 and L2 for any one exponent above for n = 7 or
n = 8, such that the function L1(x) + L2(F (x)) is a permutation.
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Q2 Problem for a special prize! Consider any of the exponents d above.
Find linear functions L1 and L2 (both di�erent from 0 function) such that
the function L1(x)+L2(F (x)) is a permutation (n > 9), or prove that such
functions do not exist.

Remark 3. F2n is the �nite �eld of order 2n. A function F : F2n → F2n has the

unique representation F (x) =
∑2n−1
i=0 cix

i, ci ∈ F2n . The algebraic degree of F is
equal to the maximum binary weight of i such that ci 6= 0. A linear function L has

degree at most 1 and L(0) = 0 (that is L(x) =
∑n
k=1 ckx

2k).

4.11.2. Solution. The problems discussed are related to the problem of relation
between CCZ- and EA-equivalences for power APN functions. This was studied in
[5]. Regarding Q1, the problem is solved for n 6 9 in [6] in terms of codes. The
only possible cases are the following:

• for n = 7, L1 = 0 and L2 is a permutation, or L2 = 0 and L1 is a
permutation;
• for n = 8, L2 = 0 and L1 is a permutation.

Regarding Q2, there were no great ideas proposed by the participants. The one
nontrivial solution was given by Alexey Chilikov (Russia, Moscow).

4.12. Problem �Shu�e ballots�.

4.12.1. Formulation. In electronic voting, n voters take part. Each of them is
assigned a unique identi�er that is a number from the set {0, 1, . . . , n − 1}.
Shu�ing of ballots during elections is implemented through the encryption of
identi�ers. When encrypting, the following conditions must hold:

1. The encryption result is again an integer from {0, 1, . . . , n− 1}.
2. The encryption process must involve the block cipher AES with a �xed

key K.
3. The number of requests to AESK must be the same for each identi�er.
4. In order to manage security assurances, it should be possible to customize

the number of requests to AESK .

Suggest a way how to organize the required encryption process of identi�ers for
n = 5818342 and n = 5818343. In other words, propose a method for organizing a
bijective mapping from {0, 1, . . . , n− 1} to itself that satis�es conditions described
above.

4.12.2. Solution. Case 1. The number n = 5818342 is composite. It is factored as
a product of numbers close to each other, namely n1 = 2594 and n2 = 2243. Hence,
an identi�er x ∈ {0, 1, . . . , n − 1} can be uniquely represented as x = x1n2 + x2,
where x1 ∈ {0, 1, . . . , n1 − 1} and x2 ∈ {0, 1, . . . , n2 − 1}.

We can encrypt identi�ers by applying several rounds of the form:

(x1, x2)←
(
y1, (x2+AESK(y1+β)) mod n2

)
, y1 = (x1+AESK(x2+α)) mod n1.

Here α, β are round constants. We process numbers with AESK encoding them in
128-bit blocks before encrypton and decoding back after.

The proposed construction follows the UNF (Unbalanced Number Feistel) scheme
[17]. When n1 ≈ n2 (that is our case), at least 3 rounds should be used to ensure
security. Generally speaking, security guarantees are strengthened with increasing
the number of rounds.
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Case 2. The number n = 5818343 is prime. So, the UNF scheme cannot be
directly applied. Nevertheless, we can reduce the problem to the UNF encryption
for a composite modulus n′ = n − 1 that was considered in Case 1 above. We act
as follows:

(1) A number a is chosen at random from the set {0, 1, . . . , n− 1}.
(2) Suppose we need to encrypt x ∈ {0, 1, . . . , n − 1}. If x 6= a, then we

determine

x′ =

{
x, x < a;

x− 1, x > a.

The number x′ belongs to the set {0, 1, . . . , n′ − 1}. We encrypt x′ using
the UNF scheme with d rounds.

(3) If x = a, then we assign to x the ciphertext n′ = n − 1. Additionally, to
satisfy Requirement 3 for a constant number of requests to AES, we perform
d dummy AES encryptions. Note that Requirement 3 is a countermeasure
against timing attacks.

We would like to brie�y present ideas proposed by the participants.

The �rst idea. The prime n is incremented rather than decremented. Using UNF,
we construct a bijection EK on {0, 1, . . . , n}. Then we encrypt x 6= n with EK and
get y 6= n. What should we do if EK(x) = n? There are 3 possiblities:

(1) Precalculate x0 = E−1K (n). If x = x0, then return EK(n). If x 6= x0, then
return EK(x).

(2) Precalculate y0 = EK(n). If y = EK(x) is equal to n, then return y0.
Otherwise, return y.

(3) Without precalculations. Calculate y = EK(x) and z = EK(y). If y = n,
then return z. Otherwise, return y.

The second idea. The encryption can be given by a permutation polynomial over
the integer ring modulo n. For example,

fK(x) = (. . . ((x+ k1)
e + k2)

e + . . .+ kr−1)
e + kr) mod n.

