СИБИРСКИЕ ЭЛЕКТРОННЫЕ МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

Siberian Electronic Mathematical Reports
http://semr.math.nsc.ru

ONE NECESSARY CONDITION FOR THE REGULARITY OF A p-GROUP AND ITS APPLICATION TO WEHRFRITZ'S PROBLEM

S.G. KOLESNIKOV, V.M. LEONTIEV

Abstract

We obtain a necessary condition for the regularity of a p group in terms of segments of P. Hall's collection formula. For any prime number p such that $(p+2) / 3$ is an integer, we prove that a Sylow p subgroup of the group $G L_{n}\left(\mathbb{Z}_{p^{m}}\right)$ is not regular if $n \geqslant(p+2) / 3$ and $m \geqslant 3$. We also list all regular Sylow p-subgroups of the Chevalley group of type G_{2} over the ring $\mathbb{Z}_{p^{m}}$.

Keywords: regular p-group, linear group, Chevalley group.

1. Introduction

In 1982, B. Wehrfritz posed a question in the Kourovka Notebook [1]: find n, m, p for which a Sylow p-subgroup $P_{n}\left(\mathbb{Z}_{p^{m}}\right)$ of the group $G L_{n}\left(\mathbb{Z}_{p^{m}}\right)$ over the ring $\mathbb{Z}_{p^{m}}$ of integers modulo p^{m} is regular. Recall that a finite p-group G is said to be regular if for every two elements $a, b \in G$ and every $n=p^{k}$ the equality $(a b)^{n}=a^{n} b^{n} S_{1}^{n} \ldots S_{t}^{n}$ holds, where S_{1}, \ldots, S_{t} are suitable elements of the derived subgroup of a group generated by the elements a and $b[2$, p. 205]. The answer to the question is known for the following cases: $n m-1<p$ (follows from the work by Yu. I. Merzlyakov [3]), $n \geqslant p+1$ (A. V. Yagzhev [4]), $n \geqslant(p+1) / 2$ or $n^{2}<p$ (S. G. Kolesnikov [5], [6]). In this work, a necessary condition of regularity is obtained, which allows to partially study the case $n \geqslant(p+1) / 3$, and also to obtain a complete solution of the analogue of this question for a Sylow p-subgroup $P \Phi\left(\mathbb{Z}_{p^{m}}\right)$ of the Chevalley group $\Phi\left(\mathbb{Z}_{p^{m}}\right)$ for Φ of type G_{2}.

[^0]Theorem 1. If a finite p-group G is regular, then for every $a, b \in G$ there exists an element $d \in\langle a, b\rangle^{\prime}$ such that

$$
d^{p}=\prod R_{i}^{f_{i}(p)}
$$

where the product is taken over all commutators R_{i} of weight $w\left(R_{i}\right) \geqslant p$ from the P. Hall's collection formula. In particular, for every non-negative integer j

$$
d^{p} \equiv \prod_{p \leqslant w\left(R_{i}\right) \leqslant p+j} R_{i}^{f_{i}(p)}\left(\bmod G^{(p+j+1)}\right)
$$

where $G^{(p+j+1)}$ is the $(p+j+1)$-th term of the lower central series of the group G.
Theorem 1 and Theorem 3 in [7] imply
Corollary 1. Let G be a regular p-group, $p>2$, and $a, b \in G$. Suppose that every commutator of a and b :

1) that has more than two entries of b, equals 1 ,
2) weighting more than $p-1$, has an order 1 or p.

Then there exists an element $d \in\langle a, b\rangle^{\prime}$ such that

$$
d^{p} \equiv\left[b,{ }_{p-1} a\right]\left[b,{ }_{p-2} a, b\right]^{-1} \prod_{v=1}^{(p-3) / 2}\left[\left[b,{ }_{p-2-v} a\right],\left[b,{ }_{v} a\right]\right]^{(-1)^{v+1}}\left(\bmod G^{(p+1)}\right) .
$$

Theorem 2. Let p be such an odd prime number that the number $(p+2) / 3$ is an integer. Then the group $P_{n}\left(\mathbb{Z}_{p^{m}}\right)$ is not regular if $n \geqslant(p+2) / 3$ and $m \geqslant 3$.

Moreover, in [8] it is shown that the groups $P_{n}\left(\mathbb{Z}_{p^{m}}\right)$ for $m \geqslant 2, p \geqslant 5, n \leqslant$ $(p-1) / 2$ satisfy the conditions of regularity listed in [2].

Theorem 3. A group $P G_{2}\left(\mathbb{Z}_{p^{m}}\right)$ is regular if and only if $p \geqslant 17$ or $(m, p) \in$ $\{(1,7),(1,11),(1,13),(2,13)\}$.

