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OPTIMAL DISCRETE NEUMANN ENERGY

IN A BALL AND AN ANNULUS

E.G. PRILEPKINA, A.S. AFANASEVA-GRIGOREVA

Abstract. In this paper, we prove some exact estimates for the discrete
Neumann energy of a ball and an annulus in Euclidean space for points
located on circles. The proofs are based on dissymmetrization and analy-
sis of the asymptotic behavior of the Dirichlet integral of the potential
function.
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1. Introduction

In this paper, Rd will mean the d-dimensional Euclidean space of points x of
the form (x1, . . . , xd) with the usual length and distance, d ≥ 2. In the case d = 2
we assume that R2 is the complex plane. The solution of the classical Neumann
problem in the bounded domain D ⊂ Rd for the Poisson equation requires the
construction of the Neumann function (this function is sometimes called the Green
function for the Neumann problem or the Green function of the second kind). The
classical Neumann function [1], [2] is de�ned as the function of x ∈ D in D \ {y}
that satis�es the conditions

(1) N(x,y, D) =
µd(|x− y|) + v(x,y, D)

wd
,

∂N(x,y, D)

∂nx
= − 1

sd−1(∂D)
,
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∂D

N(x,y, D)dσx = 0.

Here µd(·) is the fundamental solution of the Laplace equation, (µ2(ρ) = − log ρ,
µd(ρ) = ρ2−d/(d− 2) for d ≥ 3), wd = 2πd/2/Γ(d/2) is area of the unit hypersphere,
v(x,y, D) is some harmonic function in D, sd−1 is the Lebesgue measure and
di�erentiation is taken with respect to the outward normal.

There are many studies related to extremal problems for various types of discrete
charge energies (see, for example, [3], [4], [5] and references therein). In [6], two
estimates are obtained for the discrete energy of the Green function of an annulus
on the plane in the case of points located on some circle. These results have been
extended into Euclidean space in [7]. The purpose of this paper is to obtain results
of a similar sort for the Neumann function.

Let us recall the de�nition of discrete Green energy [8]. Let ∆ = {δk}nk=1 be an
arbitrary discrete charge (the set of real numbers) that takes the value δk at the
point xk, k = 1, . . . , n of D . The Green's energy of this charge with respect to D
is the quantity

E(X,∆, D) =

n∑
k=1

n∑
l=1
l 6=k

δkδlgD(xk,xl),

where gD(xk,xl) is the Green's function of the domain D. In a similar way we de�ne
Neumann energy

En(X,∆, D) =

n∑
k=1

n∑
l=1
l 6=k

δkδlN(xk,xl, D).

Everywhere below, D is either a ball of the form {|x| < τ} or an annulus of
the form {τ1 < |x| < τ2}. Let us take the following notation: B(a, r) is the open
ball centered at point a of radius r, J is (d − 2)�dimensional plane {x ∈ Rd :
x = (0, 0, x3, . . . , xd)}. We need the cylindrical coordinates (r, θ,x′) of the point
x = (x1, . . . , xd) in Rd, related to the Cartesian coordinates by the relations x1 =
r cos θ, x2 = r sin θ, x′ ∈ J . Entries like {θ = ϕ} mean the set of points in Rd with
polar coordinates (r, ϕ, x′), r ≥ 0, x′ ∈ J , where ϕ is �xed.

Let Ω = {S} is a set consisting of a �nite number of distinct circles S of the form
S = {(r0, θ,x′0) : 0 ≤ θ ≤ 2π} lying in D (here r0 > 0 and x′0 ∈ J are assumed to
be �xed). For arbitrary real numbers θj , j = 0, . . . , m− 1,

0 ≤ θ0 < θ1 < . . . < θm−1 < 2π,

denote by X = {xk}nk=1 the set of intersection points of circles from Ω with half
planes

Lj = {(r, θ,x′) : θ = θj},æ = 0, . . . ,m− 1.

