S@MR

ISSN 1813-3304

СИБИРСКИЕ ЭЛЕКТРОННЫЕ МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

Siberian Electronic Mathematical Reports http://semr.math.nsc.ru

Том 19, №1, стр. 138–163 (2022) DOI 10.33048/semi.2022.19.013 УДК 512.517 MSC 20H25

ONE NECESSARY CONDITION FOR THE REGULARITY OF A *p*-GROUP AND ITS APPLICATION TO WEHRFRITZ'S PROBLEM

S.G. KOLESNIKOV, V.M. LEONTIEV

ABSTRACT. We obtain a necessary condition for the regularity of a *p*group in terms of segments of P. Hall's collection formula. For any prime number *p* such that (p + 2)/3 is an integer, we prove that a Sylow *p*subgroup of the group $GL_n(\mathbb{Z}_{p^m})$ is not regular if $n \ge (p + 2)/3$ and $m \ge 3$. We also list all regular Sylow *p*-subgroups of the Chevalley group of type G_2 over the ring \mathbb{Z}_{p^m} .

Keywords: regular p-group, linear group, Chevalley group.

1. INTRODUCTION

In 1982, B. Wehrfritz posed a question in the Kourovka Notebook [1]: find n, m, pfor which a Sylow p-subgroup $P_n(\mathbb{Z}_{p^m})$ of the group $GL_n(\mathbb{Z}_{p^m})$ over the ring \mathbb{Z}_{p^m} of integers modulo p^m is regular. Recall that a finite p-group G is said to be regular if for every two elements $a, b \in G$ and every $n = p^k$ the equality $(ab)^n = a^n b^n S_1^n \dots S_t^n$ holds, where S_1, \dots, S_t are suitable elements of the derived subgroup of a group generated by the elements a and b [2, p. 205]. The answer to the question is known for the following cases: nm-1 < p (follows from the work by Yu. I. Merzlyakov [3]), $n \ge p+1$ (A. V. Yagzhev [4]), $n \ge (p+1)/2$ or $n^2 < p$ (S. G. Kolesnikov [5], [6]). In this work, a necessary condition of regularity is obtained, which allows to partially study the case $n \ge (p+1)/3$, and also to obtain a complete solution of the analogue of this question for a Sylow p-subgroup $P\Phi(\mathbb{Z}_{p^m})$ of the Chevalley group $\Phi(\mathbb{Z}_{p^m})$ for Φ of type G_2 .

Kolesnikov, S.G., Leontiev, V.M., One necessary condition for the regularity of a p-group and its application to Wehrfritz's problem.

^{© 2022} Kolesnikov S.G., Leontiev V.M.

This work is supported by the Krasnoyarsk Mathematical Center and financed by the Ministry of Science and Higher Education of the Russian Federation (Agreement No. 075-02-2022-876).

Received December, 4, 2021, published March, 5, 2022.

Theorem 1. If a finite p-group G is regular, then for every $a, b \in G$ there exists an element $d \in \langle a, b \rangle'$ such that

$$d^p = \prod R_i^{f_i(p)},$$

where the product is taken over all commutators R_i of weight $w(R_i) \ge p$ from the *P*. Hall's collection formula. In particular, for every non-negative integer *j*

$$d^p\equiv\prod_{p\leqslant w(R_i)\leqslant p+j}R_i^{f_i(p)} \ (\mathrm{mod}\ G^{(p+j+1)}),$$

where $G^{(p+j+1)}$ is the (p+j+1)-th term of the lower central series of the group G.

Theorem 1 and Theorem 3 in [7] imply

Corollary 1. Let G be a regular p-group, p > 2, and $a, b \in G$. Suppose that every commutator of a and b:

1) that has more than two entries of b, equals 1,

2) weighting more than p-1, has an order 1 or p.

Then there exists an element $d \in \langle a, b \rangle'$ such that

$$d^{p} \equiv [b, p-1a] [b, p-2a, b]^{-1} \prod_{v=1}^{(p-3)/2} [[b, p-2-va], [b, va]]^{(-1)^{v+1}} \pmod{G^{(p+1)}}.$$

Theorem 2. Let p be such an odd prime number that the number (p+2)/3 is an integer. Then the group $P_n(\mathbb{Z}_{p^m})$ is not regular if $n \ge (p+2)/3$ and $m \ge 3$.

Moreover, in [8] it is shown that the groups $P_n(\mathbb{Z}_{p^m})$ for $m \ge 2$, $p \ge 5$, $n \le (p-1)/2$ satisfy the conditions of regularity listed in [2].

Theorem 3. A group $PG_2(\mathbb{Z}_{p^m})$ is regular if and only if $p \ge 17$ or $(m, p) \in \{(1,7), (1,11), (1,13), (2,13)\}.$

2. PROOF OF THEOREM 1 AND COROLLARY 1. AUXILIARY STATEMENTS

We will now prove Theorem 1. Suppose that $a, b \in G$. By Theorem 12.4.2 from [2], there exists an element $c \in \langle a, b \rangle'$ such that $(ab)^p = a^p b^p c^p$. On the other hand, according to [9, Theorem 3.1], there exists a sequence of commutators R_i of a and b, ordered by weight, and a sequence of integers $f_i(p)$, such that

$$(ab)^p = a^p b^p \prod_{2 \leqslant w(R_i) < p} R_i^{f_i(p)} \prod_{w(R_i) \ge p} R_i^{f_i(p)}.$$

Since the group G is regular and the exponents $f_i(p)$ are multiples of p, when $2 \leq w(R_i) < p$, then by Corollary 12.4.1 from [2] there exists an element $u \in \langle a, b \rangle'$ such that

$$u^p = \prod_{2 \leqslant w(R_i) < p} R_i^{f_i(p)}.$$

Therefore,

$$a^p b^p c^p = a^p b^p u^p \prod_{2 \leqslant w(R_i) < p} R_i^{f_i(p)}$$

or

$$\prod_{2 \leq w(R_i) < p} R_i^{f_i(p)} = (u^{-1})^p c^p = d^p$$

for some $d \in \langle a, b \rangle'$. Theorem 1 is proved.

Remark. For every integer m and every non-negative integer n, we use a classic definition of a binomial coefficient:

$$\binom{n}{m} = \begin{cases} \frac{1}{m!} \prod_{i=0}^{m-1} (n-i), & \text{if } m \ge 0; \\ 0, & \text{if } m < 0. \end{cases}$$

For such definition, the following relation holds: $\binom{n}{m} + \binom{n}{m+1} = \binom{n+1}{m+1}$. We will prove Corollary 1. According to [7, Theorem 3], the P. Hall's collection formula given the condition 1) of the corollary is reduced to the form

 $(ab)^n$

$$=a^{p}b^{p}\prod_{u=1}^{p-1}[b,{}_{u}a]^{\binom{p}{u+1}}\prod_{u=1}^{p-1}[b,{}_{u}a,b]^{p\binom{p}{u+1}-\binom{p+1}{u+2}}\prod_{1\leqslant v< u\leqslant p-1}[[b,{}_{u}a],[b,{}_{v}a]]^{g_{p}(u,v)},$$

where

$$g_p(u,v) = \sum_{m=1}^{p-1} \sum_{k=1}^{v} \sum_{i=v-k}^{p-m-k} {i \choose u-k+1} {p-m-i-1 \choose k-1} {i \choose v-k} + \sum_{m=1}^{p-2} \sum_{k=m+1}^{p-1} {m \choose v} {k \choose u}.$$

By condition 2) of the corollary, all commutators weighting more than p-1have an order 1 or p. We will calculate modulo p the exponents of all commutators of weight p, occurring in the collection formula. The first and the second products contain one commutator of weight p each. That is [b, p-1a] and [b, p-2a, b] respectively. The exponent of the first commutator equals $\binom{p}{p} = 1$. For the second one, we have

$$p\binom{p}{p-1} - \binom{p+1}{p} = p^2 - p - 1 \equiv -1 \pmod{p}.$$

Consider the latter product. The commutators of weight p, occurring in it, are as follows: [[b, p-2-va], [b, va]], where $v = 1, \ldots, (p-3)/2$. According to [10, Theorem 1], the function $g_p(u, v)$ admits representation

$$g_p(u,v) = \sum_{k=1}^{v} \sum_{s=0}^{v-k} {\binom{u-k+1+s}{v-k} \binom{v-k}{s} \binom{p}{u+s+2}} + \sum_{i=0}^{v+1} {\binom{p+i}{u+i+1} \binom{p}{v+1-i}}$$

Therefore,

$$g_p(p-2-v,v) = \sum_{k=1}^{v} \sum_{s=0}^{v-k} {t+s-k-1 \choose v-k} {v-k \choose s} {p \choose t+s} + \sum_{i=0}^{v+1} (-1)^i {p+i \choose t+i-1} {p \choose v+1-i},$$

where t = p - v. The inequality $1 \le v \le (p-3)/2$ yields that $(p+3)/2 \le p + s - v \le v$ p-1 and $0 \leq v+1-i \leq (p-1)/2$. Hence, in the double sum the binomial coefficient $\binom{p}{t+s} = \binom{p}{p+s-v}$ is always a multiple of p. In the single sum, the binomial coefficient

 $\binom{p}{v+1-i}$ is not a multiple of p only in the case when v+1-i=0. Therefore,

$$g_p(p-2-v,v) \equiv (-1)^{v+1} \binom{p+v+1}{p} \binom{p}{0} \equiv \\ \equiv (-1)^{v+1} \frac{(p+1)\dots(p+v+1)}{(v+1)!} \equiv (-1)^{v+1} \frac{(v+1)!}{(v+1)!} \equiv (-1)^{v+1} \pmod{p}.$$

Now, Corollary 1 follows from Theorem 1.

To prove Theorems 2 and 3, we will need the following statements.

Lemma 1. Let G be a group, $y_1, \ldots, y_s \in G$, $s \ge 2$. Assume that the nilpotency class of the subgroup $H = \langle y_1, \ldots, y_s \rangle$ equals 2. Then for every natural number n, the following equality holds:

$$(y_1 \dots y_s)^n = y_1^n \dots y_s^n \prod_{1 \leq i < j \leq s} [y_j, y_i]^{\binom{n}{2}}.$$

Proof. Induction on n. Since the nilpotency class of H equals 2, we have

$$(y_1 \dots y_s)^{n+1} = y_1^n \dots y_s^n \cdot \left(\prod_{1 \le i < j \le s} [y_j, y_i]^{\binom{n}{2}}\right) \cdot y_1 \dots y_s =$$
$$= y_1^n \dots y_s^n \cdot y_1 \dots y_s \cdot \prod_{1 \le i < j \le s} [y_j, y_i]^{\binom{n}{2}}.$$

Using the relation $y_j^n y_i = y_i y_j^n [y_j, y_i]^n$ which follows from the condition of the lemma, we collect the terms in the right-hand side in order y_1, \ldots, y_s . Then, taking into account the permutability of the commutators, we convert the obtained expression into the form

$$(y_1 \dots y_s)^{n+1} = y_1^{n+1} \dots y_s^{n+1} \prod_{1 \le i < j \le s} [y_j, y_i]^{\binom{n}{2}+n}.$$

The equalities $\binom{n}{2} + n = \binom{n}{2} + \binom{n}{1} = \binom{n+1}{2}$ complete the proof.

Corollary 2. Let the subgroup H from Lemma 1 be a p-group, p > 2, with an elementary Abelian derived subgroup, and number n is a multiple of p. Then for any integer $\alpha_1, \ldots, \alpha_s$ and every permutation π on the set $\{1, \ldots, s\}$, we have

$$(y_1^{\alpha_1}\dots y_s^{\alpha_s})^n = \left(y_{\pi(1)}^{\alpha_{\pi(1)}}\dots y_{\pi(s)}^{\alpha_{\pi(s)}}\right)^n = y_1^{n\alpha_1}\dots y_s^{n\alpha_s}.$$

If for some *i* additionally $y_i^n = 1$ or $y_i^p \in H'$ and α_i is a multiple of *p*, then

$$(y_1^{\alpha_1}\dots y_i^{\alpha_i}\dots y_s^{\alpha_s})^n = (y_1^{\alpha_1}\dots \hat{y}_i^{\alpha_i}\dots y_s^{\alpha_s})^n.$$

Here the superscript ^ marks the absence of this element in the product.