2. Proof of Theorem 1 and Corollary 1. Auxiliary statements

We will now prove Theorem 1. Suppose that $a, b \in G$. By Theorem 12.4.2 from [2], there exists an element $c \in\langle a, b\rangle^{\prime}$ such that $(a b)^{p}=a^{p} b^{p} c^{p}$. On the other hand, according to [9, Theorem 3.1], there exists a sequence of commutators R_{i} of a and b, ordered by weight, and a sequence of integers $f_{i}(p)$, such that

$$
(a b)^{p}=a^{p} b^{p} \prod_{2 \leqslant w\left(R_{i}\right)<p} R_{i}^{f_{i}(p)} \prod_{w\left(R_{i}\right) \geqslant p} R_{i}^{f_{i}(p)} .
$$

Since the group G is regular and the exponents $f_{i}(p)$ are multiples of p, when $2 \leqslant w\left(R_{i}\right)<p$, then by Corollary 12.4.1 from [2] there exists an element $u \in\langle a, b\rangle^{\prime}$ such that

$$
u^{p}=\prod_{2 \leqslant w\left(R_{i}\right)<p} R_{i}^{f_{i}(p)}
$$

Therefore,

$$
a^{p} b^{p} c^{p}=a^{p} b^{p} u^{p} \prod_{2 \leqslant w\left(R_{i}\right)<p} R_{i}^{f_{i}(p)}
$$

or

$$
\prod_{2 \leqslant w\left(R_{i}\right)<p} R_{i}^{f_{i}(p)}=\left(u^{-1}\right)^{p} c^{p}=d^{p}
$$

for some $d \in\langle a, b\rangle^{\prime}$. Theorem 1 is proved.

Remark. For every integer m and every non-negative integer n, we use a classic definition of a binomial coefficient:

$$
\binom{n}{m}=\left\{\begin{array}{l}
\frac{1}{m!} \prod_{i=0}^{m-1}(n-i), \text { if } m \geqslant 0 \\
0, \text { if } m<0
\end{array}\right.
$$

For such definition, the following relation holds: $\binom{n}{m}+\binom{n}{m+1}=\binom{n+1}{m+1}$.
We will prove Corollary 1. According to [7, Theorem 3], the P. Hall's collection formula given the condition 1) of the corollary is reduced to the form
$(a b)^{n}$

$$
\left.=a^{p} b^{p} \prod_{u=1}^{p-1}\left[b,{ }_{u} a\right]^{\binom{p}{u+1}} \prod_{u=1}^{p-1}\left[b,{ }_{u} a, b\right]^{p} \begin{array}{c}
p \\
u+1
\end{array}\right)-\binom{p+1}{u+2} \prod_{1 \leqslant v<u \leqslant p-1}\left[\left[b,{ }_{u} a\right],\left[b,{ }_{v} a\right]\right]^{g_{p}(u, v)},
$$

where

$$
\begin{aligned}
& g_{p}(u, v) \\
= & \sum_{m=1}^{p-1} \sum_{k=1}^{v} \sum_{i=v-k}^{p-m-k}\binom{i}{u-k+1}\binom{p-m-i-1}{k-1}\binom{i}{v-k}+\sum_{m=1}^{p-2} \sum_{k=m+1}^{p-1}\binom{m}{v}\binom{k}{u} .
\end{aligned}
$$

By condition 2) of the corollary, all commutators weighting more than $p-1$ have an order 1 or p. We will calculate modulo p the exponents of all commutators of weight p, occurring in the collection formula. The first and the second products contain one commutator of weight p each. That is $\left[b,_{p-1} a\right]$ and $\left[b,_{p-2} a, b\right]$ respectively. The exponent of the first commutator equals $\binom{p}{p}=1$. For the second one, we have

$$
p\binom{p}{p-1}-\binom{p+1}{p}=p^{2}-p-1 \equiv-1(\bmod p) .
$$

Consider the latter product. The commutators of weight p, occurring in it, are as follows: $\left[\left[b,{ }_{p-2-v} a\right],\left[b,{ }_{v} a\right]\right]$, where $v=1, \ldots,(p-3) / 2$. According to [10, Theorem 1], the function $g_{p}(u, v)$ admits representation

$$
\begin{aligned}
& g_{p}(u, v) \\
= & \sum_{k=1}^{v} \sum_{s=0}^{v-k}\binom{u-k+1+s}{v-k}\binom{v-k}{s}\binom{p}{u+s+2}+\sum_{i=0}^{v+1}(-1)^{i}\binom{p+i}{u+i+1}\binom{p}{v+1-i} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& g_{p}(p-2-v, v) \\
& =\sum_{k=1}^{v} \sum_{s=0}^{v-k}\binom{t+s-k-1}{v-k}\binom{v-k}{s}\binom{p}{t+s}+\sum_{i=0}^{v+1}(-1)^{i}\binom{p+i}{t+i-1}\binom{p}{v+1-i},
\end{aligned}
$$