We also denote the set of intersection points of circles from Ω with symmetrical
half-planes

L∗j = {(r, θ,x′) : θ = 2πj/m}, j = 0, . . . ,m− 1.

as X∗ = {x∗k}nk=1.
The following theorems show that for some choice of the charge ∆, the symmetric

con�guration can provide either the maximum or the minimum of the Neumann
energy En(X,∆, D).
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Theorem 1. Let D be the ball or the annulus, Ω, X and X∗ are de�ned above,
the charge ∆ = {δk}nk=1 takes the same values δk = δl at the points xk ∈ X and
xl ∈ X located on the same circle from Ω and

n∑
k=1

δk = 0.

In addition, let the points xk ∈ X and x∗k ∈ X∗ lie on the same circle in Ω,
k = 1, . . . , n. Then

En(X,∆, D) ≥ En(X∗,∆, D).

Theorem 2. Let D be the ball or the annulus, Ω, X, X∗, ∆ are de�ned above, m
is an even number and δk = −δl at points xk ∈ X and xl ∈ X lying on the same
circle from Ω and on neighboring half-planes from the collection {Lj}m−1j=0 . Then

En(X,∆, D) ≤ En(X∗,∆, D),

where the points X∗ are numbered as follows: if x∗k ∈ X∗ lies on the intersection of
circle S from Ω with the half-plane L∗j , then the corresponding point xk ∈ X must
lie at the intersection of S and the half-plane Lj, k = 1, . . . , n, 0 ≤ j ≤ m− 1.

Note that the theorems obtained in this paper are also valid when D is the
domain of rotation (the domain D ⊂ Rd is called domain of rotation with respect
to the J axis if the point (r, ϕ,x′) belongs to D for any point (r, θ,x′) ∈ B and any
ϕ).

Under the additional condition

(2)

n∑
k=1

δk = 0

we de�ne the function

u(x) = u(x;X,D,∆) =

n∑
k=1

δkN(x,xk, D),

which we call the potential Neumann function of the con�guration X, ∆, D. The
expansion of the potential function in a neighborhood of the point xk, k = 1, . . . , n,
follows directly from the de�nition

(3) u(x) = δk
µd(|x− xk|)

wd
+ ak + o(1), x→ xk,

where

ak = δk
v(xk,xk, D)

wd
+

n∑
l=1
l 6=k

δlN(xl,xk, D).

Sum

(4)

n∑
k=1

δkak =

n∑
k=1

n∑
l=1

ηkl(D)δkδl = En(X,∆, D) +

n∑
k=1

δ2kv(xk, xk, D)

wd

is a quadratic form of variables ∆ with coe�cients ηkl(D) depending on the Neumann
function. Denote this quadratic form by

(5) Qn(X,∆, D) =

n∑
k=1

n∑
l=1

ηkl(D)δkδl,
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where ηkl(D) = N(xk,xl, D), k 6= l, ηkk(D) = v(xk,xk, D)/wd.
Quadratic forms of this kind, as well as forms with coe�cients depending on

the Green or Robin functions, play an important role in the geometric theory of
functions. Various inequalities for such forms and their applications are found in
the works of Alenitsin, Nehari, Duren, Schi�er, Dubinin and other mathematicians
(see [9], [10], [11], [12]) . We prove that

Qn(X,∆, D) ≥ Qn(X∗,∆, D)

under the conditions of Theorem 1 and

Qn(X,∆, D) ≤ Qn(X∗,∆, D)

under the conditions of Theorem 2. To calculate the coe�cients of the quadratic
form Qn under the additional condition (2), we can use the generalized Neumann
function [13] instead of the classical one. The analytical expression of the quadratic
form Qn of a planar disk is known.The Neumann function of the unit disk U [2] is

N (z, z0, U) = − log |z − z0|1− zz0|
2π

,

so

ηkl(U) = − log |zk − zl|1− zkzl|
2π

, k 6= l,

ηkk(U) = − log(1− |zk|2)

2π
.