3. Sylow p-subgroups of the groups $GL_n(\mathbb{Z}_{p^m})$ and $\Phi(\mathbb{Z}_{p^m})$

Following [3], we define the sequence of functions f_n , n = 1, 2, ..., of natural arguments i, j, k, setting that

$$f_n(i,j,k) = -\left[\frac{i-j-k}{n}\right],$$

here [x] is the integer part of number x (the closest integer to x on the left). By J we denote the ideal of the ring \mathbb{Z}_{p^m} , generated by the element p, and by E the identity matrix of order n. We select in $GL_n(\mathbb{Z}_{p^m})$ the subgroups

$$G^{(k)} = \langle E + A \mid A = (a_{ij}), \ a_{ij} \in J^{f_n(i,j,k)}, \ 1 \le i, j \le n \rangle, \qquad k = 1, 2, \dots$$

From here on we set by definition $J^0 = \mathbb{Z}_{p^m}$. According to [3], $G^{(1)}$ is isomorphic to the group

$$P_n(\mathbb{Z}_{p^m}) = \{ E + (a_{ij}) \mid a_{ij} \in \mathbb{Z}_{p^m} \text{ for } i > j; a_{ij} \in J, \text{ for } i \leqslant j \},$$

and the sequence

$$G^{(1)} \supset G^{(2)} \supset \ldots \supset G^{(mn-1)} \supset \langle E \rangle$$

is its lower central series, if p > 2. Moreover, for every prime p and every natural k, l, the following relation holds:

(1)
$$\left[G^{(k)}, G^{(l)}\right] \subseteq G^{(k+l)}.$$

In [8, Lemma 2], it was shown that if $A = (a_{ij})$, $B = (b_{ij})$ are such matrices that $a_{ij} \in J^{f_n(i,j,k)}$ and $b_{ij} \in J^{f_n(i,j,l)}$, then the elements c_{ij} of the matrix C = ABbelong to the ideals $J^{f_n(i,j,k+l)}$. This and the properties of divisibility of binomial coefficients easily yield

Lemma 2. If p > n, then for every natural k the following inclusion holds: $[G^{(k)}]^p \subseteq G^{(k+n)}$.

Let Φ be an arbitrary reduced indecomposable root system. In the Chevalley group $\Phi(\mathbb{Z}_{p^m})$, we select a sequence of subgroups (k = 1, 2, ...)

$$S^{(k)} = \langle x_r(t), h_s(1+u) \mid r, s \in \Phi, \ t \in J^{f(r,k)}, u \in J^{f(0,k)} \rangle,$$

where the function f(r, k) is defined on the set $\Phi_0 \times \mathbb{N}$, $\Phi_0 = \Phi \cup \{0\}$, by the equality $f(r, k) = -[(\operatorname{ht}(r) - k)/h]$. Here $\operatorname{ht}(r)$ is theroot height function, $\operatorname{ht}(0) = 0$, h is the Coxeter number of the root system Φ . According to [11], the group $S^{(1)}$ is isomorphic to the Sylow *p*-subgroup

$$P\Phi(\mathbb{Z}_{p^m}) = \langle x_r(\mathbb{Z}_{p^m}), x_{-r}(J), h_r(1+J) \mid r \in \Phi^+ \rangle,$$

of the Chevalley group $\Phi(\mathbb{Z}_{p^m})$, and the sequence

$$S^{(1)} \supset S^{(2)} \dots \supset S^{(mh)} = \langle 1 \rangle$$

is its lower central series, if p does not divide $p(\Phi)!$, where

$$p(\Phi) = \max\{(r, r)/(s, s) \mid r, s \in \Phi\}.$$

As above, for every prime p and every natural k, l, the following relation holds:

(2)
$$\left[S^{(k)}, S^{(l)}\right] \subseteq S^{(k+l)}$$

Recall that in the group $P\Phi(\mathbb{Z}_{p^m})$ the following relations are satisfied: $(r, s \in \Phi)$ 1) additive property of root elements:

$$x_r(t)x_r(u) = x_r(t+u), \qquad t, u \in J^{f(r,1)};$$

2) multiplicative property of diagonal elements:

$$h_r(t)h_r(u) = h_r(tu), \qquad t, u \in 1 + J^{f(0,1)};$$

3) relations between root and diagonal elements:

$$[x_r(t), h_s(u)] = x_r(t(u^{(r,h_s)} - 1)), \qquad t \in J^{f(r,1)}, u \in J^{f(0,1)};$$

4) Chevalley's commutator formula:

$$[x_s(u), x_r(t)] = \prod_{\substack{ir + js \in \Phi, \\ i, j > 0}} x_{ir+js \in \Phi}(C_{ij,rs}(-t)^i u^j), \quad t \in J^{f(r,1)}, u \in J^{f(s,1)};$$

5) relations between the opposite root elements:

$$[x_r(t), x_{-r}(u)] = x_r(c^{-1}t^2u)h_r(c)x_{-r}(-c^{-1}tu^2), \quad c = 1 - tu, t \in J^{f(r,1)}, u \in J^{f(-r,1)}.$$

The analogue of Lemma 2 for Sylow p-subgroups of Chevalley groups is

Lemma 3. If p > h, then for every natural number k the following inclusion holds: $[S^{(k)}]^p \subseteq S^{(k+h)}$.

Proof. Induction on k. We have

$$\left[S^{(mh)}\right]^p \subseteq \left[\langle 1 \rangle\right]^p = \langle 1 \rangle = S^{(mh+h)}$$

Suppose that $1 \leq k < mh$ and $y \in S^{(k)}$. Then

$$y = \prod_{i=1}^{l} x_{r_i}(t_i) \prod_{j=1}^{q} h_{s_j}(1+z_j),$$

where $r_i \in \Phi$, $t_i \in J^{f(r_i,k)}$ and $s_j \in \Pi(\Phi)$, $z_j \in J^{f(0,k)}$. We will show that $y^p \in S^{(k+h)}$. According to [2, Theorem 12.3.1],

$$y^{p} = \prod_{i=1}^{l} x_{r_{i}}(t_{i})^{p} \prod_{j=1}^{q} h_{s_{j}}(1+z_{j})^{p} \cdot c_{1}^{\alpha_{1}} \dots c_{u}^{\alpha_{u}} \cdot c_{u+1}^{\alpha_{u+1}} \dots c_{u+v}^{\alpha_{u+v}},$$

where the wights of the commutators c_1, \ldots, c_u are from 2 to p-1, and the numbers $\alpha_1, \ldots, \alpha_u$ are multiplies of p, the weights of the commutators c_{u+1}, \ldots, c_{u+v} exceed p-1. Since $f(r_i, k) + 1 = f(r_i, k+h)$, we have that

$$pt_i \in pJ^{f(r_i,k)} = J^{f(r_i,k)+1} = J^{f(r_i,k+h)}$$

and therefore $x_{r_i}(t_i)^p = x_{r_i}(pt_i) \in S^{(k+h)}$.

Next, the function f(0, k) satisfies the following inequalities:

1) $f(0,k_1) + f(0,k_2) \ge f(0,k_1+k_2)$ for every $k_1, k_2 \in \mathbb{N}$;

2) $f(0,k_1) \ge f(0,k_2)$, if $k_1 \ge k_2$.

Also from the condition p > h, it follows that $kp \ge k + h$. Hence, $f(0,k)p \ge f(0,kp) \ge f(0,k+h)$. From here,

$$(1+z_j)^p = 1 + \sum_{w=1}^{p-1} {\binom{w}{p}} z_j^w + z_j^p \in 1 + \sum_{w=1}^{p-1} p J^{f(0,k)w} + J^{f(0,k)p} \subseteq 1 + J^{f(0,k+h)}$$

and therefore, $h_{s_i}(1+z_j)^p \in S^{(k+h)}$.

The commutators c_1, \ldots, c_u belong to $S^{(2k)} \subseteq S^{(k+1)}$, hence, $c_1^{\alpha_1}, \ldots, c_u^{\alpha_u} \in S^{(k+1+h)} \subseteq S^{(k+h)}$ by the induction assumption. Finally, from relation (2) it follows that $c_{u+1}, \ldots, c_{u+v} \in S^{(kp)} \subseteq S^{(k+h)}$.

We denote by $K_n(J^k)$ and $\Phi(J^k)$ respectively the congruence subgroups of the groups $GL_n(\mathbb{Z}_{p^m})$ and $\Phi(\mathbb{Z}_{p^m})$, which are defined as the kernels of the homomorphisms $GL_n(\mathbb{Z}_{p^m}) \to GL_n(\mathbb{Z}_{p^{m-k}})$ and $\Phi(\mathbb{Z}_{p^m}) \to \Phi(\mathbb{Z}_{p^{m-k}})$, induced by the ring homomorphism $\mathbb{Z}_{p^m} \to \mathbb{Z}_{p^{m-k}}$. Relations 1) of the following lemma can be found in [3] and [11], relations 2) are easily established by the methods used in the proofs of Lemmas 2 and 3.

Lemma 4. The following inclusions hold:

1)
$$[K_n(J^k), K_n(J^l)] \subseteq K_n(J^{k+l}), \ [\Phi(J^k), \Phi(J^l)] \subseteq \Phi(J^{k+l});$$

2) $[K_n(J^k)]^p \subseteq K_n(J^{k+1}), \ [\Phi(J^k)]^p \subseteq \Phi(J^{k+1}).$

4. PROOF OF THEOREM 2.

Since the regularity property is inherited by subgroups and quotient groups, to prove Theorem 2, it suffices to establish the nonregularity of the group $P_{(p+2)/3}(\mathbb{Z}_{p^3})$. We will need a number of auxiliary statements.

Lemma 5. For every E + X, $E + Y \in P_n(\mathbb{Z}_{p^m})$, the following identity holds

(3)
$$[E+X, E+Y] = E + \sum_{k=2}^{\infty} \sum_{t=0}^{k-2} (-1)^k X^t Y^{k-t-2}(X, Y),$$

where (X, Y) = XY - YX.

Proof. Due to nilpotency of the matrices X and Y, we have

$$[E + X, E + Y] = \left(\sum_{i=0}^{\infty} (-X)^i\right) \left(\sum_{j=0}^{\infty} (-Y)^j\right) (E + X)(E + Y).$$

Opening the brackets, we obtain a sum of homogeneous polynomials $f_k(X, Y)$ of degree k, moreover, it is obvious that $f_0(X, Y) = E$ and $f_1(X, Y) = O$, where O is a zero matrix. We fix $k \ge 2$. Then

$$f_k(X,Y) = (-X)^k + (-X)^{k-1}(-Y) + (-X)^{k-1}X + (-X)^{k-1}Y + \sum_{t=0}^{k-2} (-X)^t \left((-Y)^{k-t} + (-Y)^{k-t-1}X + (-Y)^{k-t-1}Y + (-Y)^{k-t-2}XY \right) = \sum_{t=0}^{k-2} (-1)^k X^t Y^{k-t-2}(X,Y).$$

Substituting X with pX in (3), the commutator [E+pX, E+Y] can be represented in the form of a series by exponents of p with coefficients depending on X and Y. Next, we will be interested in the coefficient of the term p in the decomposition of the complex commutators.

Lemma 6. Suppose that $E + pB, E + A \in P_n(\mathbb{Z}_{p^m})$. The coefficient of p in the expansion of the commutator $[E + pB, {}_sE + A], s \in \mathbb{N}$, in powers of p equals

(4)
$$F(s) = \sum_{j=0}^{s-1} \sum_{k=j}^{\infty} (-1)^k \binom{s-1}{j} \binom{s+k-j-1}{s-1} A^k(B,A) A^{s-j-1}.$$

Proof. Induction on s. By Lemma 5,

$$[E+pB, E+A] = E + \sum_{k=2}^{\infty} \sum_{t=0}^{k-2} (-1)^k (pB)^t A^{k-t-2} (pB, A)$$
$$= E + p \sum_{k=2}^{\infty} (-1)^k A^{k-2} (B, A) + \dots = E + p \sum_{k=0}^{\infty} (-1)^k A^k (B, A) + \dots$$

The obtained coefficient of p, obviously equals the expression (4), if in the latter one we take s = 1.