where $t=p-v$. The inequality $1 \leqslant v \leqslant(p-3) / 2$ yields that $(p+3) / 2 \leqslant p+s-v \leqslant$ $p-1$ and $0 \leqslant v+1-i \leqslant(p-1) / 2$. Hence, in the double sum the binomial coefficient $\binom{p}{t+s}=\binom{p}{p+s-v}$ is always a multiple of p. In the single sum, the binomial coefficient
$\binom{p}{v+1-i}$ is not a multiple of p only in the case when $v+1-i=0$. Therefore,

$$
\begin{aligned}
& g_{p}(p-2-v, v) \equiv(-1)^{v+1}\binom{p+v+1}{p}\binom{p}{0} \equiv \\
& \quad \equiv(-1)^{v+1} \frac{(p+1) \ldots(p+v+1)}{(v+1)!} \equiv(-1)^{v+1} \frac{(v+1)!}{(v+1)!} \equiv(-1)^{v+1}(\bmod p) .
\end{aligned}
$$

Now, Corollary 1 follows from Theorem 1.
To prove Theorems 2 and 3, we will need the following statements.
Lemma 1. Let G be a group, $y_{1}, \ldots, y_{s} \in G, s \geqslant 2$. Assume that the nilpotency class of the subgroup $H=\left\langle y_{1}, \ldots, y_{s}\right\rangle$ equals 2. Then for every natural number n, the following equality holds:

$$
\left(y_{1} \ldots y_{s}\right)^{n}=y_{1}^{n} \ldots y_{s}^{n} \prod_{1 \leqslant i<j \leqslant s}\left[y_{j}, y_{i}\right]^{\binom{n}{2}} .
$$

Proof. Induction on n. Since the nilpotency class of H equals 2 , we have

$$
\begin{array}{r}
\left(y_{1} \ldots y_{s}\right)^{n+1}=y_{1}^{n} \ldots y_{s}^{n} \cdot\left(\prod_{1 \leqslant i<j \leqslant s}\left[y_{j}, y_{i}\right]^{\binom{n}{2}}\right) \cdot y_{1} \ldots y_{s}= \\
=y_{1}^{n} \ldots y_{s}^{n} \cdot y_{1} \ldots y_{s} \cdot \prod_{1 \leqslant i<j \leqslant s}\left[y_{j}, y_{i}\right]^{\binom{n}{2}} .
\end{array}
$$

Using the relation $y_{j}^{n} y_{i}=y_{i} y_{j}^{n}\left[y_{j}, y_{i}\right]^{n}$ which follows from the condition of the lemma, we collect the terms in the right-hand side in order y_{1}, \ldots, y_{s}. Then, taking into account the permutability of the commutators, we convert the obtained expression into the form

$$
\left(y_{1} \ldots y_{s}\right)^{n+1}=y_{1}^{n+1} \ldots y_{s}^{n+1} \prod_{1 \leqslant i<j \leqslant s}\left[y_{j}, y_{i}\right]^{\binom{n}{2}+n}
$$

The equalities $\binom{n}{2}+n=\binom{n}{2}+\binom{n}{1}=\binom{n+1}{2}$ complete the proof.
Corollary 2. Let the subgroup H from Lemma 1 be a p-group, $p>2$, with an elementary Abelian derived subgroup, and number n is a multiple of p. Then for any integer $\alpha_{1}, \ldots, \alpha_{s}$ and every permutation π on the set $\{1, \ldots, s\}$, we have

$$
\left(y_{1}^{\alpha_{1}} \ldots y_{s}^{\alpha_{s}}\right)^{n}=\left(y_{\pi(1)}^{\alpha_{\pi(1)}} \ldots y_{\pi(s)}^{\alpha_{\pi(s)}}\right)^{n}=y_{1}^{n \alpha_{1}} \ldots y_{s}^{n \alpha_{s}}
$$

If for some i additionally $y_{i}^{n}=1$ or $y_{i}^{p} \in H^{\prime}$ and α_{i} is a multiple of p, then

$$
\left(y_{1}^{\alpha_{1}} \ldots y_{i}^{\alpha_{i}} \ldots y_{s}^{\alpha_{s}}\right)^{n}=\left(y_{1}^{\alpha_{1}} \ldots \hat{y}_{i}^{\alpha_{i}} \ldots y_{s}^{\alpha_{s}}\right)^{n}
$$