The coe�cients ηkl(K) of the quadratic form of the planar annulus K = {µ < |z| <
1} were given in [13]. Namely,

ηkl(K) =

{
− 1

2π log |θ1(i log(zkzl)/2;µ)θ1(i log(zk/zl)/2;µ)|, k 6= l,
1
2π log 4|zk|2| sin (i log |zk|)|

(1−|zk|2)| theta1(i log |zk|;µ)θ′1(0;µ)|
, k = l,

where

θ1(z;µ) = −i
∞∑

n=−∞
(−1)nµ(n+1/2)2ei(2n+1)z.

In the space of dimension d ≥ 3, we did not �nd in the literature an analytic
expression for the Neumann function of an annulus. For the unit ball U = B(0, 1)
the Neumann function was found in [2] and has the form

N(x,y, U) =
1

ωd

(
µd(|x− y|) + µd

(∣∣∣∣x|y| − y

|y|

∣∣∣∣)+ ε1(x,y)

)
+ Const,

where ε1(x,y) is given by the formulas

ε1(x,y) = log
2∣∣∣1− (x,y) +
∣∣∣x|y| − y

|y|

∣∣∣∣∣∣ , d = 3;

ε1(x,y) =
(x,y)√

|x|2|y|2 − (x,y)2
arctan

√
|x|2|y|2 − (x,y)2

1− (x,y)
− log

∣∣∣∣x|y| − y

|y|

∣∣∣∣, d = 4;
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ε1(x,y) = log
2∣∣∣1− (x,y) +
∣∣∣x|y| − y

|y|

∣∣∣∣∣∣ +

p−1∑
k=1

1

(2k − 1)

(∣∣∣∣x|y| − y

|y|

∣∣∣∣1−2k − 1

)

+

p−1∑
k=1

p−k−1∑
i=0

2i(k + i− 1)!(2k − 3)!!

(k − 1)!(2k + 2i− 1)!!

(x,y)|x|2i|y|2i

(|x|2|y|2 − (x,y)2)
i+1

 |x|2|y|2 − (x,y)∣∣∣x|y| − y
|y|

∣∣∣2k−1 + (x,y)

 ,

d ≥ 5, d = 2p+ 1, p ≥ 2;

ε1(x,y) = − log

∣∣∣∣x|y| − y

|y|

∣∣∣∣+

p−1∑
k=1

1

2k

(∣∣∣∣x|y| − y

|y|

∣∣∣∣−2k − 1

)

+ (x,y) arctan

√
|x|2|y|2 − (x,y)

2

(1− (x,y))

p−1∑
k=0

(2k − 1)!!

2kk!

|x|2k|y|2k

(|x|2|y|2 − (x,y)2)
k+ 1

2

+

p−1∑
k=1

p−k−1∑
i=0

(2k + 2i− 1)!!(k + 1)!

2i+1(2k − 1)!!(k + i)!

(x,y)|x|2i|y|2i

(|x|2|y|2 − (x,y)2)
i+1

 |x|2|y|2 − (x,y)∣∣∣x|y| − y
|y|

∣∣∣2k − (x,y)

 ,

d ≥ 6, d = 2p+ 2, p ≥ 2;

0! = 1, (−1)!! = 1.

2. Proof of Theorem 1.

Denote by Dr the domain obtained by removing from D balls with center xk
of radius r, Dr = D \ (∪nk=1B(xk, r))). Then the Dirichlet integral I(u,Dr) =∫
Dr
|∇u|2dx of the potential function satis�es the asymptotic formula [14, Lemma

2.1], [15, Lemma 1]

(6) I(u,Dr) =

(
n∑
k=1

δ2k

)
µd(r)

wd
+En(X,∆, D)+

n∑
k=1

δ2kv(xk,xk, D)

wd
+o(1), r → 0,

or

(7) I(u,Dr) =

(
n∑
k=1

δ2k

)
µd(r)

wd
+

n∑
k=1

δkak + o(1), r → 0.

The function v(x) is called admissible forD,X, ∆, if v(x) ∈ Lip in a neighborhood
of every point D, except perhaps for a �nite number of points, it is continuous in
D \

⋃n
k=1{xk}, and in a neighborhood of xk we have the asimptotic expansion

(8) v(x) = δk
µd(|x− xk|)

wd
+ bk + o(1), x→ xk.