Suppose that $s \ge 1$. To calculate the coefficient at p in the expansion of the commutator $[E+pB_{,s+1}E+A]$ in powers of p, we will use the inductive assumption and substitute B in the sum

$$\sum_{k=0}^{\infty} (-1)^k A^k(B,A)$$

with the expression (4). We will transform the obtained multiple sum by opening the outer Lie commutator:

$$\begin{split} \sum_{t=0}^{\infty} \sum_{j=0}^{s-1} \sum_{k=j}^{\infty} (-1)^k \binom{s-1}{j} \binom{s+k-j-1}{s-1} A^t (A^k(B,A)A^{s-j-1},A) \\ &= \sum_{t=0}^{\infty} \sum_{j=0}^{s-1} \sum_{k=j}^{\infty} (-1)^{t+k} \binom{s-1}{j} \binom{s+k-j-1}{s-1} A^{t+k}(B,A)A^{s-j} \\ &+ \sum_{t=0}^{\infty} \sum_{j=0}^{s-1} \sum_{k=j}^{\infty} (-1)^{t+k+1} \binom{s-1}{j} \binom{s+k-j-1}{s-1} A^{t+k+1}(B,A)A^{s-j-1}. \end{split}$$

We fix the number $j', 0 \leq j' \leq s$, and the number $k', k' \geq j'$. The coefficient at $A^{k'}(B, A)A^{s-j'}$ equals:

$$\sum_{t=0}^{k'} (-1)^{k'} \binom{s-1}{0} \binom{s+k'-t-1}{s-1} = (-1)^{k'} \binom{s}{0} \sum_{t=0}^{k'} \binom{s-1+k'-t}{s-1} = (-1)^{k'} \binom{s}{0} \binom{s+k'}{s-1} = (-1)^{k'} \binom{s}{j'} \binom{s+k'-j'}{s},$$

if j' = 0;

$$\sum_{t=0}^{k'-s} (-1)^{k'} \binom{s-1}{s-1} \binom{s+k'-s-t-1}{s-1} = \binom{s}{s} \sum_{t=0}^{k'-s} (-1)^{k'} \binom{k'-t-1}{s-1} = (-1)^{k'} \binom{s}{s} \binom{k'}{s} = (-1)^{k'} \binom{s}{j'} \binom{s+k'-j'}{s},$$

$$\begin{split} &\text{if } j' = s; \\ &\sum_{t=0}^{k'-j'} (-1)^{k'} \binom{s-1}{j'} \binom{s+k'-j'-t-1}{s-1} \left(\binom{s-1}{j'} + \binom{s-1}{j'-1} \right) \\ &= (-1)^{k'} \binom{s}{j'} \sum_{t=0}^{k'-j'} \binom{s-1+k'-j'-t}{s-1} = (-1)^{k'} \binom{s}{j'} \binom{s+k'-j'}{s}, \end{split}$$

where 0 < j' < s. Therefore, the coefficient at $A^{k'}(B, A)A^{s-j'}$ in all cases equals

$$(-1)^{k'} \binom{s}{j'} \binom{s+k'-j'}{s}.$$

Next, we assume that $n \ge 3$. The matrix of order n with one in position (i, j), where $1 \le i, j \le n$, and zeros elsewhere will be denoted by e_{ij} and referred to as an matrix unit. Recall that the following formula of multiplication of matrix units is true:

$$e_{ij}e_{ts} = \delta_{jt}e_{is},$$

where δ_{ij} is the Kronecker delta. We also agree to consider: $e_{ij} = O$, if $i \notin \{1, \ldots, n\}$ or $j \notin \{1, \ldots, n\}$. A sum with a lower limit exceeding the upper one is considered to be zero (is a zero matrix).

We fix the following matrices till the end of the paragraph

$$A = e_{21} + e_{32} + \ldots + e_{n,n-1}, \qquad B = e_{1n}.$$

In the following lemmas, we calculate the product from the Corollary 1 and study the derived subgroup of the group generated by the elements E + pB and E + A.

Lemma 7. For every natural s, the following equality holds:

$$F(s) = \sum_{j=0}^{s} \sum_{k=j}^{n-1} (-1)^k \binom{s}{j} \binom{s+k-j-1}{s-1} e_{k+1,n-s+j}.$$

Proof. Taking into account the above-mentioned agreements, for every non-negative integer k we have

$$A^k = \sum_{t=k+1}^n e_{t,t-k}.$$

Therefore,

$$A^{k}(B,A)A^{s-j-1} = \left(\sum_{t=k+1}^{n} e_{t,t-k}\right)(e_{1,n-1} - e_{2n})\left(\sum_{t=s-j}^{n} e_{t,t-s+j+1}\right) = e_{k+1,n-s+j} - e_{k+2,n-s+j+1}$$

Substitute into (4) and break into two sums

$$F(s) = \sum_{j=0}^{s-1} \sum_{k=j}^{n-1} (-1)^k {\binom{s-1}{j}} {\binom{s-1+k-j}{s-1}} e_{k+1,n-s+j} - \sum_{j=0}^{s-1} \sum_{k=j}^{n-1} (-1)^k {\binom{s-1}{j}} {\binom{s-1+k-j}{s-1}} e_{k+2,n-s+j+1}.$$

In the second double sum, we substitute k with k-1 and j with j-1:

$$F(s) = \sum_{j=0}^{s-1} \sum_{k=j}^{n-1} (-1)^k {\binom{s-1}{j}} {\binom{s-1+k-j}{s-1}} e_{k+1,n-s+j} + \sum_{j=1}^s \sum_{k=j}^{n-1} (-1)^k {\binom{s-1}{j-1}} {\binom{s-1+k-j}{s-1}} e_{k+1,n-s+j}.$$

Since $\binom{s-1}{s} = \binom{s-1}{-1} = 0$, we extend the summation over j in the first sum to j = s and the summation over j in the second one to j = 0 and summarize them

$$F(s) = \sum_{j=0}^{s} \sum_{k=j}^{n-1} (-1)^k \left[\binom{s-1}{j} + \binom{s-1}{j-1} \right] \binom{s-1+k-j}{s-1} e_{k+1,n-s+j}$$
$$= \sum_{j=0}^{s} \sum_{k=j}^{n-1} (-1)^k \binom{s}{j} \binom{s+k-j-1}{s-1} e_{k+1,n-s+j}.$$

Note that the arbitrary element E+C from the group $P_n(\mathbb{Z}_{p^m})$ can be represented (of course, not in a unique way) in the form

$$E + C = E + p^0 C_0 + p C_1 + \ldots + p^{m-1} C_{m-1}.$$

The following simple lemma often simplifies the calculations in $P_n(\mathbb{Z}_{p^3})$.

Lemma 8. Suppose that $E + pX + p^2Y$, $E + pU + p^2V \in P_n(\mathbb{Z}_{p^3})$. Then

- 1) $(E + pX + p^2Y)^{-1} = E pX p^2Y + p^2X^2;$
- $2) \ (E+pX+p^2Y)^p = E+p^2X;$
- 3) $[E + pX + p^2Y, E + pU + p^2V] = E + p^2(X, U).$

Lemma 9. Suppose that a prime p is such that n = (p+2)/3 is an integer. In the group $P_n(\mathbb{Z}_{p^3})$, the following equality holds

$$\begin{split} [E+pB,{}_{p-1}E+A]\,[E+pB,{}_{p-2}E+A,E+pB]^{-1} \\ \times \prod_{s=1}^{(p-3)/2}\,\,[[E+pB,{}_{p-2-s}E+A],[E+pB,{}_{s}E+A]]^{(-1)^{s+1}} \\ &= \alpha e_{n,1} - p^2 e_{n,2} - p^2 e_{n-1,1}, \end{split}$$

where $\alpha \in \mathbb{Z}_{p^3}$.

Proof. First, we will show that $[E + pB, {}_{s}E + A] = E$, if $s \ge 2n$. In particular, $[E + pB, {}_{p-1}E + A] = E$, since $p \ge 7$, and therefore $n \ge 3$, hence,

 $p-1 = 3n-3 = 2n + (n-3) \ge 2n.$

We introduce the following notation:

$$\phi(x, {}^{r}y) = [x, y], \quad \phi(x, {}^{l}y) = [y, x]$$

by induction for $q \ge 2$, we put

$$\phi(x, {}^{\alpha_1}y_1, \dots, {}^{\alpha_q}y_q) = \phi(\phi(x, {}^{\alpha_1}y_1, \dots, {}^{\alpha_{q-1}}y_{q-1}), {}^{\alpha_q}y_q),$$

where $\alpha_i = r$ or $\alpha_i = l$.

We decompose the matrices E + A and E + pB into the product of transvections:

$$E + A = t_{21}(1)t_{32}(1)\dots t_{n,n-1}(1), \quad E + pB = t_{1n}(p).$$

Commutator identities

$$[x, yz] = [x, y][x, y, z][x, z], \quad [yz, x] = [z, x][z, [x, y]][y, x],$$

yield that $[E + pB, {}_{s}E + A]$ can be factorized into a commutator product of the form

(5)
$$\phi(t_{1n}(p), {}^{\alpha_1}t_{i_1, i_1-1}(1), \dots, {}^{\alpha_q}t_{i_q, i_q-1}(1)), \qquad q \ge s$$

We study in detail the expression (5). The relation

(6)
$$[t_{ij}(\alpha), t_{km}(\beta)] =$$
$$= (1 - \delta_{jk})(1 - \delta_{im})E + \delta_{jk}(1 - \delta_{im})t_{im}(\alpha\beta) + \delta_{im}(1 - \delta_{jk})t_{kj}(-\alpha\beta),$$

that holds when $j \neq k$ or $i \neq m$, implies that if we commute transvections with differences between the first and second indices being equal to s_1 and s_2 , we obtain the identity matrix, or a transvection with index difference $s_1 + s_2$. Therefore, the expression (5) for q = n - 2 is an identity matrix, or a transvection with index difference that equals -1, that is,

$$\phi(t_{1n}(p), {}^{\alpha_1}t_{i_1, i_1-1}(1), \dots, {}^{\alpha_{n-2}}t_{i_{n-2}, i_{n-2}-1}(1)) = t_{i,i+1}(\epsilon_i p),$$

where $\epsilon_i = 0$ or $\epsilon_i = \pm 1$ for some *i*. Next, using the relation

(7)
$$[t_{ij}(\alpha), t_{ji}(\beta)] = t_{ij}(c^{-1}\alpha^2\beta)d_{ij}(c)t_{ji}(-c^{-1}\alpha\beta^2),$$

where $d_{ij}(c) = E + (c-1)e_{ii} + (c^{-1}-1)e_{jj}$, that holds if the element $c = 1 - \alpha\beta$ is invertible (in this case that is true, since $c \equiv 1 \pmod{p}$), we obtain

(8)
$$[t_{i,i-1}(\epsilon_i p), t_{i_{n-1},i_{n-1}-1}(1)] =$$

= $(1 - \delta_{i,i_{n-1}})E + \delta_{i,i_{n-1}}t_{i,i+1}(\epsilon_i^2 p^2)d_{i,i+1}(1 - \epsilon_i p)t_{i+1,i}(-\epsilon_i p(1 - \epsilon_i p)^{-1}).$

Here we used the fact that $p^3 = 0$ in \mathbb{Z}_{p^3} and therefore, $\epsilon_i^2 p^2 (1 - \epsilon_i p)^{-1} = \epsilon_i^2 p^2$. Finally, the relations (6), (7) and

(9)
$$[t_{km}(\alpha), \operatorname{diag}(\beta_1, \dots, \beta_n)] = t_{km}(\alpha(\beta_m \beta_k^{-1} - 1))$$

show that commuting (8) with the transvection $t_{i_n,i_n-1}(1)$ yields: the identity matrix if $i_n \neq i-1, i, i+1$; the matrix from the unitriangular group $UT_n(\mathbb{Z}_{p^3})$ if $i_n = i - 1, i+1$; and finally, the matrix $d_{i,i+1}(1 - \epsilon_i^2 p^2)\theta$, where $\theta \in UT_n(\mathbb{Z}_{p^3})$, if $i_n = i$. This and (9) yield that the expression (5) given q = n + 1 belongs to $UT_n(\mathbb{Z}_{p^3})$ and equals E given q = 2n, since the group $UT_n(\mathbb{Z}_{p^3})$ is of nilpotency class n-1.