Here the superscript ${ }^{\wedge}$ marks the absence of this element in the product.
3. Sylow p-Subgroups of the groups $G L_{n}\left(\mathbb{Z}_{p^{m}}\right)$ And $\Phi\left(\mathbb{Z}_{p^{m}}\right)$

Following [3], we define the sequence of functions $f_{n}, n=1,2, \ldots$, of natural arguments i, j, k, setting that

$$
f_{n}(i, j, k)=-\left[\frac{i-j-k}{n}\right]
$$

here $[x]$ is the integer part of number x (the closest integer to x on the left). By J we denote the ideal of the ring $\mathbb{Z}_{p^{m}}$, generated by the element p, and by E the identity matrix of order n. We select in $G L_{n}\left(\mathbb{Z}_{p^{m}}\right)$ the subgroups

$$
G^{(k)}=\left\langle E+A \mid A=\left(a_{i j}\right), a_{i j} \in J^{f_{n}(i, j, k)}, 1 \leqslant i, j \leqslant n\right\rangle, \quad k=1,2, \ldots
$$

From here on we set by definition $J^{0}=\mathbb{Z}_{p^{m}}$. According to [3], $G^{(1)}$ is isomorphic to the group

$$
P_{n}\left(\mathbb{Z}_{p^{m}}\right)=\left\{E+\left(a_{i j}\right) \mid a_{i j} \in \mathbb{Z}_{p^{m}} \text { for } i>j ; a_{i j} \in J, \text { for } i \leqslant j\right\}
$$

and the sequence

$$
G^{(1)} \supset G^{(2)} \supset \ldots \supset G^{(m n-1)} \supset\langle E\rangle
$$

is its lower central series, if $p>2$. Moreover, for every prime p and every natural k, l, the following relation holds:

$$
\begin{equation*}
\left[G^{(k)}, G^{(l)}\right] \subseteq G^{(k+l)} \tag{1}
\end{equation*}
$$

In [8, Lemma 2], it was shown that if $A=\left(a_{i j}\right), B=\left(b_{i j}\right)$ are such matrices that $a_{i j} \in J^{f_{n}(i, j, k)}$ and $b_{i j} \in J^{f_{n}(i, j, l)}$, then the elements $c_{i j}$ of the matrix $C=A B$ belong to the ideals $J^{f_{n}(i, j, k+l)}$. This and the properties of divisibility of binomial coefficients easily yield

Lemma 2. If $p>n$, then for every natural k the following inclusion holds: $\left[G^{(k)}\right]^{p} \subseteq G^{(k+n)}$.

Let Φ be an arbitrary reduced indecomposable root system. In the Chevalley group $\Phi\left(\mathbb{Z}_{p^{m}}\right)$, we select a sequence of subgroups $(k=1,2, \ldots)$

$$
S^{(k)}=\left\langle x_{r}(t), h_{s}(1+u) \mid r, s \in \Phi, t \in J^{f(r, k)}, u \in J^{f(0, k)}\right\rangle
$$

where the function $f(r, k)$ is defined on the set $\Phi_{0} \times \mathbb{N}, \Phi_{0}=\Phi \cup\{0\}$, by the equality $f(r, k)=-[(h t(r)-k) / h]$. Here $\operatorname{ht}(r)$ is theroot height function, ht $(0)=0$, h is the Coxeter number of the root system Φ. According to [11], the group $S^{(1)}$ is isomorphic to the Sylow p-subgroup

$$
P \Phi\left(\mathbb{Z}_{p^{m}}\right)=\left\langle x_{r}\left(\mathbb{Z}_{p^{m}}\right), x_{-r}(J), h_{r}(1+J) \mid r \in \Phi^{+}\right\rangle
$$

of the Chevalley group $\Phi\left(\mathbb{Z}_{p^{m}}\right)$, and the sequence

$$
S^{(1)} \supset S^{(2)} \ldots \supset S^{(m h)}=\langle 1\rangle
$$

is its lower central series, if p does not divide $p(\Phi)$!, where

$$
p(\Phi)=\max \{(r, r) /(s, s) \mid r, s \in \Phi\}
$$

As above, for every prime p and every natural k, l, the following relation holds:

$$
\begin{equation*}
\left[S^{(k)}, S^{(l)}\right] \subseteq S^{(k+l)} \tag{2}
\end{equation*}
$$

Recall that in the group $P \Phi\left(\mathbb{Z}_{p^{m}}\right)$ the following relations are satisfied: $(r, s \in \Phi)$