For an admissible function v and the potential function u we have the asymptotics
[14, Lemma 2.2], [12, Lemma 2]

(9) I(v − u,Dr) = I(v,Dr)− I(u,Dr)− 2

n∑
k=1

δk(bk − ak) + o(1), r → 0.
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Let u1(x) be the potential Neumann function of X, ∆ and let u2(x) be the
potential Neumann function of X∗, ∆. We denote by Dis the dissymmetrization
described in the proof of Theorem 1 in [7]. In the domain D we construct the
function v(x) according to the rule

v(x) = u2(Dis−1(x)).

Since the con�guration X∗, ∆, D is symmetric, the function u2(x) is invariant
under any mapping from the symmetry group ϕ ∈ Φ involved in the de�nition of
the dissymmetrization Dis. Therefore v(x) is uniquely de�ned and it is admissible
for X, ∆. Since dissymmetrization is, in fact, a special permutation of angles, then

I(v,Dr) = I(u2, D
∗
r),

where D∗r = D \ (∪nk=1B(x∗k, r))). The relations (7), (9) imply

(10) 0 ≤ I(v,Dr)− I(u1, Dr)− 2

n∑
k=1

δk(bk − ak) + o(1) =

I(u2, Dr)− I(u1, Dr)− 2

n∑
k=1

δk(bk − ak) + o(1) =

n∑
k=1

δk(ak − bk) + o(1), r → 0,

(11)

n∑
k=1

δkbk ≤
n∑
k=1

δkak.

Here bk are the coe�cients of the asymptotic expansion of the potential function of
the symmetric con�guration, and ak correspond to the nonsymmetric con�guration.
Taking into account (4), we get

(12) En(X∗,∆, D) +

n∑
k=1

δ2kv(x∗k,x
∗
k, D)

wd
≤ En(X,∆, D) +

n∑
k=1

δ2kv(xk,xk, D)

wd
.

Since D is the ball or the annulus, v(x,x, D) = v(y,y, D) for any two points x,y,
on the same circle S from Ω. Therefore,

n∑
k=1

δ2kv(x∗k,x
∗
k, D)

wd
=

n∑
k=1

δ2kv(xk,xk, D)

wd
.

Thus, the inequality (12) proves Theorem 1.

3. Proof of Theorem 2.

Let us �rst prove an auxiliary lemma.

Lemma 1. Let Y = {yq}lq=1 be the set of points lying on the half-plane {θ = 0},
∆0 = {σq}lq=1 be some charge, 0 < α < π, D(α) = D ∩ {0 < θ < α}, Γ(α) =
∂D(α) ∩ {θ = α} or D(α) = D ∩ {−α < θ < 0}, Γ(α) = ∂D(α) ∩ {θ = −α}.
Consider the function hα(x) that satis�es the following conditions: it is harmonic

in D(α) except for the points of Y ; it is continuous in D(α)\Y ; this function is zero
on Γ(α); it has the zero derivative on the remainder of the boundary ∂D(α) \ Y ;
and the decomposition is true

(13) hα(x) = σq
µd(|x− yq|)

wd
+ cq(α) + o(1), x→ yq,
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in a neighborhood of the points yq. Then the function

f(α) =

l∑
q=1

σqcq(α)

is concave by 0 < α < π as a function of α.

Proof. Outside the domain D(α), we assume that the function hα is extended by
zero. In terms of [14], [15], the function hα(x) is called the potential function of the
collection D(α), Γ(α), Y, ∆0. Repeating the proof of Lemma 2.1 in [14] we get the
decomposition

(14) I(hα, D(α)r) =
1

2

(
l∑

q=1

σ2
q

)
µd(r)

wd
+

1

2

l∑
q=1

σqcq(α) + o(1), r → 0.

For 0 < α < β < π we construct in the domain D((α + β)/2) the function
v(α+β)/2(x) by rule

v(α+β)/2(x) =
hα(x) + hβ(x)− hβ(x∗)

2
,

where x∗ means the point symmetric to x with respect to the half-plane {θ =
(α + β)/2} (or {θ = −(α + β)/2}). The function v(α+β)/2(x) is admissible for
D((α+ β)/2), Γ((α+ β)/2)), Y, ∆0 and it has the decomposition

(15) v(α+β)/2(x) = σq
µd(|x− yq|)

wd
+
cq(α) + cq(β)

2
+ o(1), x→ yq.