Note that if p > 7, we have $p - 2 \ge 2n$, and hence,

$$[E+pB, {}_{p-2}E+A, E+pB] = E$$

When p = 7, we have n = 3, and direct calculations show that

$$[E + pB, {}_{p-2}E + A] = t_{31}(-3p^2), \quad [t_{31}(-3p^2), t_{13}(p)] = E.$$

Therefore, in all cases,

$$[E + pB, {}_{p-1}E + A] [E + pB, {}_{p-2}E + A, E + pB]^{-1} = E.$$

We will calculate the remaining product. According to item 3) of Lemma 8, we have

(10)
$$[[E + pB, {}_{p-2-s}E + A], [E + pB, {}_{s}E + A]] = E + p^{2}F(p - 2 - s)F(s).$$

Suppose that $s \ge 2n - 1$. Then the expression

$$A^{k}(B,A)A^{s-j-1} = A^{k}BA^{s-j} + A^{k+1}BA^{s-j-1}$$

equals zero matrix, if $0 \leq j \leq s$ and $k \geq j$, since $A^n = O$. Indeed, when $0 \leq j \leq n-2$, we have $s-j-1 \geq n$; if j=n-1, then $s-j \geq n$ and $k+1 \geq n$; finally, if $j \geq n$, then $k \geq n$. This and Lemma 6 yield that F(s) = O, when $s \geq 2n-1$, and F(p-2-s) = O, when $p-2-s \geq 2n-1$. Therefore, commutator (10) is distinct from E when

$$n-2 \leq s \leq \min\{2n-2, (p-3)/2\} = (3n-5)/2.$$

We put $s = n - 2 + \alpha$. Then

(11)
$$\prod_{s=1}^{(p-3)/2} [[E+pB, {}_{p-2-s}E+A], [E+pB, {}_{s}E+A]]^{(-1)^{s+1}} = \prod_{\alpha=0}^{(n-1)/2} [[E+pB, {}_{2n-2-\alpha}E+A], [E+pB, {}_{n-2+\alpha}E+A]]^{(-1)^{\alpha+1}} = E+p^2 \sum_{\alpha=0}^{(n-1)/2} (-1)^{\alpha+1} (F(2n-2-\alpha), F(n-2+\alpha)).$$

The nilpotency class of the group $P_n(p^3)$ equals 3n - 1 = p + 1. Hence, the product (11), consisting of commutators of weight p, belongs to the hypercenter and equals to

$$E + p^2 \theta e_{n,1} + p^2 \beta e_{n-1,1} + p^2 \gamma e_{n,2}$$

for the suitable θ, β, γ .

We will calculate the coefficient β for $e_{n-1,1}$. To do that, using Lemma 6, we choose in the factorization of $F(2n-2-\alpha)$ into matrix units the summands with the first index that equals n-1, and in $F(n-2-\alpha)$ the summands with the second index that equals 1:

(12)
$$\sum_{j=0}^{n-2} (-1)^{n-2} {2n-2-\alpha \choose j} {3n-5-\alpha-j \choose 2n-3-\alpha} e_{n-1,-n+2+\alpha+j},$$

(13)
$$\sum_{k=\alpha-1}^{n-1} (-1)^k \binom{n-2+\alpha}{\alpha-1} \binom{n-2+k}{n-3+\alpha} e_{k+1,1}.$$

Note that in (13) for $\alpha = 0$ and k = -1, not only e_{01} equals zero matrix, but the binomial coefficient $\binom{n-2+\alpha}{\alpha-1} = \binom{n-2}{-1}$ also equals zero. Taking into account that $-n+2+\alpha+j \leq \alpha \leq k+1$, the coefficient at $e_{n-1,1}$ in the product of (12) and (13) equals

$$(-1)^{n-2+\alpha-1} \binom{2n-2-\alpha}{n-2} \binom{3n-5-\alpha-n+2}{2n-3-\alpha} \binom{n-2+\alpha}{\alpha-1} \binom{n-2+\alpha-1}{n-3+\alpha} (14) = (-1)^{\alpha} \binom{2n-2-\alpha}{n-2} \binom{n-2+\alpha}{n-1}.$$

(When $\alpha = 0$, the expression (14), obviously, equals zero). Next, selecting in the expansion of $F(n-2+\alpha)$ the summands with the first index equal to n-1, and in $F(2n-2-\alpha)$ the summands with the second index equal to 1, we obtain

(15)
$$\sum_{j=0}^{n-2} (-1)^{n-2} \binom{n-2+\alpha}{j} \binom{2n-5+\alpha+j}{n-3+\alpha} e_{n-1,2-\alpha+j},$$

(16)
$$\sum_{k=n-1-\alpha}^{n-1} (-1)^k \binom{2n-2-\alpha}{n-1-\alpha} \binom{n-2+k}{2n-3-\alpha} e_{k+1,1}$$

Taking into account that $2 - \alpha + j \leq n - \alpha \leq k + 1$, the coefficient at $e_{n-1,1}$ in the product of (15) and (16) equals

$$(-1)^{n-2+n-1-\alpha} \binom{n-2+\alpha}{n-2} \binom{2n-5+\alpha-n+2}{n-3+\alpha} \binom{2n-2-\alpha}{n-1-\alpha} \binom{2n-3-\alpha}{2n-3-\alpha}$$

$$(17) \qquad = (-1)^{\alpha+1} \binom{n-2+\alpha}{n-2} \binom{2n-2-\alpha}{n-1}.$$

Multiplying the difference between (14) and (17) by $(-1)^{\alpha+1}$, and then summing over α , we can see that

(18)
$$\beta = -\sum_{\alpha=0}^{(n-1/2)} \left[\binom{2n-2-\alpha}{n-2} \binom{n-2+\alpha}{n-1} + \binom{n-2+\alpha}{n-2} \binom{2n-2-\alpha}{n-1} \right].$$

We calculate the obtained sum. We have

$$\sum_{\alpha=0}^{(n-1)/2} \binom{2n-2-\alpha}{n-2} \binom{n-2+\alpha}{n-1} = \sum_{\alpha=-(n-1)/2}^{0} \binom{2n-2+\alpha}{n-2} \binom{n-2-\alpha}{n-1}$$
$$= \sum_{\alpha=n-(n-1)/2}^{n} \binom{n-2+\alpha}{n-2} \binom{2n-2-\alpha}{n-1} = \sum_{\alpha=(n+1)/2}^{n} \binom{n-2+\alpha}{n-2} \binom{2n-2-\alpha}{n-1}.$$

Therefore,

$$-\beta = \sum_{\alpha=0}^{n} \binom{n-2+\alpha}{n-2} \binom{2n-2-\alpha}{n-1} = \sum_{\alpha=n-2}^{2n-2} \binom{\alpha}{n-2} \binom{3n-4-\alpha}{n-1} = \binom{3n-3}{2n-2} = \binom{p-1}{2n-2} \equiv (-1)^{2n-2} \equiv 1 \pmod{p}.$$

Here we used the fact that $\binom{3n-4-(2n-2)}{n-1} = 0$, and the proved in [10] identity

$$\sum_{i=b}^{n-a} \binom{n-i}{a} \binom{i}{b} = \binom{n+1}{a+b+1}$$

We calculate the coefficient γ . We select in the expansion of $F(2n-2-\alpha)$ the summands with the first index equal to n, and in $F(n-2-\alpha)$ the summands with the second index equal to 2:

(19)
$$\sum_{j=0}^{n-1} (-1)^{n-1} {\binom{2n-2-\alpha}{j}} {\binom{3n-4-\alpha-j}{2n-3-\alpha}} e_{n,-n+2+\alpha+j},$$

151

(20)
$$\sum_{k=\alpha}^{n-1} (-1)^k \binom{n-2+\alpha}{\alpha} \binom{n-3+k}{n-3+\alpha} e_{k+1,2}$$

Taking into account that $-n + 2 + \alpha + j \leq \alpha + 1 \leq k + 1$, the coefficient at $e_{n,2}$ in the product of (19) and (20) equals

(21)
$$(-1)^{n-1+\alpha} \binom{2n-2-\alpha}{n-1} \binom{2n-3-\alpha}{2n-3-\alpha} \binom{n-2+\alpha}{\alpha} \binom{n-3+\alpha}{n-3+\alpha}$$

$$= (-1)^{\alpha} \binom{2n-2-\alpha}{n-1} \binom{n-2+\alpha}{n-2}.$$

Next, selecting in the expansion of $F(n-2+\alpha)$ the summands with the first index equal to n, and of $F(2n-2-\alpha)$ the ones with the second index equal to 2, we obtain

(22)
$$\sum_{j=0}^{n-1} (-1)^{n-1} \binom{n-2+\alpha}{j} \binom{2n-4+\alpha-j}{n-3+\alpha} e_{n,2-\alpha+j}$$

(23)
$$\sum_{k=n-\alpha}^{n-1} (-1)^k \binom{2n-2-\alpha}{n-\alpha} \binom{n-3+k}{2n-3-\alpha} e_{k+1,2}.$$

Note that in (22) when $\alpha = 0$ and j = n - 1, the matrix $e_{n,n+1}$ is zero and its binomial coefficient $\binom{n-2}{n-1}$ equals zero. The sum (23) for $\alpha = 0$ also by definition equals zero. Taking into account that $2 - \alpha + j \leq n - \alpha + 1 \leq k + 1$, the coefficient at $e_{n,2}$ in the product of (22) and (23) equals

$$(-1)^{n-1+n-\alpha} \binom{n-2+\alpha}{n-1} \binom{n-3+\alpha}{n-3+\alpha} \binom{2n-2-\alpha}{n-\alpha} \binom{2n-3-\alpha}{2n-3-\alpha}$$

$$(24) \qquad = (-1)^{\alpha+1} \binom{n-2+\alpha}{n-1} \binom{2n-2-\alpha}{n-2}.$$

(When $\alpha = 0$, the expression (24), obviously, equals zero). Summing over α the difference between (21) and (24), multiplied by $(-1)^{\alpha+1}$, we obtain again the expression (18). Therefore, $\gamma = -1$.

Lemma 10. The derived subgroup of the subgroup $H = \langle E + A, E + pB \rangle$ of the group $P_n(\mathbb{Z}_{p^3})$ is generated by the commutators

$$y_i = [E + pB, iE + A], \ i = 1, 2, \dots,$$

 $y_{jl} = [[E + pB, jE + A], [E + pB, lE + A]], j, l = 0, 1, \dots$

If $d \in H'$ and $d^p \in G^{(p)}$ (the p-th element of the lower central series of the group $P_n(\mathbb{Z}_{p^3})$), then

$$d^{p} = E + \lambda p^{2} e_{n,1} - \tau p^{2} {\binom{2n-3}{n-2}} e_{n-1,1} + \tau p^{2} {\binom{2n-3}{n-2}} e_{n,2}.$$

Proof. Note that $y_i \in K_n(J)$ and $y_{jl} \in K_n(J^2)$ for every i, j, l. Since $K_n(J^3) = \langle E \rangle$ and by Lemma 4, the following inclusions are true: $[K_n(J), K_n(J^2)] \subseteq K_n(J^3)$ and $[K_n(J^2)]^p \subseteq K_n(J^3)$, then $[y_i, y_{jl}] = E$ and $y_{jl}^p = E$. Therefore, due to Corollary 2, we can assume that

$$d = y_1^{\tau_1} \dots y_{3n-1}^{\tau_{3n-1}}.$$

Next, if $i \ge 2n-1$, then $y_i \in G^{(2n)} \subseteq K_n(J^2)$ and hence, $y_i^p = E$. Therefore, the product $y_{2n-1}^{\tau_{2n-1}} \dots y_{3n-1}^{\tau_{3n-1}}$ in the expansion of d can be dropped as well.

Suppose that $1 \leq i \leq 2n-4$. Then $y_i \in G^{(i+1)}$ and by Lemma 4, we have $y_i^p \in G^{(i+n+1)}$. We will show that $y_i^p \notin G^{(i+n+2)}$. Indeed, if $1 \leq i \leq n-1$, then using Lemmas 4 and 8, we obtain

$$y_i^p = (E + pF(i) + p^2Q(i))^p = E + p^2F(i)$$

= $E + \dots + (-1)^0 {i \choose 0} {i-1 \choose i-1} p^2 e_{1,n-i} + \dots = E + \dots + p^2 e_{1,n-i} + \dots$

At the same time,

$$f_n(1, n-i, i+n+2) = -\left[\frac{1-(n-i)-(i+n+2)}{n}\right] = 3,$$

which means that the element located at the position (i, n - i), of the arbitrary matrix from $G^{(i+n+2)}$ belongs to the ideal J^3 . Similarly, if $n \leq i \leq 2n - 4$, then

$$y_i^p = E + \ldots + (-1)^{i+1-n} {i \choose i+1-n} {i-1 \choose i-1} p^2 e_{i+2-n,1} + \ldots$$

and $\binom{i}{i+1-n} \not\equiv 0 \pmod{p}$, and on the other hand,

$$f_n(i+2-n,1,i+n+2) = -\left[\frac{i+2-n-1-(i+2+n)}{n}\right] = 3.$$

Therefore, $y_i^p \notin G^{(i+n+2)}$. This and the inclusion $d^p \in G^p = G^{(3n-2)}$ yield that the commutators y_1, \ldots, y_{2n-4} must be included into the expansion of d with exponents divisible by p, and hence, they can also be dropped. Therefore, we can assume that $d = y_{2n-3}^{\tau} y_{2n-2}^{\mu}$. Using again Corollary 2 and Lemma 7, we find

$$d^{p} = y_{2n-3}^{p\tau} y_{2n-2}^{p\mu} = \left(E + p^{2}F(2n-3)\right)^{\tau} \left(E + p^{2}F(2n-2)\right)^{\mu}$$

= $\left(E + p^{2}(2n-3)\binom{2n-3}{n-2}e_{n,1} - p^{2}\binom{2n-3}{n-2}e_{n-1,1} + p^{2}\binom{2n-3}{n-2}e_{n,2}\right)^{\tau}$
 $\times \left(E + p^{2}\binom{2n-2}{n-1}e_{n,1}\right)^{\mu} = E + \gamma p^{2}e_{n,1} - \tau p^{2}\binom{2n-3}{n-2}e_{n-1,1} + \tau p^{2}\binom{2n-3}{n-2}e_{n,2}.$

We will now prove Theorem 2. From Lemmas 9 and 10 it follows that in the case when the subgroup H is regular, the following equivalences have to be solvable simultaneously

$$- au {2n-3 \choose n-2} \equiv -1 \pmod{p}, \qquad au {2n-3 \choose n-2} \equiv -1 \pmod{p}$$

with respect to τ . Summing them, we obtain $0 \equiv -2 \pmod{p}$, which is a contradiction. Therefore, the group $P_{\frac{p+2}{2}}(\mathbb{Z}_{p^3})$ is not regular. Theorem 2 is proved.