Here k1, k2, . . . , kr are round keys which are built using AESK (for instance, ki =
AESK(i) mod n) and e is coprime with ϕ(n). We are dealing with the composition
of permutations x 7→ xe mod n and x 7→ (x+1) mod n which is itself a permutation.

4.13. Problem �Let's decode!�

4.13.1. Formulation. Bob realized a cipher machine for encoding integers from 0 to
n− 1 by 128-bit strings using the secret function Enc. He set n = 1060105447831.
The cipher machine works as follows: it takes as input a pair of non-negative decimal
integers x and d and returns

Enc(xd mod n).

Bob chose a secret number k from 0 to n−1 and asked Alice to guess it. Alice said
that she can �nd k if Bob provides her with the cipher machine with an additional
property. Namely, x can be also of the form �k�, and then the cipher machine will
return Enc(kd mod n). In particular, for the query �k, 1�, the cipher machine returns

Enc(k) = 41b66519cf4356cbbb4e88a4336024da

(the result is in hexadecimal notation). The cipher machine is here [27].

https://nsucrypto.nsu.ru/olymp/2021/round/2/task/4
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Prove Alice is right and �nd k with as few requests to the cipher machine as
possible!

4.13.2. Solution. We present three ways to solve the problem.

The �rst way (the authors' one). For the request �0, 1�, we get the answer
that is not equal to Enc(k). Hence, k 6= 0. A nonzero key k can be represented
as gx mod n, where g = 12 is a primitive root modulo n. It remains to determine
x ∈ {0, 1, ..., n− 1}.

To �nd x, we apply the Pohlig�Hellman method. We use the fact that

n− 1 = 2 · 3 · 5 · 11 · 13 · 17 · 19 · 23 · 29 · 31 · 37
is a smooth number (all its prime factors are small). The method works as follows:

(1) For each prime factor p of n− 1, we �nd xp = x mod p.

To do this, we calculate Enc(k(n−1)/p mod n) and then Enc(gi(n−1)/p mod
n), i = 0, 1, . . . , p− 1. The equality

Enc(gi(n−1)/p mod n) = Enc(k(n−1)/p mod n)

means that xp = i.
The number of requests to Enc can be reduced if the baby-step giant-step

method is applied.
(2) Obtaining all xp, we solve the Chinese remainder problem {x ≡ xp mod

p : p | (n− 1)}.
The answer is k = 856182870494.

The second way. This solution is based on extracting roots modulo n. Let k0 = 1,

ki = k(n−1)/(p1p2...pi) mod n, i = 1, 2, . . . , r,

where r = 11 is the number of prime factors of n − 1 and p1, p2, . . . , pr are these
factors.

The number ki is the pi-th root of ki−1. These roots can be found by factoring
the polynomial xpi − ki−1 over the �nite �eld of order n. The required root ki is
the one satisfying

Enc(k1i mod n) = Enc(k(n−1)/(p1p2...pi) mod n).

The key k is the last root kr.

The third way. Let ki = k(n−1)/pi mod n, i = 1, 2, . . . , r. The number ki is the
pi-th root of 1. It can be determined by comparing the codes of all possible roots
with the code Enc(k(n−1)/pi mod n).

After determining the numbers ki, we solve the system

kai ≡ ki (mod n), ai = (n− 1)/pi.

To do this, we use Bezout's identity
r∑
i=1

aibi = 1.

Here bi are integer coe�cients that can be determined using the extended Euclidian
algorithm. Finally,

k = k
∑

i aibi mod n =
∏
i

kbii mod n.

4.14. Problem �Nonlinear hiding�.
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4.14.1. Formulation. Nicole is learning about secret sharing. She created a binary
vector y ∈ F6560

2 and splitted it into 20 shares xi ∈ F6560
2 (here ⊕ denotes the

bit-wise XOR):
y = x1 ⊕ x2 ⊕ ...⊕ x20.

Then, she created 20 more random vectors x21, ..., x40 and shu�ed them together
with the shares x1, ..., x20. Formally, she chose a secret permutation σ of {1, ..., 40}
and computed

z1 = xσ(1),

z2 = xσ(2),

...

z40 = xσ(40),

where each vector zi ∈ F6560
2 . Finally, she splitted each zi into 5-bit blocks, and

applied a secret bijective mapping ρ : F5
2 → S, where

S = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, y}
(this strange alphabet has y instead of v).

Formally, she computed Zi ∈ S1312, 1 6 i 6 40 such that

Zi = (ρ(zi,1...5), ρ(zi,6...10), ..., ρ(zi,6556...6560)).

After Nicole came back from school, she forgot all the details! She only has
written all the Zi and she also remembers the �rst 6432 bits of y (128 more are
missing). The attachment [30] contains the 6432-bit pre�x of y on the �rst line and
Z1, ..., Z40 ∈ S1312 on the following lines, one per line.

Help Nicole to recover full y!

4.14.2. Solution. This problem is inspired by the setting of generic white-box attacks
[4]. Consider an obfuscated program, where a secret function is protected by a linear
masking scheme (secret sharing), and the shares are scattered among fully random
values. In addition, each value is protected by a �xed random S-box (so called
encoding). The goal of an adversary is to recover the full secret function from a
partial knowledge of it on a few inputs, just by observing all the described values.