Applying the analogue of the formula (9) (see the proof [15, Lemma 2], [14, Lemma
2.2]), we obtain

(16) 0 ≤ I(v(α+β)/2, D((α+ β)/2)r)− I(h(α+β)/2, D((α+ β)/2)r)−
l∑

q=1

σq

(
cq(α) + cq(β)

2
− cq

(
α+ β

2

))
+ o(1), r → 0.

From the de�nition of the function v(α+β)/2(x) and the modulus property of the

vector |x + y|2 ≤ 2(|x|2 + |y|2) follows

(17) I(v(α+β)/2, D((α+ β)/2)r) ≤
1

2

∫
D(α+β)/2

(|∇(hα(x)− hβ(x∗))|2)dx+

1

2

∫
D(α+β)/2

|∇hβ(x)|2dx =
1

2

∫
D(α)

|∇hα(x)|2dx +
1

2

∫
D(β)

|∇hβ(x)|2dx.

The relations (14), (16), (17) imply

l∑
q=1

σqcq(α) +

l∑
q=1

σqcq(β) ≤ 2

l∑
q=1

σqcq

(
α+ β

2

)
,

or
f(α) + f(β)

2
≤ f

(
α+ β

2

)
.

The last inequality means that the function f(α) is concave. The lemma is proved.
�
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Let us now proceed to the proof of Theorem 2. Note that the conditions of the
theorem guarantee that

∑n
k=1 δk = 0.We assume that θ0 = 0 and θm = 2π. Denote

by

Bj = D ∩ {θj ≤ θ ≤ θj+1},

B+
j = D ∩ {θj ≤ θ ≤

θj + θj+1

2
}, B−j = D ∩ {θj + θj+1

2
≤ θ ≤ θj+1},

αj =
θj+1 − θj

2
,

j = 0, . . . ,m − 1. Let Y = {yq}lq=1 are points from X lying on {θ = 0} and

∆0 = {σq}lq=1 are their corresponding charges (σq = δk if yq = xk). We denote by

h1α(x) the function hα(x) from Lemma 1 which de�ned by the set Y , the charge
∆0, the domain D(α) = D ∩ {0 < θ < α}. Similarly, let h2α(x) be de�ned by Y ,
−∆0 = {−σq}lq=1 and D(α) = D ∩ {0 < θ < α}. The function h3α(x) corresponds

to Y , −∆0 and D(α) = D ∩ {−α < θ < 0}, and the function h4α(x) corresponds to
Y , ∆0 and D(α) = D ∩ {−α < θ < 0}. We will denote by cpq(α) constant from the
expansion (13) of the function hpα(x), p = 1, 2, 3, 4.

We de�ne the functions

ψ+
j (x) = h1αj

(θj(x)),x ∈ B+
j , j = 0, 2, . . . ,m− 2,

ψ+
j (x) = h2αj

(θj(x)),x ∈ B+
j , j = 1, 3, . . . ,m− 1,

ψ−j (x) = h3αj
(θj+1(x)),x ∈ B−j , j = 0, 2, . . . ,m− 2,

ψ−j (x) = h4αj
(θj+1(x)),x ∈ B+

j , j = 1, 3, . . . ,m− 1,

where the notation ϕ(x) means rotation through the angle ϕ (namely ϕ(x) =
(r, θ − ϕ,x′) if x = (r, θ,x′)). In the domain Bj , j = 0, . . . ,m− 1, we also consider
the functions

ψj(x) =


ψ+
j (x),x ∈ B+

j ,

ψ−j (x),x ∈ B−j ,
0, x = (r, (θj + θj+1)/2, x′).