5. Proof of Theorem 3

Hereinafter, a, b are fundamental roots of a root system of type G_2 , moreover, |a| < |b|. As above, we will split the calculations necessary for the proof of the theorem into separate statements. The list of all nontrivial Chevalley commutator formulas is provided in Appendix 2. The numbers $C_{ij,rs}$ in the formulas are defined

with respect to the structural constants $\epsilon_1 = N_{a,b}$, $\epsilon_2 = N_{a,a+b}$, $\epsilon_3 = N_{a,2a+b}$, $\epsilon_4 = N_{b,3a+b}$, that correspond to the extraspecial pairs (a,b), (a,a+b), (a,2a+b), (b,3a+b). In the calculations, we everywhere assume that $\epsilon_1 = \epsilon_2 = \epsilon_3 = \epsilon_4 = 1$.

Lemma 11. Suppose that

$$g = x_b(\alpha) x_{a+b}(\beta) x_{2a+b}(\gamma) x_{3a+b}(\delta) x_{3a+2b}(\epsilon) \in PG_2(\mathbb{Z}_p).$$

The following equalities hold:

$$g^{x_a(1)} =$$

 $x_{b}(\alpha) \, x_{a+b}(\beta-\alpha) \, x_{2a+b}(\gamma+\alpha-2\beta) \, x_{3a+b}(\delta-\alpha+3\beta-3\gamma) \, x_{3a+2b}(\epsilon-\alpha^2-3\beta^2+3\alpha\beta),$

$$g^{x_b(1)} = x_b(\alpha) \, x_{a+b}(\beta) \, x_{2a+b}(\gamma) \, x_{3a+b}(\delta) \, x_{3a+2b}(\epsilon - \delta).$$

Proof. Using the identity xy = yx[x, y] and the Chevalley commutator formula (formulas (29), (28), (27), (31) from Appendix 2), we will switch places the element $x_a(1)$ and every factor from g in the product $gx_a(1)$:

$$\begin{split} g\,x_a(1) &= x_b(\alpha)\,x_{a+b}(\beta)\,x_{2a+b}(\gamma)\,x_{3a+b}(\delta)\,x_{3a+2b}(\epsilon)\,x_a(1) \\ &= x_b(\alpha)\,x_{a+b}(\beta)\,x_{2a+b}(\gamma)\,x_a(1)x_{3a+b}(\delta)\,x_{3a+2b}(\epsilon) \\ &= x_b(\alpha)\,x_{a+b}(\beta)\,x_a(1)\,x_{2a+b}(\gamma)\,[x_{2a+b}(\gamma),x_a(1)]\,x_{3a+b}(\delta)\,x_{3a+2b}(\epsilon) \\ &= x_b(\alpha)\,x_{a+b}(\beta)\,x_a(1)x_{2a+b}(\gamma)\,x_{3a+b}(-3\gamma)\,x_{3a+b}(\delta)\,x_{3a+2b}(\epsilon) \\ &= x_b(\alpha)\,x_a(1)\,x_{a+b}(\beta)\,[x_{a+b}(\beta),x_a(1)]\,x_{2a+b}(\gamma)\,x_{3a+b}(\delta-3\gamma)\,x_{3a+2b}(\epsilon) \\ &= x_a(1)\,x_b(\alpha)\,[x_b(\alpha),x_a(1)]\,x_{a+b}(\beta)\,x_{2a+b}(-2\beta)\,x_{3a+b}(3\beta)\times \\ &\quad x_{3a+2b}(-3\beta^2)\,x_{2a+b}(\gamma),\,x_{3a+b}(\delta-3\gamma)\,x_{3a+2b}(\epsilon) \\ &= x_a(1)x_b(\alpha)\,x_{a+b}(-\alpha)\,x_{2a+b}(\alpha)\,x_{3a+b}(-\alpha)\,x_{3a+2b}(-\alpha^2)\,x_{a+b}(\beta)\times \\ &\quad x_{2a+b}(\gamma-2\beta)\,x_{3a+b}(\delta+3\beta-3\gamma)\,x_{3a+2b}(\epsilon-3\beta^2) \\ &= x_a(1)\,x_{a+b}(\beta-\alpha)\,x_{2a+b}(\gamma+\alpha-2\beta)\,x_{3a+b}(\delta-\alpha+3\beta-3\gamma)\times \\ &\quad x_{3a+2b}(\epsilon-\alpha^2-3\beta^2+3\alpha\beta). \end{split}$$

Therefore,

$$g x_a(1) = x_a(1) x_b(\alpha) x_{a+b}(\beta - \alpha) \times$$
$$x_{2a+b}(\gamma + \alpha - 2\beta) x_{3a+b}(\delta - \alpha - 3\beta - 3\gamma) x_{3a+2b}(\epsilon - \alpha^2 - 3\beta^2 + 3\alpha\beta),$$

which yields the required equality.

Similarly,

$$g x_b(1) = x_b(\alpha) x_{a+b}(\beta) x_{2a+b}(\gamma) x_{3a+b}(\delta) x_{3a+2b}(\epsilon) x_b(1) = x_b(\alpha) x_{a+b}(\beta) x_{2a+b}(\gamma) x_b(1) x_{3a+b}(\delta) [x_{3a+b}(\delta), x_b(1)] x_{3a+2b}(\epsilon) = x_b(\alpha) x_{a+b}(\beta) x_{2a+b}(\gamma) x_b(1) x_{3a+b}(\delta) x_{3a+2b}(\epsilon - \delta) = x_b(1) x_b(\alpha) x_{a+b}(\beta) x_{2a+b}(\gamma) x_{3a+b}(\delta) x_{3a+2b}(\epsilon - \delta).$$

153

Lemma 12. Let

$$g = x_{a+b}(\alpha) x_{2a+b}(\beta) x_{3a+b}(\gamma) x_{3a+2b}(\delta) \in PG_2(\mathbb{Z}_p).$$

For every $n \in \mathbb{N}$, the following equality holds:

 $g^n = x_{a+b}(n\alpha) x_{2a+b}(n\beta) x_{3a+b}(n\gamma) x_{3a+2b}(n\delta + 3\binom{n}{2}\alpha\beta).$

Proof. Induction on n and formula (29) from Appendix 2.

$$g^{n+1} = g^{n}g$$

= $x_{a+b}(n\alpha) x_{2a+b}(n\beta) x_{3a+b}(n\gamma) x_{3a+2b}(n\delta + 3\binom{n}{2}\alpha\beta) \times x_{a+b}(\alpha) x_{2a+b}(\beta) x_{3a+b}(\gamma) x_{3a+2b}(\delta)$
= $x_{a+b}((n+1)\alpha) x_{2a+b}((n+1)\beta) x_{3a+b}((n+1)\gamma) \times x_{3a+2b}((n+1)\delta + 3\binom{n}{2}\alpha\beta + 3n\alpha\beta)$
= $x_{a+b}((n+1)\alpha) x_{2a+b}((n+1)\beta) x_{3a+b}((n+1)\gamma) \times x_{3a+2b}((n+1)\delta + 3\binom{n+1}{2}\alpha\beta).$

Lemma 13. In the group $PG_2(\mathbb{Z}_p)$, the following relations hold:

$$(x_{a}(1) x_{b}(1))^{2} = x_{a}(2) x_{b}(2) x_{a+b}(-1) x_{2a+b}(1) x_{3a+b}(-1),$$

$$(x_{a}(1) x_{b}(1))^{3} = x_{a}(3) x_{b}(3) x_{a+b}(-3) x_{2a+b}(5) x_{3a+b}(-9) x_{3a+2b}(-4),$$

$$(x_{a}(1) x_{b}(1))^{4} = x_{a}(4) x_{b}(4) x_{a+b}(-6) x_{2a+b}(14) x_{3a+b}(-36) x_{3a+2b}(-31),$$

$$(x_{a}(1) x_{b}(1))^{5} = x_{a}(5) x_{b}(5) x_{a+b}(-10) x_{2a+b}(30) x_{3a+b}(-100) x_{3a+2b}(-127).$$

Proof. We put $D = x_a(1) x_b(1)$ and use Lemma 11.

$$\begin{aligned} (D)^2 &= x_a(1) x_b(1) x_a(1) x_b(1) \\ &= x_a(2) x_b(1) [x_b(1), x_a(1)] x_b(1) \\ &= x_a(2) x_b(1) x_{a+b}(-1) x_{2a+b}(1) x_{3a+b}(-1) x_{3a+2b}(-1) x_b(1) \\ &= x_a(2) x_b(2) x_{a+b}(-1) x_{2a+b}(1) x_{3a+b}(-1). \\ (D)^3 &= x_a(2) x_b(2) x_{a+b}(-1) x_{2a+b}(1) x_{3a+b}(-1) x_a(1) x_b(1) \\ &= x_a(3) x_b(2) x_{a+b}(-3) x_{2a+b}(5) x_{3a+b}(-9) x_{3a+2b}(-13) x_b(1) \\ &= x_a(3) x_b(3) x_{a+b}(-3) x_{2a+b}(5) x_{3a+b}(-9) x_{3a+2b}(-4). \\ (D)^4 &= x_a(3) x_b(3) x_{a+b}(-3) x_{2a+b}(5) x_{3a+b}(-9) x_{3a+2b}(-4) x_a(1) x_b(1) \\ &= x_a(4) x_b(3) x_{a+b}(-6) x_{2a+b}(14) x_{3a+b}(-36) x_{3a+2b}(-67) x_b(1) \\ &= x_a(4) x_b(4) x_{a+b}(-6) x_{2a+b}(14) x_{3a+b}(-36) x_{3a+2b}(-31). \\ \end{aligned}$$

Lemma 14. In the group $PG_2(\mathbb{Z}_{p^m})$ for i = 1, ..., 12 the following equalities hold:

$$V_i = [x_{-3a-2b}(p), \, _ix_a(1) \, x_b(1)] = W_{i+1}Y_{i+2}, \qquad Y_{i+2} \in S^{(i+2)},$$

where

i	W_i	i	W_i	i	W_i	i	W_i
2	$x_{-3a-b}(p)$	5	$x_{-a}(-2p) x_{-b}(6p)$	8	$x_{a+b}(28p)$	11	$x_{3a+2b}(-168p)$
3	$x_{-2a-b}(p)$	6	$h_{-a}(1+2p)h_{-b}(1-6p)$	9	$x_{2a+b}(-56p)$	12	1
4	$x_{-a-b}(2p)$	7	$x_a(10p) x_b(-18p)$	10	$x_{3a+b}(168p)$	13	1

Proof. The case when i = 1. Formula (44) from Appendix 2:

$$V_1 = [x_{-3a-2b}(p), x_b(1)] = x_{-3a-b}(p).$$

The case when i = 2. Formula (40) from Appendix 2:

$$V_2 = [x_{-3a-b}(p), x_a(1)x_b(1)] \equiv [x_{-3a-b}(p), x_a(1)] \equiv x_{-2a-b}(p) \pmod{S^{(4)}}.$$

The case when i = 3. Formula (39) from Appendix 2:

$$V_3 = [x_{-2a-b}(p) Y_4, x_a(1)x_b(1)] \equiv [x_{-2a-b}(p), x_a(1)] \equiv x_{-a-b}(2p) \pmod{S^{(5)}}.$$