In the Olympiad's problem, each row Zi corresponds to a chosen share or a
random value, and each column corresponds to a distinct �execution� (i.e., a recording
of values on a distinct input of the program).

This problem can be solved by formulating the problem as a quadratic system
of equations over F2 and solving it through linearization. More precisely, introduce
40 variables ti ∈ F2, one per each row i, 1 6 i 6 40, describing whether the i-th row
is a secret share. In addition, introduce 32 variables mc ∈ F2, one per each c ∈ S,
describing the �rst bit of ρ−1(c). Then, each known 5-bit chunk y5j+1...5j+5 of y
(more precisely, its �rst bit) gives a quadratic equation

equation j, 1 6 j 6 1286 :
⊕

16i640

ti ·mZi,j = y5j+1.

This system can be linearized. More precisely, introduce a new variable wi,j =
ti ·mZi,j ∈ F2 per each monomial ti ·mZi,j . There are 40× 32 = 1280 variables and
6432/5 > 1286 equations. After solving this linear system, we can see which rows
Zi correspond to the shares of y and a mapping de�ning �rst coordinate of ρ−1 (up
to a constant), allowing to recover every 5-th bit of the missing part. Repeating

https://nsucrypto.nsu.ru/media/MediaFile/data-sharing.txt
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this procedure for 4 other positions allows to fully recover the value (note that the
values of ti would already be recovered).

Also, there was a hidden text in the random beginning pre�x of y dedicated to
the 100th anniversary of the Cryptographic Service of Russian Federation:

2021 marks the centenary of the cryptographic service in Russia!

On May 5, 1921, the 8th special department was created. Its tasks

included the study of theoretical problems of cryptography and the

development of new ciphers, the organization of cipher communication,

cryptanalysis, radio monitoring and radio interception, etc.

4.15. Problem �Studying Feistel schemes�.

4.15.1. Formulation. The classical Feistel scheme and its generalizations are widely
used to construct iterated block ciphers. Generalized Feistel schemes (GFS)
usually divide a message intom subblocks and applies the (classical) Feistel transfor-
mation for a �xed number of two subblocks, and then performs a cyclic shift of m
subblocks.

Trudy wants to compare algebraic properties of di�erent generalizations of the
Feistel scheme based on shift registers over an arbitrary �nite commutative ring with
identity. For studying, she chooses a nonlinear feedback shift register (NLFSR),
Type-II GFS and Target-Heavy (TH) GFS. She wants to decide whether or not
these transformations belong to the alternating group (that is the group of all
even permutations). Trudy needs your help!

Let us give necessary notions. By A(X) we denote the alternating group on a set
X. Let t be a positive integer, t > 1, (R,+, ·) be a commutative ring with identity
1, |R| = 2t. The characteristic char(R) of R is equal to 2c for some c ∈ {1, ..., t}. In
many block ciphers, we have

R ∈
{
Zt2, Z2t , GF(2

t)
}
, char(Z2t) = 2t, char

(
Zt2
)
= char

(
GF(2t)

)
= 2.

Q1 NLFSR. Let ` > 1,m = 2`, h : Rm−1 → R. Consider a mapping g
(NLSFR)
k,h :

Rm → Rm de�ned by

g
(NLSFR)
k,h : (α1, ..., αm) 7→ (α2, α3, ..., αm−1, αm, α1 + h(α2, ..., αm) + k)

for all (α1, ..., αm) ∈ Rm, k ∈ R. Describe all positive integers t > 1, `, c > 1

and a mapping h : Rm−1 → R such that g
(NLSFR)
k,h ∈ A(Rm) for any k ∈ R.

Prove your answer!
Q2 Type-II GFS. Let ` > 2, m = 2`, h = (h1, ..., hm/2), where hi : R → R

for 1 6 i 6 m/2. Consider a mapping g
(GFS−II)
k,h : Rm → Rm de�ned by

g
(GFS−II)
k,h : (α1, ..., αm) 7→ (α2 + h1(α1) + k1, α3, α4 + h2(α3) + k2, α5, ...,

αm−1, αm + hm/2(αm−1) + km/2, α1)

for all (α1, ..., αm) ∈ Rm, k = (k1, ..., km/2) ∈ Rm/2. Describe all positive

integers t > 2, `, c > 1 and mappings h1, ..., hm/2 such that g
(GFS−II)
k,h ∈

A(Rm) for any k ∈ Rm/2. Prove your answer!
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Q3 TH-GFS. Let ` > 2, m = 2`, h = (h2, ..., hm), where hi : R → R for

2 6 i 6 m. Consider a mapping g
(TH)
k,h : Rm → Rm de�ned by

g
(TH)
k,h : (α1, ..., αm) 7→ (α2 + h2(α1) + k2, α3 + h3(α1) + k3, ...,

αm−1 + hm−1(α1) + km−1, αm + hm(α1) + km, α1)

for all k = (k2, ..., km) ∈ Rm−1. Describe all positive integers t > 2, `, c > 1

and mappings h2, ..., hm such that g
(TH)
k,h ∈ A(Rm) for any k ∈ Rm−1. Prove

your answer!