1) addititve property of root elements:

$$
x_{r}(t) x_{r}(u)=x_{r}(t+u), \quad t, u \in J^{f(r, 1)}
$$

2) multiplicative property of diagonal elements:

$$
h_{r}(t) h_{r}(u)=h_{r}(t u), \quad t, u \in 1+J^{f(0,1)}
$$

3) relations between root and diagonal elements:

$$
\left[x_{r}(t), h_{s}(u)\right]=x_{r}\left(t\left(u^{\left(r, h_{s}\right)}-1\right)\right), \quad t \in J^{f(r, 1)}, u \in J^{f(0,1)}
$$

4) Chevalley's commutator formula:

$$
\left[x_{s}(u), x_{r}(t)\right]=\prod_{\substack{i r+j s \in \Phi, i, j>0}} x_{i r+j s \in \Phi}\left(C_{i j, r s}(-t)^{i} u^{j}\right), \quad t \in J^{f(r, 1)}, u \in J^{f(s, 1)} ;
$$

5) relations between the opposite root elements:
$\left[x_{r}(t), x_{-r}(u)\right]=x_{r}\left(c^{-1} t^{2} u\right) h_{r}(c) x_{-r}\left(-c^{-1} t u^{2}\right), \quad c=1-t u, t \in J^{f(r, 1)}, u \in J^{f(-r, 1)}$.
The analogue of Lemma 2 for Sylow p-subgroups of Chevalley groups is
Lemma 3. If $p>h$, then for every natural number k the following inclusion holds: $\left[S^{(k)}\right]^{p} \subseteq S^{(k+h)}$.

Proof. Induction on k. We have

$$
\left[S^{(m h)}\right]^{p} \subseteq[\langle 1\rangle]^{p}=\langle 1\rangle=S^{(m h+h)}
$$

Suppose that $1 \leqslant k<m h$ and $y \in S^{(k)}$. Then

$$
y=\prod_{i=1}^{l} x_{r_{i}}\left(t_{i}\right) \prod_{j=1}^{q} h_{s_{j}}\left(1+z_{j}\right)
$$

where $r_{i} \in \Phi, t_{i} \in J^{f\left(r_{i}, k\right)}$ and $s_{j} \in \Pi(\Phi), z_{j} \in J^{f(0, k)}$. We will show that $y^{p} \in$ $S^{(k+h)}$. According to [2, Theorem 12.3.1],

$$
y^{p}=\prod_{i=1}^{l} x_{r_{i}}\left(t_{i}\right)^{p} \prod_{j=1}^{q} h_{s_{j}}\left(1+z_{j}\right)^{p} \cdot c_{1}^{\alpha_{1}} \ldots c_{u}^{\alpha_{u}} \cdot c_{u+1}^{\alpha_{u+1}} \ldots c_{u+v}^{\alpha_{u+v}}
$$

where the wights of the commutators c_{1}, \ldots, c_{u} are from 2 to $p-1$, and the numbers $\alpha_{1}, \ldots, \alpha_{u}$ are multiplies of p, the weights of the commutators c_{u+1}, \ldots, c_{u+v} exceed $p-1$. Since $f\left(r_{i}, k\right)+1=f\left(r_{i}, k+h\right)$, we have that

$$
p t_{i} \in p J^{f\left(r_{i}, k\right)}=J^{f\left(r_{i}, k\right)+1}=J^{f\left(r_{i}, k+h\right)}
$$

and therefore $x_{r_{i}}\left(t_{i}\right)^{p}=x_{r_{i}}\left(p t_{i}\right) \in S^{(k+h)}$.
Next, the function $f(0, k)$ satisfies the following inequalities:

1) $f\left(0, k_{1}\right)+f\left(0, k_{2}\right) \geqslant f\left(0, k_{1}+k_{2}\right)$ for every $k_{1}, k_{2} \in \mathbb{N}$;
2) $f\left(0, k_{1}\right) \geqslant f\left(0, k_{2}\right)$, if $k_{1} \geqslant k_{2}$.

Also from the condition $p>h$, it follows that $k p \geqslant k+h$. Hence, $f(0, k) p \geqslant$ $f(0, k p) \geqslant f(0, k+h)$. From here,

$$
\left(1+z_{j}\right)^{p}=1+\sum_{w=1}^{p-1}\binom{w}{p} z_{j}^{w}+z_{j}^{p} \in 1+\sum_{w=1}^{p-1} p J^{f(0, k) w}+J^{f(0, k) p} \subseteq 1+J^{f(0, k+h)}
$$

and therefore, $h_{s_{j}}\left(1+z_{j}\right)^{p} \in S^{(k+h)}$.
The commutators c_{1}, \ldots, c_{u} belong to $S^{(2 k)} \subseteq S^{(k+1)}$, hence, $c_{1}^{\alpha_{1}}, \ldots, c_{u}^{\alpha_{u}} \in$ $S^{(k+1+h)} \subseteq S^{(k+h)}$ by the induction assumption. Finally, from relation (2) it follows that $c_{u+1}, \ldots c_{u+v} \in S^{(k p)} \subseteq S^{(k+h)}$.