The case when $i = 4$. Formulas (13) and (18) from Appendix 2:

$$V_4 = [x_{-a-b}(2p) Y_5, x_a(1)x_b(1)] \equiv \equiv [x_{-a-b}(2p), x_b(1)][x_{-a-b}(2p), x_a(1)] \equiv x_{-a}(-2p) x_{-b}(6p) \pmod{S^{(6)}}$$

The case when i = 5. Relations between the opposite root elements:

$$V_5 = [x_{-a}(-2p) x_{-b}(6p) Y_6, x_a(1) x_b(1)] \equiv \equiv [x_{-a}(-2p), x_a(1)] [x_{-b}(6p), x_b(1)] \equiv h_{-a}(1+2p) h_{-b}(1-6p) \pmod{S^{(7)}}.$$

The case when i = 6. Relations between root and diagonal elements and Table 2 from Appendix 1:

$$V_{6} = [h_{-a}(1+2p) h_{-b}(1-6p)Y_{7}, x_{a}(1)x_{b}(1)] \equiv \equiv [h_{-a}(1+2p) h_{-b}(1-6p), x_{b}(1)] [h_{-a}(1+2p) h_{-b}(1-6p), x_{a}(1)] \equiv \equiv x_{a}(10p) x_{b}(-18p) \pmod{S^{(8)}}.$$

The case when i = 7. Formulas (26) and (27) from Appendix 2:

$$V_7 = [x_a(10p) x_b(-18p) Y_8, x_a(1) x_b(1)] \equiv \\ \equiv [x_a(10p), x_b(1)] [x_b(-18p), x_a(1)] \equiv x_{a+b}(28p) \pmod{S^{(9)}}.$$

The case when i = 8. Formula (28) from Appendix 2:

 $V_8 = [x_{a+b}(28p)Y_9, x_a(1)x_b(1)] \equiv \equiv [x_{a+b}(28p), x_a(1)] \equiv x_{2a+b}(-56p) \pmod{S^{(10)}}.$

The case when i = 9. Formula (29) from Appendix 2:

$$V_9 = [x_{2a+b}(-56p)Y_{10}, x_a(1)x_b(1)] \equiv \equiv [x_{2a+b}(-56p), x_a(1)] \equiv x_{3a+b}(168p) \pmod{S^{(11)}}.$$

The case when i = 10. Formula (30) from Appendix 2:

$$V_{10} = [x_{3a+b}(168p)Y_{11}, x_a(1)x_b(1)] \equiv \\ \equiv [x_{3a+b}(168p), x_b(1)] \equiv x_{3a+2b}(-168p) \pmod{S^{(12)}}.$$

The case when i = 11. We have

$$V_{11} = [x_{3a+2b}(-168p)Y_{12}, x_a(1)x_b(1)] \equiv [Y_{12}, x_a(1)x_b(1)] \in S^{(13)}.$$

The case when $i = 12$ is trivial.

Lemma 15. In the group $PG_2(\mathbb{Z}_{p^m})$ for $i = 1, \ldots, 5$ the following equalities hold

$$U_i = [[x_{-3a-2b}(p), _{11-i} x_a(1) x_b(1)], [x_{-3a-2b}(p), _i x_a(1) x_b(1)]] = P_i Q_i,$$

where $Q_i \in S^{(14)}, P_1 = x_b(-168p^2)$ and

i	2	3	4	5
P_i	$x_a(168p^2)$	$x_a(-224p^2)$	$x_a(168p^2) x_b(168p^2)$	$x_a(-100p^2)x_b(-324p^2)$

Proof. We use Lemma 14, noting that $W_i \in S^{(i)}$.

The case when i = 1. Formula (66) from Appendix 2:

$$U_1 = [x_{3a+2b}(-168p)Y_{12}, x_{-3a-b}(p)Y_3] \equiv \equiv [x_{3a+2b}(-168p), x_{-3a-b}(p)] = x_b(-168p^2) \pmod{S^{(14)}}$$

The case when i = 2. Formula (60) from Appendix 2:

$$U_2 = [x_{3a+b}(168p)Y_{11}, x_{-2a-b}(p)Y_4] \equiv \equiv [x_{3a+b}(168p), x_{-2a-b}(p)] \equiv x_a(168p^2) \pmod{S^{(14)}}.$$

The case when i = 3. Formula (52) from Appendix 2:

$$U_3 = [x_{2a+b}(-56p)Y_{10}, x_{-a-b}(2p)Y_5] \equiv \equiv [x_{2a+b}(-56p), x_{-a-b}(2p)] \equiv x_a(-224p^2) \pmod{S^{(14)}}.$$

The case when i = 4. Formulas (45) and (47) from Appendix 2:

$$U_4 = [x_{a+b}(28p)Y_9, x_{-a}(-2p)x_{-b}(6p)Y_6] \equiv \equiv [x_{a+b}(28p), x_{-a}(-2p)][x_{a+b}(28p), x_{-b}(6p)] \equiv \equiv x_b(168p^2)x_a(168p^2) \pmod{S^{(14)}}.$$

The case when i = 5. Relations between root and diagonal elements and Table 2 from Appendix 1:

$$U_{5} = [x_{a}(10p) x_{b}(-18p)Y_{8}, h_{-a}(1+2p)h_{-b}(1-6p)Y_{7}] \equiv \equiv [x_{a}(10p), h_{-a}(1+2p)h_{-b}(1-6p)][x_{b}(-18p), h_{-a}(1+2p)h_{-b}(1-6p)] \equiv \equiv x_{a}(-100p^{2})x_{b}(-324p^{2}) \pmod{S^{(14)}}.$$

We will now prove Theorem 3. According to [11], the nilpotency class of a Sylow p-subgroup $PG_2(\mathbb{Z}_{p^m})$ equals mh-1 = 6m-1, therefore, it is regular when 6m-1 < p. On the other hand, in [6] it is shown that the group $PG_2(\mathbb{Z}_{p^m})$ is regular if $p > |G_2| + |\Pi(G_2)| = 12 + 2 = 14$, that is, when $p \ge 17$. Hence, it suffices to study the cases when $p \in \{2, 3, 5, 7, 11\}$.

First, we will show that the group $PG_2(\mathbb{Z}_p)$ is not regular when p = 2, 3, 5. Note that in these cases $PG_2(\mathbb{Z}_p)$ coincides with the unipotent subgroup $UG_2(\mathbb{Z}_p)$ of the Chevalley group $G_2(\mathbb{Z}_p)$. The derived subgroup $UG_2(\mathbb{Z}_p)$, according to [11], belongs to the subgroup

$$H = \langle x_{a+b}(1), x_{2a+b}(1), x_{3a+b}(1), x_{3a+2b}(1) \rangle,$$

where every element g can be uniquely represented in the form

$$g = x_{a+b}(\alpha) \, x_{2a+b}(\beta) \, x_{3a+b}(\gamma) \, x_{3a+2b}(\delta), \qquad \alpha, \beta, \gamma, \delta \in \mathbb{Z}_p.$$

We put $A = x_a(1)$ and $B = x_b(1)$. Obviously, $[\langle A, B \rangle, \langle A, B \rangle]^p \subseteq H^p$.

The case when p = 2. By Lemma 13, in $PG_2(\mathbb{Z}_2)$ the following equality holds:

$$C = B^{-2}A^{-2} (AB)^{2} = x_{a+b}(1) x_{2a+b}(1) x_{3a+b}(1).$$

Due to Lemma 12, $H^2 \subseteq x_{3a+2b}(\mathbb{Z}_p)$, therefore, $C \notin H^2$. Hence, the group $PG_2(\mathbb{Z}_2)$ is not regular. Since it is a homomorphic image of $PG_2(\mathbb{Z}_{2^m})$ for every $m \ge 2$, we imply that $PG_2(\mathbb{Z}_{2^m})$ is irregular for $m \ge 1$.

The case when p = 3, 5. By Lemma 12, in both cases $H^p = 1$. At the same time, by Lemma 13 $(AB)^3 = A^3B^3 \cdot x_{2a+b}(2) x_{3a+2b}(2)$ in $PG_2(\mathbb{Z}_3)$ and $(AB)^5 = A^5B^5 \cdot x_{3a+2b}(2)$ in $PG_2(\mathbb{Z}_5)$. Hence, the groups $PG_2(\mathbb{Z}_{3^m}), PG_2(\mathbb{Z}_{5^m})$ are irregular for $m \ge 1$.

Cases when p = 7, 11. We will prove that the group $PG_2(\mathbb{Z}_{p^2})$ is not regular for the given p. We put $A = x_a(1)x_b(1)$ and $B = x_{-3a-2b}(p)$. The element Bbelongs to the congruence subgroup $G_2(J)$, which is normal in $PG_2(\mathbb{Z}_{p^2})$ and is an elementary Abelian p-group. Therefore, every commutator of the elements A and B belongs to $G_2(J)$ and equals one to the power which is a multiple of p. Hence, $[\langle A, B \rangle']^p = 1$. On the other hand, every commutator of A and B, that has more than two occurrences of B, equals one, therefore,

$$B^{-p}A^{-p}(AB)^p = [B,A]^{\binom{p}{2}} \dots [B, p-1A]^{\binom{p}{p}} = [B, p-1A].$$

By Lemma 14, the commutator [B, p-1A] equals $x_a(10p) x_b(-18p)Y_8 \neq 1$ in $PG_2(\mathbb{Z}_{7^2})$ and equals $x_{3a+2b}(-168p) \neq 1$ in $PG_2(\mathbb{Z}_{11^2})$. Hence, the groups $PG_2(\mathbb{Z}_{7^2})$, $PG_2(\mathbb{Z}_{11^2})$ are not regular. This yields irregularity of the groups $PG_2(\mathbb{Z}_{7^m})$ and $PG_2(\mathbb{Z}_{11^m})$ for every $m \geq 2$.

The case when p = 13. We will prove that the group $PG_2(\mathbb{Z}_{133})$ is not regular. We put $A = x_a(1)x_b(1)$ and $B = x_{-3a-2b}(p)$. Elements A and B satisfy conditions 1) and 2) of Corollary 1. Indeed, every commutator from A and B with weight more than 12 or having two occurrences of B, belongs to the elementary Abelian p-group $G_2(J^2)$, which is centralized by the element B.

Assume that the group $PG_2(\mathbb{Z}_{p^3})$ is regular. Then by Corollary 1, there exists an element $d \in \langle A, B \rangle'$ such that

(25)
$$d^p \equiv [B, {}_{12}A] [B, {}_{11}A, B]^{-1} \prod_{i=1}^5 [[B, {}_{11-i}A], [B, {}_iA]]^{(-1)^{i+1}} \pmod{S^{(14)}}.$$

The group $\langle A, B \rangle'$ is generated by the commutators $y_i = [B, iA], i = 1, 2, ...,$ and $y_{ij} = [y_i, y_j], i, j = 1, 2, ...,$ that satisfy Lemma 1 and Corollary 2. Moreover, $y_{ij}^p = 1$ for every i, j, and $y_i^p = 1$, when $i \ge 12$. Therefore, due to Corollary 1 we can assume that

$$d = [B, A]^{\alpha_1} \dots [B_{,11}A]^{\alpha_{11}}$$

for some $\alpha_1, \ldots, \alpha_{11}$. The element $[B_{,i}A]^p$ belongs to $S^{(i+7)}$, but does not belong to $S^{(i+8)}$ for $i = 1, \ldots, 10$. Indeed, using Lemmas 14 and 1, we obtain

$$[B_{,i}A]^p = W_{i+1}^p Y_{i+2}^p [W_{i+1}, Y_{i+2}]^{\binom{p}{2}}.$$

By Lemma 4, $y_{i+2}^p \in S^{(i+9)}$, $[W_{i+1}, Y_{i+2}]^{\binom{p}{2}} \in S^{(2i+9)}$, $W_{i+1}^p \in S^{(i+7)}$, but, obviously, $W_{i+1}^p \notin S^{(i+8)}$. Since the right-hand side of (25) lies in $S^{(13)}$, and

$$d^{p} = [B, A]^{p\alpha_{1}} \dots [B_{,11}A]^{p\alpha_{11}},$$

then the numbers $\alpha_1, \ldots, \alpha_6$ must be multiples of p. Therefore, we can assume that

$$d = [B_{,7}A]^{\alpha_7} \dots [B_{,11}A]^{\alpha_{11}}.$$

Finally, $[B_{,i}A]^p \in S^{(14)}$ when $i \ge 8$, therefore,

$$d^p \equiv [B_{,7}A]^{\alpha_7} \equiv x_a(10\alpha_7 p^2)x_b(-18\alpha_7 p^2) \pmod{S^{(14)}}.$$

On the other hand, using Lemmas 14 and 15, we obtain

$$[B, {}_{12}A] [B, {}_{11}A, B]^{-1} \prod_{i=1}^{5} [[B, {}_{11-i}A], [B, {}_{i}A]]^{(-1)^{i+1}} \equiv \\ \equiv 1 \cdot 1 \cdot x_b (-168p^2) (x_a (168p^2))^{-1} x_a (-224p^2) (x_b (168p^2) x_a (168p^2))^{-1} \times \\ \times x_a (-100p^2) x_b (-324p^2) \equiv x_a (-660p^2) x_b (-212p^2) \pmod{S^{(14)}}.$$

It is easy to see that both equalities $10\alpha_7 p^2 = 9p^2$ and $8\alpha_7 p^2 = 3p^2$ simultaneously are not fulfilled in the ring \mathbb{Z}_{13^3} given any α_7 . Therefore, the group $PG_2(\mathbb{Z}_{13^3})$, along with the groups $PG_2(\mathbb{Z}_{13^m})$, $m \ge 3$, is not regular. Theorem 3 is proved.