4.15.2. Solution. Let s be a permutation on a set X with v disjoint cycles of lengths
`1, ..., `v. By τ(s) denote

τ(s) = `1 + ...+ `v − v.
Let sign(s) denote the sign of s. It is well known that sign(s) = (−1)τ(s), i.e. s
is even and belongs to the alternating group A(X) on X if τ(s) ≡ 0 (mod 2).
Moreover, sign : S(X) → {−1, 1} is a homomorphism, i. e. for all s, b ∈ S(X), it
holds

sign(sb) = sign(s) · sign(b).
Let ord(b) be the order of b in additive group (R,+).

Q1 NLSFR. Consider three permutations ρ : Rm → Rm, δ
(i)
1 : Rm → Rm,

θh : Rm → Rm de�ned for all (α1, ..., αm) ∈ Rm by the following rules:

δ
(i)
1 : (α1, ..., αm) 7→ (α1, ..., αi−1, αi + 1, αi+1, ..., αm), i ∈ {1, ...,m},
ρ : (α1, ..., αm) 7→ (α2, ..., αm, α1),

θh : (α1, ..., αm) 7→ (α1 + h(α2, ..., αm), α2, ..., αm).

It is clear that

δ
(i)
k =

(
δ
(i)
1

)k
and g

(NLSFR)
k,h = ρδ

(1)
k θh.

To �nd sign
(
g
(NLSFR)
k,h

)
, we compute sign (θh), sign

(
δ
(i)
1

)
, sign(ρ) and �nally τ (θh).

Let us �nd τ (θh). By de�nition, put

ri =
∣∣{(β1, ..., βm−1) ∈ Rm−1 | ord (h(β1, ..., βm−1)) = 2i

}∣∣
for all i ∈ {0, ..., c}. It is obvious that

θjh : (α1, ..., αm) 7→ (α1 + j · h(α2, ..., αm), α2, ..., αm)

for any (α1, ..., αm) ∈ Rm. Hence, the length of a cycle of θh is equal to 2i for some
i ∈ {0, ..., c}. The number of cycles of length 2i is |R| ri = 2t−iri. Therefore,

τ (θh) =

c∑
j=1

2t−jrj(2
j − 1).

Thus,

sign (θh) =

{
−1, if c = t, rc ≡ 1 (mod 2),

1, if c < t, c = t, rc ≡ 0 (mod 2).

Now we �nd τ(δ
(i)
1 ) for 0 6 i 6 m. Note that we have(

δ
(i)
1

)k
: (α1, ..., αm) 7→ (α1, α2, ..., αi−1, αi + k, αi+1..., αm)
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for all (α1, ..., αm) ∈ Rm, k ∈ R. So, δ(i)1 has 2c(m−1) cycles of length 2c. Therefore,

τ(δ
(i)
1 ) = 2mt − 2c(m−1), i. e. sign

(
δ
(i)
1

)
= 1.

It is well known [22] that ρ has 2t
2j−j−2t2

j−1−j cycles of length 2j for 0 6 j 6 `.
Thus,

τ(ρ) =

l∑
j=1

2t2
j−1−j(2j − 1)

(
2t

2j−1

− 1
)
.

Hence,

sign (ρ) =

{
−1, if ` = t = 1,

1, if ` > 2 or ` = 1, t > 2.

Therefore,

sign
(
g
(NLSFR)
k,h

)
= sign (ρ) · sign

(
δ
(1)
k

)
· sign (θh) = sign (ρ) · sign (θh) =

=


−1, if ` = t = c = 1, rc ≡ 0 (mod 2),

−1, if t = c, rc ≡ 1 (mod 2), ` · t > 2,

1, if c < t or ` = t = c = 1, rc ≡ 1 (mod 2),

1, if t = c, rc ≡ 0 (mod 2), ` · t > 2.

Answer: g
(NLSFR)
k,h ∈ A(Rm) if

• c < t;
• ` = t = c = 1, rc ≡ 1 (mod 2);
• t = c, rc ≡ 0 (mod 2), ` · t > 2.

Q2 Type-II GFS. Consider a permutation θ
(2)
h : Rm → Rm de�ned by

θ
(2)
h : (α1, ..., αm) 7→ (α1, α2 + h1(α1), α3, α4 + h2(α3), ..., αm−1, αm + hm/2(αm−1))

for all (α1, ..., αm) ∈ Rm. It is readily seen that

g
(GFS−II)
k,h (α1, ..., αm) = ρδ

(1)
k1
δ
(3)
k2
...δ

(m−1)
km/2

θ
(2)
h (α1, ..., αm).

We have already get that if m = 2`, ` > 2, then

sign
(
ρδ

(1)
k1
δ
(3)
k2
...δ

(m−1)
km/2

)
= sign(ρ) · sign

(
δ
(1)
k1

)
· sign

(
δ
(3)
k2

)
· ... · sign

(
δ
(m−1)
km/2

)
= 1.