By construction, the function ψj(x) is harmonic in Bj , has a zero normal derivative
on the boundary of ∂Bj (except for the points of X), and a decomposition of type

(8) in a neighborhood of points X∩Bj . Let u(x) be the potential Neumann function

of X, ∆, and
∑j

δkak means the sum of those terms δkak that correspond to the
points xk ∈ Bj . Repeating the proof of Lemma 2.2 [14], we obtain

(18) 0 ≤ I(u, (Bj)r)− I(ψj , (Bj)r)−
j∑
δkak +

l∑
q=1

σqc
1
q(αj)+

l∑
q=1

(−σq)c3q(αj) + o(1), j = 0, . . . ,m− 2,

(19)

0 ≤ I(u, (Bj)r)− I(ψj , (Bj)r)−
j∑
δkak+

l∑
q=1

(−σq)c2q(αj)+

l∑
q=1

σqc
4
q(αj)+o(1),

j = 1, . . . ,m− 1.
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To get inequality

(20)

n∑
k=1

δkak ≤
1

2

∑
j=0,...,m−2

l∑
q=1

σqc
1
q(αj) +

1

2

∑
j=0,...,m−2

l∑
q=1

(−σq)c3q(αj)

+
1

2

∑
j=1,...,m−1

l∑
q=1

(−σq)c2q(αj) +
1

2

∑
j=1,...,m−1

l∑
q=1

σqc
4
q(αj),

we sum the inequalities (18), (19) over all j = 0, . . . ,m − 1, apply the expansion
(7) and equalities

I(ψj , (Bj)r) =

l∑
q=1

σ2
q

µd(r)

wd
+

1

2

l∑
q=1

σqc
1
q(αj) +

1

2

l∑
q=1

(−σq)c3q(αj) + o(1),

j = 0, . . . ,m− 2,

I(ψj , (Bj)r) =

l∑
q=1

σ2
q

µd(r)

wd
+

1

2

l∑
q=1

(−σq)c2q(αj) +
1

2

l∑
q=1

σqc
4
q(αj) + o(1),

j = 1, . . . ,m− 1,

m

l∑
q=1

σ2
q =

n∑
k=1

δ2k,

and also take into account the fact that each point xk ∈ X belongs to two closed
domains Bj . Further note that the de�nition of hα(x) given in Lemma 1 implies
the equalities h1α(x) = −h2α(x), h3α(x) = −h4α(x), Therefore,

l∑
q=1

σqc
1
q(αj) =

l∑
q=1

(−σq)c2q(αj),
l∑

q=1

σqc
4
q(αj) =

l∑
q=1

(−σq)c3q(αj).

In addition, there is the unique harmonic (except for points of Y ) function in the
domain B(α) = D ∩ {−α < θ < α} vanishing on ∂B(α) ∩ ({θ = α} ∪ {θ = −α}),
having zero normal derivative on the remaining part of the boundary ∂B(α) and
with expansion (13) in the neighborhood of yq, q = 1, . . . , l. This function coincides
with h1α(x) in the D ∩{0 < θ < α}, and it coincides with the function h4α(x) in the
D ∩ {−α < θ < 0}. Therefore c1q(α) = c4q(α) and the inequality (20) becomes

(21)

n∑
k=1

δkak ≤
m−1∑
j=0

l∑
q=1

σqc
1
q(αj) =

m−1∑
j=0

f(αj).

From (21), the concavity of the function f(α) due to Lemma 1, and the equality∑m
j=1 αj = π, we obtain the inequality

(22)

n∑
k=1

δkak ≤
m−1∑
j=0

f(αj) ≤ mf

(∑m−1
j=0 αj

m

)
= mf

( π
m

)
.

Now let u∗(x) be the potential Neumann function of X∗, ∆ and a∗k denote the
corresponding constants from the asymptotic expansion. Repeating the above proof
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withX replaced byX∗, it is easy to see that the equality sign holds in all inequalities
and

(23)

n∑
k=1

δka
∗
k = mf

( π
m

)
.

So the inequality (23) means

(24)

n∑
k=1

δkak ≤
n∑
k=1

δka
∗
k.

As noted in the proof of Theorem 1, (24) is equivalent to the required statement.
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