6. Appendix 1

According to [13, p.319], in a three-dimensional Eucledian space with the orthonormal basic ε_1 , ε_2 , ε_3 , we choose two vectors

$$a = \varepsilon_1 - \varepsilon_2, \quad b = -2\varepsilon_1 + \varepsilon_2 + \varepsilon_3.$$

Then the set of vectors

$$-3a - 2b, -3a - b, -2a - b, -a - b, -a, -b, a, b, a + b, 2a + b, 3a + b, 3a + 2b$$

forms a root system of type G_2 , and the roots

$$a, b, a+b, 2a+b, 3a+b, 3a+2b$$

form its subsystem of positive roots. The roots a and b form a fundamental system of roots.

Structural constants of the Lie algebra of type G_2 are listed in the following lemma.

Lemma 16. We put

$$N_{a,b} = \epsilon_1, \ N_{a,a+b} = 2\epsilon_2, \ N_{a,2a+b} = 3\epsilon_3, \ N_{b,3a+b} = \epsilon_4$$

and suppose that $\epsilon_5 = \frac{\epsilon_1 \epsilon_3}{\epsilon_4}$. Then nonzero constants $N_{r,s}$ have the forms provided in the following table:

Table 1.

$N_{r,s}$	-3a - 2b	-3a - b	-2a - b	-a - b	-a	q-	в	p	a + b	2a + b	3a + b	3a + 2b
-3a - 2b								ϵ_4	$-\epsilon_5$	ϵ_5	$-\epsilon_4$	
-3a - b						ϵ_4	ϵ_3			$-\epsilon_3$		$-\epsilon_4$
-2a - b				$-3\epsilon_5$	$3\epsilon_3$		$2\epsilon_2$		$-2\epsilon_2$		$-\epsilon_3$	ϵ_5
-a-b			$3\epsilon_5$		$2\epsilon_2$		$3\epsilon_1$	$-\epsilon_1$		$-2\epsilon_2$		$-\epsilon_5$
-b		$-\epsilon_4$			ϵ_1				$-\epsilon_1$			ϵ_4
-a			$-3\epsilon_3$	$-2\epsilon_2$		$-\epsilon_1$			$3\epsilon_1$	$2\epsilon_2$	ϵ_3	
a		$-\epsilon_3$	$-2\epsilon_2$	$-3\epsilon_1$				ϵ_1	$2\epsilon_2$	$3\epsilon_3$		
b	$-\epsilon_4$			ϵ_1			$-\epsilon_1$				ϵ_4	
a+b	ϵ_5		$2\epsilon_2$		$-3\epsilon_1$	ϵ_1	$-2\epsilon_2$			$-3\epsilon_5$		
2a+b	$-\epsilon_5$	ϵ_3		$2\epsilon_2$	$-2\epsilon_2$		$-3\epsilon_3$		$3\epsilon_5$			
3a+b	ϵ_4		ϵ_3		$-\epsilon_3$			$-\epsilon_4$				
3a + 2b		ϵ_4	$-\epsilon_5$	ϵ_5		$-\epsilon_4$						

Proof. According to [12, Theorem 4.2.2.], structural constants of an simple Lie algebra of type Φ over \mathbb{C} satisfy the following relations:

(i) $N_{s,r} = -N_{r,s}, r, s \in \Phi;$ (ii) $\frac{N_{r_1,r_2}}{(r_3,r_3)} = \frac{N_{r_2,r_3}}{(r_1,r_2)} = \frac{N_{r_3,r_1}}{(r_2,r_2)}, \text{ if } r_1, r_2, r_3 \in \Phi \text{ and } r_1 + r_2 + r_3 = 0;$

(iii)
$$N_{r,s}N_{-r,-s} = -(p+1)^2, r, s, r+s \in \Phi;$$

(iv)
$$\frac{N_{r_1,r_2}N_{r_3,r_4}}{(r_1+r_2,r_1+r_3)} + \frac{N_{r_2,r_3}N_{r_1,r_4}}{(r_2+r_3,r_2+r_3)} + \frac{N_{r_3,r_1}N_{r_2,r_4}}{(r_3+r_1,r_3+r_1)} = 0,$$

if $r_1, r_2, r_3, r_4 \in \Phi$, $r_1 + r_2 + r_3 + r_4 = 0$ and there are no opposite pairs among the roots r_1, r_2, r_3, r_4 .

From the equalities

$$b + (-a - b) + a = 0, \ (a + b) + (-2a - b) + a = 0,$$
$$(2a + b) + (-3a - b) + a = 0, \ (3a + b) + (-3a - 2b) + b = 0$$

and item (ii) it follows that

$$\frac{N_{b,-a-b}}{2} = \frac{N_{-a-b,a}}{6} = \frac{N_{a,b}}{2} = \frac{\epsilon_1}{2}, \quad \frac{N_{a+b,-2a-b}}{2} = \frac{N_{-2a-b,a}}{2} = \frac{N_{a,a+b}}{2} = \epsilon_2,$$
$$\frac{N_{2a+b,-3a-b}}{2} = \frac{N_{-3a-b,a}}{2} = \frac{N_{a,2a+b}}{6} = \frac{\epsilon_3}{2},$$
$$\frac{N_{3a+b,-3a-2b}}{6} = \frac{N_{-3a-2b,b}}{6} = \frac{N_{b,3a+b}}{6} = \frac{\epsilon_4}{6}.$$

Next, the equality

$$(a+b) + (2a+b) + (-b) + (-3a-b) = 0$$

and item (iv) yield that

$$\frac{N_{a+b,2a+b}N_{-b,-3a-b}}{6} + \frac{N_{-b,a+b}N_{2a+b,-3a-b}}{2} = 0,$$

hence,

$$N_{a+b,2a+b} = -3\frac{N_{-b,a+b}N_{2a+b,-3a-b}}{N_{-b,-3a-b}} = -3\frac{(-\epsilon_1)\epsilon_3}{-\epsilon_4} = -3\frac{\epsilon_1\epsilon_3}{\epsilon_4} = -3\epsilon_5.$$

Finally, from the equality

$$(2a+b) + (-3a-2b) + (a+b) = 0$$

it follows that

$$\frac{N_{2a+b,-3a-2b}}{2} = \frac{N_{-3a-2b,a+b}}{2} = \frac{N_{a+b,2a+b}}{6} = -\frac{\epsilon_5}{2}.$$

The remaining structural constants $N_{r,s}$ are defined from the relations:

$$N_{r,s} = N_{-s,-r} = -N_{s,r} = -N_{-r,-s}.$$

The following table lists the values of the dot product (h_s, r) .

Table 2.									
$h_r \setminus s$	a	b	a+b	2a+b	3a+b	3a+2b			
h_a	2	-3	-1	1	3	0			
h_b	-1	2	1	0	-1	1			
h_{a+b}	-1	3	2	1	0	3			
h_{2a+b}	1	0	1	2	3	3			
h_{3a+b}	1	-1	0	1	2	1			
h_{3a+2b}	0	1	1	1	1	2			

7. Appendix 2

The Chevalley's commutator formulas for the type G_2

Let Φ be a reduced indecomposable root system, K is a field or associativecommutative ring with a unit. According to [12, Theorem 5.2.2], the commutator

$$[x_s(u), x_r(t)] = x_s(u)^{-1} x_r(t)^{-1} x_s(u) x_r(t),$$

where $r, s \in \Phi$ and $u, t \in K$, equals identity, if $r + s \notin \Phi$ and $r \neq -s$, and can be decomposed into a product of root elements by the formula

$$[x_s(u), x_r(t)] = \prod_{\substack{ir + js \in \Phi, \\ i, j > 0}} x_{ir+js} (C_{ij,rs}(-t)^i u^j),$$

if $r + s \in \Phi$. Co-factors of the product are located with respect to the increase of the sum i + j, and the constants $C_{ij,rs}$ are integers and are defined by the formulas [12, Theorem 5.2.2]:

$$C_{i1,rs} = M_{r,s,i}, \ C_{1j,rs} = (-1)^j M_{s,r,j}, \ C_{32,rs} = \frac{1}{3} M_{r+s,r,2}, \ C_{23,rs} = -\frac{2}{3} M_{s+r,s,2}.$$

In turn, the numbers $M_{r,s,i}$ are expressed with respect to the structural constants $N_{r,s}$ of the corresponding Lie algebra by the formula [12, p. 61]

$$M_{r,s,i} = \frac{1}{i!} N_{r,s} N_{r,r+s} \dots N_{r,(i-1)r+s},$$

The list of formulas.

Positive roots

(26)
$$[x_b(u), x_a(t)] =$$

= $x_{a+b}(-\epsilon_1 t u) x_{2a+b}(\epsilon_1 \epsilon_2 t^2 u) x_{3a+b}(-\epsilon_1 \epsilon_2 \epsilon_3 t^3 u) x_{3a+2b}(-\epsilon_2 \epsilon_5 t^3 u^2),$

(27)
$$[x_{a}(u), x_{b}(t)] =$$
$$= x_{a+b}(\epsilon_{1}tu) x_{2a+b}(-\epsilon_{1}\epsilon_{2}tu^{2}) x_{3a+b}(\epsilon_{1}\epsilon_{2}\epsilon_{3}tu^{3}) x_{3a+2b}(-2\epsilon_{2}\epsilon_{5}t^{2}u^{3}),$$

(28)
$$[x_{a+b}(u), x_a(t)] = x_{2a+b}(-2\epsilon_2 tu) x_{3a+b}(3\epsilon_2\epsilon_3 t^2u) x_{3a+2b}(-3\epsilon_2\epsilon_5 tu^2),$$

(29)
$$[x_{2a+b}(u), x_a(t)] = x_{3a+b}(-3\epsilon_3 tu),$$

(30)
$$[x_{3a+b}(u), x_b(t)] = x_{3a+2b}(-\epsilon_4 t u),$$

(31)
$$[x_{2a+b}(u), x_{a+b}(t)] = x_{3a+2b}(3\epsilon_5 tu),$$

Negative roots

(32)
$$[x_{-b}(u), x_{-a}(t)] = = x_{-a-b}(\epsilon_1 t u) x_{-2a-b}(\epsilon_1 \epsilon_2 t^2 u) x_{-3a-b}(\epsilon_1 \epsilon_2 \epsilon_3 t^3 u) x_{-3a-2b}(-\epsilon_2 \epsilon_5 t^3 u^2),$$

(33)
$$[x_{-a}(u), x_{-b}(t)] =$$
$$= x_{-a-b}(-\epsilon_1 tu) x_{-2a-b}(-\epsilon_1 \epsilon_2 tu^2) x_{-3a-b}(-\epsilon_1 \epsilon_2 \epsilon_3 tu^3),$$

(34)
$$[x_{-a-b}(u), x_{-a}(t)] = x_{-2a-b}(2\epsilon_2 tu) x_{-3a-b}(3\epsilon_2\epsilon_3 t^2u) x_{-3a-2b}(-3\epsilon_2\epsilon_5 tu^2),$$