We now prove that sign(θ
(2)
h ) = 1. For all i ∈ {0, ..., c} and j ∈ {1, ...,m/2}, we

denote

ri(hj) =
∣∣{β ∈ R | hj(β) = b, ord(b) = 2i

}∣∣ .
It is clear that α = (α1, ..., αm) ∈ Rm belongs to a cycle of length 2v(α) of θ

(2)
h ,

where

v(α) = max {log2 (ord(ht(α2t))) | t = 1, ...,m/2} .
For any v ∈ {0, ..., c}, we de�ne

Uv =
{
(j1, ..., jm/2) ∈ {0, ..., c}

m/2 | v = max
{
j1, ..., jm/2

}}
.

The number of cycles of length 2v is equal to

xv = 2t·m/2−v
∑

(j1,...,jm/2)∈Uv

m/2∏
i=1

rji(hi).
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It follows that

τ
(
θ
(2)
h

)
= 2tm −

c∑
v=0

2t·m/2−v
∑

(j1,...,jm/2)∈Uv

m/2∏
i=1

rji(hi).

From t > c > v, m/2 > 2, it follows that t ·m/2 − v > 0. Hence, xv is even for

all v ∈ {0, ..., c}. Thus, τ
(
θ
(2)
h

)
is even and sign(θ

(2)
h ) = 1. Therefore,

sign
(
g
(GFS−II)
k,h

)
= sign(θ

(2)
h ) = 1.

Answer: g
(GFS−II)
k,h ∈ A(Rm) for all positive integers t > 2, c, ` > 1 and mappings

h1, ..., hm/2.

Q3 TH-GFS. Let θ
(3)
h : Rm → Rm be a mapping that for all (α1, ..., αm) ∈ Rm is

such that

θ
(3)
h : (α1, ..., αm) 7→ (α1, α2 + h1(α1), α3 + h3(α1), ..., αm + hm(α1)).

It is clear that

g
(TH)
k,h (α1, ..., αm) = ρδ

(2)
k2
δ
(3)
k3
...δ

(m)
km

θ
(3)
h (α1, ..., αm).

We have already know that if m = 2`, ` > 2, then

sign
(
ρδ

(2)
k2
δ
(3)
k3
...δ

(m)
km

)
= sign(ρ) · sign

(
δ
(2)
k2

)
· sign

(
δ
(3)
k3

)
· ... · sign

(
δ
(m)
km

)
= 1.

Let us prove that sign(θ
(3)
h ) = 1.

By LCM(a1, ..., at) denote the least common multiple of a1, ..., at ∈ R.
It is obvious that ord θ

(3)
h |2c. For each β ∈ R, we de�ne

w(β) = log2 (LCM(ord h2(β), ord h3(β), ..., ord hm(β))) .

Let

rj = {α ∈ R | w(α) = j}

for all j ∈ {0, ..., c}. It is clear that (α1, ..., αm) ∈ Rm belongs to a cycle of length
2w(α1). The number cycles of length 2j is equal to 2t(m−1)−jrj for all j ∈ {0, ..., c}.
Thus,

τ
(
θ
(3)
h

)
= 2tm −

c∑
i=0

2t(m−1)−iri.

Since t > c > v and m−1 > 3, we have t ·(m−1)−c > 0. Thus, 2t(m−1)−jrj is even

for all j ∈ {0, ..., c}. Therefore, sign(θ(3)h ) = 1 and for all k = (k2, ..., km) ∈ Rm−1 it
holds

sign
(
g
(TH)
k,h

)
= sign(θ

(3)
h ) = 1.

Answer: g
(TH)
k,h ∈ A(Rm) for all positive integers t > 2, `, c > 1 and mappings

h2, ..., hm.

4.16. Problem �s-Boolean sharing�.
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4.16.1. Formulation. In cryptography, a �eld known as side-channel analysis
uses extra information such as the power consumption of an implementation to
break a cryptographic primitive. In order to defend against these attacks, one does
not need to change the primitive but only the way the primitive is implemented. A
popular countermeasure is called �sharing� where the computation of the primitive
is split in multiple parts (this notion was �rstly suggested in [8, 16]). Each part
seemingly operates on random data such that an adversary has to observe all
parts of the computation in order to gain sense of the secret information that
was processed.

An s-Boolean sharing of a variable x ∈ F2 is a vector (x1, x2, ..., xs) ∈ Fs2 such
that x =

⊕s
i=1 xi. A vectorial Boolean function G : Fsn2 → Fsm2 is an s-Boolean

sharing of a function F : Fn2 → Fm2 if for all x ∈ Fn2 and (x1, ..., xs) ∈ Fsn2 ,
xi ∈ Fn2 , such that

⊕s
i=1 xi = x,

s⊕
i=1

Gi(x1, ..., xs) = F (x) .