We denote by $K_{n}\left(J^{k}\right)$ and $\Phi\left(J^{k}\right)$ respectively the congruence subgroups of the groups $G L_{n}\left(\mathbb{Z}_{p^{m}}\right)$ and $\Phi\left(\mathbb{Z}_{p^{m}}\right)$, which are defined as the kernels of the homomorphisms $G L_{n}\left(\mathbb{Z}_{p^{m}}\right) \rightarrow G L_{n}\left(\mathbb{Z}_{p^{m-k}}\right)$ and $\Phi\left(\mathbb{Z}_{p^{m}}\right) \rightarrow \Phi\left(\mathbb{Z}_{p^{m-k}}\right)$, induced by the ring homomorphism $\mathbb{Z}_{p^{m}} \rightarrow \mathbb{Z}_{p^{m-k}}$. Relations 1) of the following lemma can be found in [3] and [11], relations 2) are easily established by the methods used in the proofs of Lemmas 2 and 3.

Lemma 4. The following inclusions hold:

1) $\left[K_{n}\left(J^{k}\right), K_{n}\left(J^{l}\right)\right] \subseteq K_{n}\left(J^{k+l}\right), \quad\left[\Phi\left(J^{k}\right), \Phi\left(J^{l}\right)\right] \subseteq \Phi\left(J^{k+l}\right)$;
2) $\left[K_{n}\left(J^{k}\right)\right]^{p} \subseteq K_{n}\left(J^{k+1}\right), \quad\left[\Phi\left(J^{k}\right)\right]^{p} \subseteq \Phi\left(J^{k+1}\right)$.

4. Proof of Theorem 2.

Since the regularity property is inherited by subgroups and quotient groups, to prove Theorem 2, it suffices to establish the nonregularity of the group $P_{(p+2) / 3}\left(\mathbb{Z}_{p^{3}}\right)$. We will need a number of auxiliary statements.

Lemma 5. For every $E+X, E+Y \in P_{n}\left(\mathbb{Z}_{p^{m}}\right)$, the following identity holds

$$
\begin{equation*}
[E+X, E+Y]=E+\sum_{k=2}^{\infty} \sum_{t=0}^{k-2}(-1)^{k} X^{t} Y^{k-t-2}(X, Y) \tag{3}
\end{equation*}
$$

where $(X, Y)=X Y-Y X$.
Proof. Due to nilpotency of the matrices X and Y, we have

$$
[E+X, E+Y]=\left(\sum_{i=0}^{\infty}(-X)^{i}\right)\left(\sum_{j=0}^{\infty}(-Y)^{j}\right)(E+X)(E+Y)
$$

Opening the brackets, we obtain a sum of homogeneous polynomials $f_{k}(X, Y)$ of degree k, moreover, it is obvious that $f_{0}(X, Y)=E$ and $f_{1}(X, Y)=O$, where O is a zero matrix. We fix $k \geqslant 2$. Then

$$
\begin{gathered}
f_{k}(X, Y)=(-X)^{k}+(-X)^{k-1}(-Y)+(-X)^{k-1} X+(-X)^{k-1} Y \\
+\sum_{t=0}^{k-2}(-X)^{t}\left((-Y)^{k-t}+(-Y)^{k-t-1} X+(-Y)^{k-t-1} Y+(-Y)^{k-t-2} X Y\right) \\
=\sum_{t=0}^{k-2}(-1)^{k} X^{t} Y^{k-t-2}(X, Y)
\end{gathered}
$$

Substituting X with $p X$ in (3), the commutator $[E+p X, E+Y]$ can be represented in the form of a series by exponents of p with coefficients depending on X and Y. Next, we will be interested in the coefficient of the term p in the decomposition of the complex commutators.

Lemma 6. Suppose that $E+p B, E+A \in P_{n}\left(\mathbb{Z}_{p^{m}}\right)$. The coefficient of p in the expansion of the commutator $\left[E+p B,{ }_{s} E+A\right], s \in \mathbb{N}$, in powers of p equals

$$
\begin{equation*}
F(s)=\sum_{j=0}^{s-1} \sum_{k=j}^{\infty}(-1)^{k}\binom{s-1}{j}\binom{s+k-j-1}{s-1} A^{k}(B, A) A^{s-j-1} \tag{4}
\end{equation*}
$$

Proof. Induction on s. By Lemma 5,

$$
\begin{aligned}
& {[E+p B, E+A]=E+\sum_{k=2}^{\infty} \sum_{t=0}^{k-2}(-1)^{k}(p B)^{t} A^{k-t-2}(p B, A)} \\
& \quad=E+p \sum_{k=2}^{\infty}(-1)^{k} A^{k-2}(B, A)+\ldots=E+p \sum_{k=0}^{\infty}(-1)^{k} A^{k}(B, A)+\ldots
\end{aligned}
$$

The obtained coefficient of p, obviously equals the expression (4), if in the latter one we take $s=1$.