(35)
$$[x_{-2a-b}(u), x_{-a}(t)] = x_{-3a-b}(3\epsilon_3 tu),$$

(36)
$$[x_{-3a-b}(u), x_{-b}(t)] = x_{-3a-2b}(\epsilon_4 t u),$$

(37)
$$[x_{-2a-b}(u), x_{-a-b}(t)] = x_{-3a-2b}(-3\epsilon_5 tu),$$

Mixed roots

(38)
$$[x_{-a-b}(u), x_a(t)] = x_{-b}(3\epsilon_1 t u),$$

(39)
$$[x_{-2a-b}(u), x_a(t)] = x_{-a-b}(2\epsilon_2 tu) x_{-b}(3\epsilon_1\epsilon_2 t^2 u) x_{-3a-2b}(3\epsilon_2\epsilon_5 tu^2),$$

(40)
$$[x_{-3a-b}(u), x_a(t)] = = x_{-2a-b}(\epsilon_3 t u) x_{-a-b}(\epsilon_2 \epsilon_3 t^2 u) x_{-b}(\epsilon_1 \epsilon_2 \epsilon_3 t^3 u) x_{-3a-2b}(\epsilon_2 \epsilon_5 t^3 u^2),$$

(41)
$$[x_a(u), x_{-3a-b}(t)] = = x_{-2a-b}(-\epsilon_3 tu) x_{-a-b}(-\epsilon_2 \epsilon_3 tu^2) x_{-b}(-\epsilon_1 \epsilon_2 \epsilon_3 tu^3) x_{-3a-2b}(2\epsilon_2 \epsilon_5 t^2 u^3),$$

(42)
$$[x_b(u), x_{-a-b}(t)] = = x_{-a}(\epsilon_1 t u) x_{-2a-b}(-\epsilon_1 \epsilon_2 t^2 u) x_{-3a-2b}(\epsilon_1 \epsilon_2 \epsilon_5 t^3 u) x_{-3a-b}(-\epsilon_2 \epsilon_3 t^3 u^2),$$

(43)
$$[x_{-a-b}(u), x_b(t)] = = x_{-a}(-\epsilon_1 t u) x_{-2a-b}(\epsilon_1 \epsilon_2 t u^2) x_{-3a-2b}(-\epsilon_1 \epsilon_2 \epsilon_5 t u^3) x_{-3a-b}(-2\epsilon_2 \epsilon_3 t^2 u^3),$$

(44)
$$[x_{-3a-2b}(u), x_b(t)] = x_{-3a-b}(\epsilon_4 t u),$$

(45)
$$[x_{-a}(u), x_{a+b}(t)] = x_b(3\epsilon_1 t u),$$

(46)
$$[x_{-b}(u), x_{a+b}(t)] = = x_a(-\epsilon_1 t u) x_{2a+b}(-\epsilon_1 \epsilon_2 t^2 u) x_{3a+2b}(-\epsilon_1 \epsilon_2 \epsilon_5 t^3 u) x_{3a+b}(-\epsilon_2 \epsilon_3 t^3 u^2),$$

$$(47) \quad [x_{a+b}(u), x_{-b}(t)] = \\ = x_a(\epsilon_1 t u) x_{2a+b}(\epsilon_1 \epsilon_2 t u^2) x_{3a+2b}(\epsilon_1 \epsilon_2 \epsilon_5 t u^3) x_{3a+b}(-2\epsilon_2 \epsilon_3 t^2 u^3),$$

$$(48) \quad [x_{a+b}(u), x_{-b}(t)] = x_{a+b}(\epsilon_1 \epsilon_2 t u^2) x_{3a+2b}(\epsilon_1 \epsilon_2 \epsilon_5 t u^3) x_{3a+b}(-2\epsilon_2 \epsilon_3 t^2 u^3),$$

(48)
$$[x_{-2a-b}(u), x_{a+b}(t)] = x_{-a}(-2\epsilon_2 tu) x_b(-3\epsilon_1\epsilon_2 t^2 u) x_{-3a-b}(3\epsilon_2\epsilon_3 tu^2),$$

(49)
$$[x_{-3a-2b}(u), x_{a+b}(t)] = = x_{-2a-b}(-\epsilon_5 tu) x_{-a}(\epsilon_2 \epsilon_5 t^2 u) x_b(\epsilon_1 \epsilon_2 \epsilon_5 t^3 u) x_{3a+b}(\epsilon_2 \epsilon_3 t^3 u^2),$$

(50)
$$[x_{a+b}(u), x_{-3a-2b}(t)] =$$

= $x_{-2a-b}(\epsilon_5 tu) x_{-a}(-\epsilon_2 \epsilon_5 tu^2) x_b(-\epsilon_1 \epsilon_2 \epsilon_5 tu^3) x_{3a+b}(2\epsilon_2 \epsilon_3 t^2 u^3),$

(51)
$$[x_{-a}(u), x_{2a+b}(t)] = x_{a+b}(2\epsilon_2 tu) x_{3a+2b}(-3\epsilon_2\epsilon_5 t^2 u) x_b(-3\epsilon_1\epsilon_2 tu^2),$$

(52)
$$[x_{-a-b}(u), x_{2a+b}(t)] = x_a(-2\epsilon_2 tu) x_{3a+b}(-3\epsilon_2\epsilon_3 t^2 u) x_{-b}(3\epsilon_1\epsilon_2 tu^2),$$

(53)
$$[x_{-3a-b}(u), x_{2a+b}(t)] = = x_{-a}(-\epsilon_3 t u) x_{a+b}(-\epsilon_2 \epsilon_3 t^2 u) x_{3a+2b}(\epsilon_1 \epsilon_2 \epsilon_5 t^3 u) x_b(-\epsilon_1 \epsilon_2 t^3 u^2),$$

(54)
$$[x_{2a+b}(u), x_{-3a-b}(t)] =$$

= $x_{-a}(\epsilon_3 t u) x_{a+b}(\epsilon_2 \epsilon_3 t u^2) x_{3a+2b}(-\epsilon_2 \epsilon_3 \epsilon_5 t u^3) x_b(-2\epsilon_1 \epsilon_2 t^2 u^3),$

(55)
$$[x_{-3a-2b}(u), x_{2a+b}(t)] = = x_{-a-b}(\epsilon_5 tu) x_a(-\epsilon_2 \epsilon_5 t^2 u) x_{3a+b}(-\epsilon_2 \epsilon_3 \epsilon_5 t^3 u) x_{-b}(\epsilon_1 \epsilon_2 t^3 u^2),$$

(56)
$$[x_{2a+b}(u), x_{-3a-2b}(t)] = = x_{-a-b}(-\epsilon_5 tu) x_a(\epsilon_2 \epsilon_5 tu^2) x_{3a+b}(\epsilon_2 \epsilon_3 \epsilon_5 tu^3) x_{-b}(2\epsilon_1 \epsilon_2 t^2 u^3),$$

(57)
$$[x_{-a}(u), x_{3a+b}(t)] = = x_{2a+b}(\epsilon_3 tu) x_{a+b}(-\epsilon_2 \epsilon_3 tu^2) x_b(\epsilon_1 \epsilon_2 \epsilon_3 tu^3) x_{3a+2b}(2\epsilon_2 \epsilon_5 t^2 u^3),$$

(58)
$$[x_{3a+b}(u), x_{-a}(t)] =$$
$$= x_{2a+b}(-\epsilon_3 tu) x_{a+b}(\epsilon_2 \epsilon_3 t^2 u) x_b(-\epsilon_1 \epsilon_2 \epsilon_3 t^3 u) x_{3a+2b}(\epsilon_2 \epsilon_5 t^3 u^2),$$

(59)
$$[x_{-2a-b}(u), x_{3a+b}(t)] = = x_a(-\epsilon_3 tu) x_{-a-b}(\epsilon_2 \epsilon_3 tu^2) x_{-3a-2b}(\epsilon_2 \epsilon_3 \epsilon_5 tu^3) x_{-b}(-2\epsilon_1 \epsilon_2 t^2 u^3),$$

(60)
$$[x_{3a+b}(u), x_{-2a-b}(t)] = = x_a(\epsilon_3 tu) x_{-a-b}(-\epsilon_2 \epsilon_3 t^2 u) x_{-3a-2b}(-\epsilon_2 \epsilon_3 \epsilon_5 t^3 u) x_{-b}(-\epsilon_1 \epsilon_2 t^3 u^2),$$
(61)
$$[x_{-3a-2b}(u), x_{3a+b}(t)] = x_{-b}(-\epsilon_4 tu),$$

(62)
$$[x_{-a-b}(u), x_{3a+2b}(t)] = = x_{2a+b}(-\epsilon_5 tu) x_a(-\epsilon_2 \epsilon_5 tu^2) x_{-b}(\epsilon_1 \epsilon_2 \epsilon_5 tu^3) x_{3a+b}(2\epsilon_2 \epsilon_3 t^2 u^3),$$

(63) $[x_{3a+2b}(u), x_{-a-b}(t)] =$ $= x_{2a+b}(\epsilon_5 tu) x_a(\epsilon_2 \epsilon_5 t^2 u) x_{-b}(-\epsilon_1 \epsilon_2 \epsilon_5 t^3 u) x_{3a+b}(\epsilon_2 \epsilon_3 t^3 u^2),$

(64)
$$[x_{-2a-b}(u), x_{3a+2b}(t)] =$$

$$= x_{a+b}(\epsilon_5 tu) x_{-a}(\epsilon_2 \epsilon_5 tu^2) x_{-3a-b}(-\epsilon_2 \epsilon_3 \epsilon_5 tu^3) x_b(2\epsilon_1 \epsilon_2 t^2 u^3),$$

(65)
$$[x_{3a+2b}(u), x_{-2a-b}(t)] = = x_{a+b}(-\epsilon_5 tu) x_{-a}(-\epsilon_2 \epsilon_5 t^2 u) x_{-3a-b}(\epsilon_2 \epsilon_3 \epsilon_5 t^3 u) x_b(\epsilon_1 \epsilon_2 t^3 u^2),$$

(66)
$$[x_{-3a-b}(u), x_{3a+2b}(t)] = x_{a+b}(-\epsilon_4 tu).$$

References

- V.D. Mazurov (ed.), E.I. Huhro (ed.), The Kourovka notebook. Unsolved problems in group theory. Including archive of solved problems. 16th ed. Institute of Mathematics, Novosibirsk, Zbl 1084.20001
- [2] M. Hall, The theory of groups, Inostrannaya Literatura, Moscow, 1962. Zbl 0103.25502
- [3] Yu.I. Merzlyakov, Central series and commutator series of matrix groups, Algebra i Logika Sem., 3:4 (1964), 49-58. MR0169927
- [4] A.V. Yagzhev, On the regularity of Sylow subgroups of full linear groups over residue rings, Math. Notes, 56:6 (1994), 1283-1290. Zbl 0837.20027
- [5] S.G. Kolesnikov, Regularity of Sylow p-subgroups of groups GL_n(Z_{p^m}), Issl. po matem. analizu i algebre, 3 (2001), 117-124.
- [6] S.G. Kolesnikov, On the regular Sylow p-subgroups of Chevalley groups over Z_{pm}, Sib. Math. J., 47:6 (2006), 1054-1059. Zbl 1137.20044
- [7] S.G. Kolesnikov, V.M. Leontiev, G.P. Egorychev, Two collection formulas, J. Group Theory, 23:4 (2020), 607–628. Zbl 1471.20026
- [8] S.G. Kolesnikov, On necessary conditions for regularity of Sylow p-subgroups of the group $GL_n(\mathbb{Z}_{p^m})$, Izv. Irkutsk. Gos. Univ., Ser. Mat., **6**:2 (2013), 18-25. Zbl 1290.20040
- [9] P. Hall, A contribution to the theory of groups of prime-power order, Proc. Lond. Math.Soc., II. Ser., 36 (1933), 29-95. Zbl 0007.29102
- [10] V.M. Leontiev, On divisibility of some sums of binomial coefficients arising from collection formulas, J. Sib. Fed. Univ. Math. Phys., 11:5 (2018), 603-614. Zbl 7325452
- [11] V.M. Levchuk, Commutator structure of some subgroups of Chevalley groups, Ukr. Math. J., 44:6 (1992), 710-718. Zbl 0784.20020
- [12] R. Carter, Simple groups of Lie type, Wiley & Sons, London etc., 1972. Zbl 0248.20015
- [13] N. Bourbaki, Lie groups and algebras, Mir, Moscow, 1972. Zbl 0249.22001

SERGEY GENNADIEVICH KOLESNIKOV SIBERIAN FEDERAL UNIVERSITY, 79, SVOBODNY AVE., KRASNOYRSK, 660041, RUSSIA Email address: sklsnkv@mail.ru

VLADIMIR MARKOVICH LEONTIEV SIBERIAN FEDERAL UNIVERSITY, 79, SVOBODNY AVE., KRASNOYRSK, 660041, RUSSIA Email address: v.m.leontiev@outlook.com