Here, G = (G1, ..., Gs), where Gi : Fsn2 → Fm2 and �⊕� denotes the bit-wise XOR.
Q1 Write an algorithm which takes in a vectorial Boolean function and an

integer s and returns true/false on whether the function is a s-Boolean
sharing of another function. In case the result is true, the algorithm also
returns the function whose sharing is the algorithm's input.

Q2 Problem for a special prize! Propose a theoretical solution to the problem
of checking whether the function is a s-Boolean sharing of another function.

Example. If you give the Boolean function G : F6
2 → F3

2 such that

G1(a, b, c, d, e, f) = ad⊕ ae⊕ bd
G2(a, b, c, d, e, f) = be⊕ bf ⊕ ce
G3(a, b, c, d, e, f) = cf ⊕ cd⊕ af

the algorithm should return true when s = 3 together with the function F : F2
2 → F2

such that F (x, y) = xy, where x = a⊕ b⊕ c and y = d⊕ e⊕ f .

4.16.2. Solution. Solution to Q1. We will give a general approach. Consider a
function G : Fsn2 → Fsm2 of variables x1, ..., xsn, we check whether it is an s-Boolean
sharing of some function F : Fn2 → Fm2 . Take an arbitrary permutation of the sn
input bits π, there are a total of sn! of such permutations (we note that one can
reduce this number as some permutations would lead to the same sharing). Denote
π(x1, ..., xsn) = (y1, ..., ysn) and zi = (y(i−1)∗n+1, ..., yi∗n) for i ∈ {1, ..., s}. We want
to verify whether

s⊕
i=1

Gi(z1, ..., zs) = F (

s⊕
i=1

zi) ,

for all (z1, ..., zs) ∈ Fsn2 . This is easily done via a brute force approach of going
through all (z1, ..., zs) ∈ Fsn2 (this requires 2sn evaluations) and verifying the above
equation. In case the equation does not hold, we go to the next permutation π.
Otherwise, we stop searching and return true. The algorithm would require around
sn! · 2sn steps.
Ideas on Q2. The most interesting idea found by the participants considers

the algebraic normal form of the shared function. Let us consider an ordered case
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where it is known which inputs would form the shares of the function. Let F be an
arbitrary Boolean function. In case F is the unshared function of some G, then

s⊕
i=1

Gi(x1, ..., xs) = F (

s⊕
i=1

xi) ,

Notice that for each monomial x1 · ... ·x` in F , we get the shared monomial (
⊕

i x
1
i ) ·

... · (
⊕

i x
`
i). We then verify for each monomial in G whether the other shares of

that monomial are also present. If so, we remove (
⊕

i x
1
i ) · ... · (

⊕
i x

`
i) and repeat

until no more monomial are present in G.
The best solution found was given by the team of university students Gongyu

Shi, Ruoyi Kong, Haoxiang Jin (China, Shanghai) and awarded a special prize for
�partially solving� the problem.

4.17. Problem �Quantum error correction�.

4.17.1. Formulation. The procedure of error correction is required for quantum
computing due to intrinsic errors in quantum gates. One of approaches to quantum
error correction is to encode quantum information in three-qubit states, i. e. α0 |0〉+
α1 |1〉 → α0 |000〉+ α1 |111〉.

Below are Problems for a special prize!

Q1 Design a circuit which implements such encoding.
Q2 Design a circuit which restores the initial state of the three-qubit system,

if a single bit-�ip error |0〉 ↔ |1〉 occurs in one of three qubits. Hint: use
two additional qubits and three-qubit To�oli gates.

Q3 What will happen, if the quantum gates used for error correction are imper-
fect? What will be the threshold for gate �delity, when the error correction
will stop working?

Remark 4. Use the basic information from Remark 2 and gates from Table 5.

4.17.2. Solution. Q1. The encoding can be described by the following circuit:

α |0〉+ β |1〉
α |000〉+ β |111〉|0〉

|0〉
Q2. Let us �rstly describe the authors' solution. To �nd the bit-�ip in each qubit,
we introduce two ancillary qubits and entangle them with our three data qubits via
CNOT gates:

α |000〉+ β |111〉 bit-�ip

|0〉

|0〉
Without bit-�ips in the data qubits, both ancillary qubits will stay in the state

|00〉, because the states of data qubits are identical. It means that, depending on
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the initial state of the �rst qubit, the Pauli-X gate will be either never applied to
the ancillary qubits, or applied twice.

If there is a bit-�ip in any of data qubits, the Pauli-X gate will be applied once
or three times to one of the ancillary qubits. This will indicate the error in the
particular data qubit:

• state |00〉 means �no error�;
• state |11〉 means �error in the 1st qubit�;
• state |10〉 means �error in the 2nd qubit�;
• state |01〉 means �error in the 3d qubit�.