Suppose that $s \geqslant 1$. To calculate the coefficient at p in the expansion of the commutator $\left[E+p B,_{s+1} E+A\right]$ in powers of p, we will use the inductive assumption and substitute B in the sum

$$
\sum_{k=0}^{\infty}(-1)^{k} A^{k}(B, A)
$$

with the expression (4). We will transform the obtained multiple sum by opening the outer Lie commutator:

$$
\begin{aligned}
& \sum_{t=0}^{\infty} \sum_{j=0}^{s-1} \sum_{k=j}^{\infty}(-1)^{k}\binom{s-1}{j}\binom{s+k-j-1}{s-1} A^{t}\left(A^{k}(B, A) A^{s-j-1}, A\right) \\
& \quad=\sum_{t=0}^{\infty} \sum_{j=0}^{s-1} \sum_{k=j}^{\infty}(-1)^{t+k}\binom{s-1}{j}\binom{s+k-j-1}{s-1} A^{t+k}(B, A) A^{s-j} \\
& \quad+\sum_{t=0}^{\infty} \sum_{j=0}^{s-1} \sum_{k=j}^{\infty}(-1)^{t+k+1}\binom{s-1}{j}\binom{s+k-j-1}{s-1} A^{t+k+1}(B, A) A^{s-j-1}
\end{aligned}
$$

We fix the number $j^{\prime}, 0 \leqslant j^{\prime} \leqslant s$, and the number $k^{\prime}, k^{\prime} \geqslant j^{\prime}$. The coefficient at $A^{k^{\prime}}(B, A) A^{s-j^{\prime}}$ equals:

$$
\begin{gathered}
\sum_{t=0}^{k^{\prime}}(-1)^{k^{\prime}}\binom{s-1}{0}\binom{s+k^{\prime}-t-1}{s-1}=(-1)^{k^{\prime}}\binom{s}{0} \sum_{t=0}^{k^{\prime}}\binom{s-1+k^{\prime}-t}{s-1} \\
=(-1)^{k^{\prime}}\binom{s}{0}\binom{s+k^{\prime}}{s-1}=(-1)^{k^{\prime}}\binom{s}{j^{\prime}}\binom{s+k^{\prime}-j^{\prime}}{s}
\end{gathered}
$$

if $j^{\prime}=0$;

$$
\begin{gathered}
\sum_{t=0}^{k^{\prime}-s}(-1)^{k^{\prime}}\binom{s-1}{s-1}\binom{s+k^{\prime}-s-t-1}{s-1}=\binom{s}{s} \sum_{t=0}^{k^{\prime}-s}(-1)^{k^{\prime}}\binom{k^{\prime}-t-1}{s-1} \\
=(-1)^{k^{\prime}}\binom{s}{s}\binom{k^{\prime}}{s}=(-1)^{k^{\prime}}\binom{s}{j^{\prime}}\binom{s+k^{\prime}-j^{\prime}}{s}
\end{gathered}
$$

if $j^{\prime}=s$;

$$
\begin{gathered}
\sum_{t=0}^{k^{\prime}-j^{\prime}}(-1)^{k^{\prime}}\binom{s-1}{j^{\prime}}\binom{s+k^{\prime}-j^{\prime}-t-1}{s-1}\left(\binom{s-1}{j^{\prime}}+\binom{s-1}{j^{\prime}-1}\right) \\
=(-1)^{k^{\prime}}\binom{s}{j^{\prime}} \sum_{t=0}^{k^{\prime}-j^{\prime}}\binom{s-1+k^{\prime}-j^{\prime}-t}{s-1}=(-1)^{k^{\prime}}\binom{s}{j^{\prime}}\binom{s+k^{\prime}-j^{\prime}}{s}
\end{gathered}
$$

where $0<j^{\prime}<s$. Therefore, the coefficient at $A^{k^{\prime}}(B, A) A^{s-j^{\prime}}$ in all cases equals

$$
(-1)^{k^{\prime}}\binom{s}{j^{\prime}}\binom{s+k^{\prime}-j^{\prime}}{s}
$$

Next, we assume that $n \geqslant 3$. The matrix of order n with one in position (i, j), where $1 \leqslant i, j \leqslant n$, and zeros elsewhere will be denoted by $e_{i j}$ and referred to as an matrix unit. Recall that the following formula of multiplication of matrix units is true:

$$
e_{i j} e_{t s}=\delta_{j t} e_{i s}
$$

where $\delta_{i j}$ is the Kronecker delta. We also agree to consider: $e_{i j}=O$, if $i \notin\{1, \ldots, n\}$ or $j \notin\{1, \ldots, n\}$. A sum with a lower limit exceeding the upper one is considered to be zero (is a zero matrix).