Now it is possible to restore the initial state by applying To�oli gates. For
example, a To�oli gate with two ancillary qubits used as control ones and �rst
data qubit used as target ones will �ip its state if the ancillary qubits are in state
and leave it unchanged in any other case (no error in the �rst qubit). Similarly, the
�ips in other qubits can be restored. The �nal circuit is

α |000〉+ β |111〉 bit-�ip

|0〉

|0〉

During the Olympiad, twelve teams made progress in solving the problem and
suggested good and correct schemes. We would like to mention the best one proposed
by the team of Viet-Sang Nguyen, Nhat Linh Le Tan, Nhat Huyen Tran Ngoc
(France, Paris). Taking into account discussions on Q3 in the solution of this team,
we mark this problem as �partially solved�. In their circuit, only one To�oli gate is
used:

Error-correction stage

α |000〉+ β |111〉 bit-�ip

|0〉

|0〉

Q3. Several participants proposed interesting ideas on this problem. In some of
them, the minimum �delities for a success probability were considered independently
for every type of gates, i. e. Pauli-X, CNOT and To�oli gate, and corresponding
diagrams were shown. In another, it was assumed that the probability of imperfect
operation of each gate is the same, then the threshold when error correction stops
working was estimated.
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There was an approach under assumption that the error-box makes a single
bit-�ip error and the error-correction box makes a mistake, both with some �xed
probabilities, and the probability that the error-box makes multiple bit-�ip errors
is neglectable. It was obtained that the error-correction stops working when the
probability of its proper is larger than 1/2.

4.18. Problem �Close to permutations�.

4.18.1. Formulation. Bob wants to use a new function inside the round transformation
of a cipher. He chooses a family F of functions Fα from Fn2 to itself of the form

Fα(x) = x⊕ (x� α), where

• x, α ∈ Fn2 ,
• ⊕ denotes the bit-wise XOR of binary vectors,
• � denotes the addition modulo 2n of integers whose binary representations
are the given vectors.

Bob noted that functions from F are not bijective. So, he introduced a parameter
that measures in some sense the closeness of a function to a permutation. For a
given function F from Fn2 to itself, the parameter is

C(F ) = #{(x, y) ∈ Fn2 × Fn2 : F (x) = F (y)}.
The smaller the parameter value, the better the function. Bob wants to choose

�the best functions� by this parameter among F . Help Bob to �nd answers to the
questions below!

Q1 How many �the best functions� exist in F?
Q2 What α correspond to �the best functions� from F?
Q3 What is C(Fα) for �the best functions� from F?

4.18.2. Solution. First of all, we prove auxiliary results. Let C(α) = C(Fα) and
α0 = (0, α1, . . . , αn) where α ∈ Fn2 . Similarly we de�ne α1. Before giving the
answer, we prove that for any α the following properties hold:

C(α0) = 4C(α),

C(α1) = C(α) + C(α), where α = (α1 ⊕ 1, . . . , αn ⊕ 1),

C(α1) < C(α0).

It is not di�cult to see that C(α0) = 4C(α), α ∈ Fn2 . Indeed, let us de�ne
x′ = (x2, . . . , xn+1) ∈ Fn2 for x ∈ Fn+1

2 . Since the �rst (the least signi�cant) bits
of both x ⊕ (x � β) and y ⊕ (y � β) are equal to β1, where x, y, β ∈ Fn+1

2 , we can
exclude them:

C(α0) = #{x′, y′ ∈ Fn2 , x1, y1 ∈ F2 : x′ ⊕ (x′ � α) = y′ ⊕ (y′ � α)} = 4C(α).

Similarly we show that C(α1) = C(α) + C(α� 1). Indeed,

C(α1) = #{x′, y′ ∈ Fn2 , x1 = 0, y1 = 0 : x′ ⊕ (x′ � α) = y′ ⊕ (y′ � α)}(1)

+#{x′, y′ ∈ Fn2 , x1 = 1, y1 = 0 : x′ ⊕ (x′ � α� 1) = y′ ⊕ (y′ � α)}(2)

+#{x′, y′ ∈ Fn2 , x1 = 0, y1 = 1 : x′ ⊕ (x′ � α) = y′ ⊕ (y′ � α� 1)}(3)

+#{x′, y′ ∈ Fn2 , x1 = 1, y1 = 1 : x′ ⊕ (x′ � α� 1) = y′ ⊕ (y′ � α� 1)}.(4)
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The �rst bit of x′ ⊕ (x′ � α� 1) is equal to α1 ⊕ 1, but the �rst bit of y′ ⊕ (y′ � α)
is equal to α1. It means that (2) = 0. Swapping x′ and y′, we obtain that (3) = 0
as well. Also, (1) = C(α) and (4) = C(α� 1).

Moveover, C(α1) = C(α) + C(α). The reasons are the following. It is clear that
�(α� 1) = �α� 1 = 2n − 1− α = α. Finally, for any β ∈ Fn2 it is true that

C(β) = #{x, y ∈ Fn2 : x⊕ (x� β) = y ⊕ (y � β)}
= #{x′ = x� β, y′ = y � β ∈ Fn2 : (x′ � β)⊕ x′ = (y′ � β)⊕ y′} = C(�β).

Using these formulas, we show by induction that C(α) < 3C(α). The base of the
induction n = 1 is straightforward since C(0) = C(1) > 0. Next, let α = α′0, α′ ∈
Fn−12 . Then C(α′0) = 4C(α′) = 3C(α′)+C(α′) and 3C(α′0) = 3C(α′)+3C(α′). But
C(α′) < 3C(α′) by the induction hypothesis, which means that C(α′0) < 3C(α′0).
If α = α′1, then C(α′1) = C(α′) + C(α′). At the same time, 3C(α′1) = 12C(α′) =
11C(α′) + C(α′). The induction hypothesis shows that C(α′1) < C(α′1). Finally,
C(α) < 3C(α).

As a result, we can see that C(α1) = C(α) + C(α) < C(α) + 3C(α) = C(α0).
Now we can �nd minimum α∗n. First of all, it is straightforward that there is 2

minimums for n = 1, 2: C(0) = C(1) = 4 for n = 1 and C(1) = C(3) = 8 < C(0) =
C(2) for n = 2. Let n > 2. We prove that there are 4 minimums (Q1, n > 2), �the
best� α∗n from Fn2 is any of

(1, α2, α2, α2, α2, . . .︸ ︷︷ ︸
n−2

, αn), α1, αn ∈ F2, (Q2, n > 2)

and C(α∗n) = C(α∗n−1) + 4C(α∗n−2) (Q3, n > 2).
Let us use induction by n. The base of the induction is mentioned above: any

α ∈ F2 provides C(α) = C(α∗1) and C(α1) = C(α∗2). Let us suppose that the
answers are correct for n. Now we will prove that they hold for n+ 1 > 3. First of
all, the �rst bit of α∗n+1 is 1 since C(α1) < C(α0). Next, C(α1) = C(α) +C(α) for

any α ∈ Fn2 . Let α′ = (α2, . . . , αn) if α1 = 0 and α′ = (α2, . . . , αn) otherwise. Then

C(α1) = C(α′0) + C(α′1) = 4C(α′) + C(α′1) > 4C(α∗n−1) + C(α∗n).

It means that C(α1) > C(α∗n+1) > C(α
∗
n)+4C(α∗n−1). Moreover, C(α1) = C(α∗n+1) =

C(α∗n) + 4C(α∗n−1) if and only if C(α′) = C(α∗n−1) and C(α
′1) = C(α∗n). By the

induction hypothesis, these restrictions are equivalent to

α′i+1 = α′i for any i = 1, . . . , n− 3, from C(α′1) = C(α∗n),(5)

α′1 = 1 for n > 2, additionally from C(α′) = C(α∗n−1).(6)

Let n > 2. Since α′1 = α2⊕α1 by the de�nition of α′, (6) guarantees that α2 = α1.
Taking into account (5), the restrictions transform to αi+1 = αi for i = 1, . . . , n−2.
If n = 2, (5) and (6) gives no restrictions. Thus, all α1 with these restrictions and
α∗n+1 coincide. The induction step is proven.

There are famous techniques (see, for instance, [18]) to express the n-th element
of a linear recurrence sequence. Thus, the answer C(α∗n) = C(α∗n−1) + 4C(α∗n−2)
for (Q3) is equivalent to the following:

C(α∗n) =
1

34 · 2n
(
(17 + 7

√
17)(1 +

√
17)n + (17− 7

√
17)(1−

√
17)n

)
.

In addition, C(α) is connected with a special case of additive di�erential probabilities
for the function x⊕ y, x, y ∈ Fn2 , see [20].
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4.19. Problem �Distance to a�ne functions�.

4.19.1. Formulation. Given two functions F and G from Fn2 (or F2n) to itself, their
Hamming distance equals by de�nition the number of inputs x at which F (x) 6=
G(x). The minimum Hamming distance between any such function F and all a�ne
functions A is known to be strictly smaller than 2n − n− 1 if n > 4.

Each of the following problems is a Problem for a special prize!

Q1 Find a better upper bound valid for every n.
Q2 If Q1 is unsuccessful, �nd constructions of in�nite classes of functions F

having a distance to a�ne functions as large as possible (in�nite classes
meaning that these functions are in numbers of variables ranging in an
in�nite set, such as all positive integers, possibly of some parity for instance).

Q3 IfQ1 andQ2 are unsuccessful, �nd constructions (possibly with a computer;
then a representation of these functions will be needed, such as their algebraic
normal form or their univariate representation) of functions F in �xed
numbers of variables having a distance to a�ne functions as large as possible.

Remark 5. We recall that an a�ne function A is a function satisfying A(x) +
A(y) +A(z) = A(x+ y + z) for all inputs x, y, z.

4.19.2. Solution. The bound < 2n−n− 1 if n > 4 was found in [7, Section 7]. The
problems discussed are connected with a curious open problem of �nding bounds
on the nonlinearity of di�erentially uniform functions.

The most interesting ideas were presented by the team of Gabor P. Nagy, Gabor V.
Nagy, and Miklos Maroti (Hungary, Budapest) and concerned the relation with
di�erential uniformity of a special function.
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