We fix the following matrices till the end of the paragraph

$$
A=e_{21}+e_{32}+\ldots+e_{n, n-1}, \quad B=e_{1 n}
$$

In the following lemmas, we calculate the product from the Corollary 1 and study the derived subgroup of the group generated by the elements $E+p B$ and $E+A$.

Lemma 7. For every natural s, the following equality holds:

$$
F(s)=\sum_{j=0}^{s} \sum_{k=j}^{n-1}(-1)^{k}\binom{s}{j}\binom{s+k-j-1}{s-1} e_{k+1, n-s+j}
$$

Proof. Taking into account the above-mentioned agreements, for every non-negative integer k we have

$$
A^{k}=\sum_{t=k+1}^{n} e_{t, t-k}
$$

Therefore,

$$
=\left(\sum_{t=k+1}^{n} e_{t, t-k}\right)\left(e_{1, n-1}-e_{2 n}\right)\left(\sum_{t=s-j}^{n} e_{t, t-s+j+1}\right)=e_{k+1, n-s+j}-e_{k+2, n-s+j+1}
$$

Substitute into (4) and break into two sums

$$
\begin{aligned}
& F(s)=\sum_{j=0}^{s-1} \sum_{k=j}^{n-1}(-1)^{k}\binom{s-1}{j}\binom{s-1+k-j}{s-1} e_{k+1, n-s+j} \\
&-\sum_{j=0}^{s-1} \sum_{k=j}^{n-1}(-1)^{k}\binom{s-1}{j}\binom{s-1+k-j}{s-1} e_{k+2, n-s+j+1} .
\end{aligned}
$$

In the second double sum, we substitute k with $k-1$ and j with $j-1$:

$$
\begin{aligned}
F(s)=\sum_{j=0}^{s-1} \sum_{k=j}^{n-1}(-1)^{k}\binom{s-1}{j} & \binom{s-1+k-j}{s-1} e_{k+1, n-s+j} \\
+ & \sum_{j=1}^{s} \sum_{k=j}^{n-1}(-1)^{k}\binom{s-1}{j-1}\binom{s-1+k-j}{s-1} e_{k+1, n-s+j}
\end{aligned}
$$

Since $\binom{s-1}{s}=\binom{s-1}{-1}=0$, we extend the summation over j in the first sum to $j=s$ and the summation over j in the second one to $j=0$ and summarize them

$$
\begin{aligned}
F(s)=\sum_{j=0}^{s} \sum_{k=j}^{n-1}(-1)^{k}\left[\binom{s-1}{j}\right. & \left.+\binom{s-1}{j-1}\right]\binom{s-1+k-j}{s-1} e_{k+1, n-s+j} \\
& =\sum_{j=0}^{s} \sum_{k=j}^{n-1}(-1)^{k}\binom{s}{j}\binom{s+k-j-1}{s-1} e_{k+1, n-s+j}
\end{aligned}
$$

Note that the arbitrary element $E+C$ from the group $P_{n}\left(\mathbb{Z}_{p^{m}}\right)$ can be represented (of course, not in a unique way) in the form

$$
E+C=E+p^{0} C_{0}+p C_{1}+\ldots+p^{m-1} C_{m-1}
$$

The following simple lemma often simplifies the calculations in $P_{n}\left(\mathbb{Z}_{p^{3}}\right)$.
Lemma 8. Suppose that $E+p X+p^{2} Y, E+p U+p^{2} V \in P_{n}\left(\mathbb{Z}_{p^{3}}\right)$. Then

1) $\left(E+p X+p^{2} Y\right)^{-1}=E-p X-p^{2} Y+p^{2} X^{2}$;
2) $\left(E+p X+p^{2} Y\right)^{p}=E+p^{2} X$;
3) $\left[E+p X+p^{2} Y, E+p U+p^{2} V\right]=E+p^{2}(X, U)$.

Lemma 9. Suppose that a prime p is such that $n=(p+2) / 3$ is an integer. In the group $P_{n}\left(\mathbb{Z}_{p^{3}}\right)$, the following equality holds

$$
\begin{aligned}
& {\left[E+p B,{ }_{p-1} E+A\right]\left[E+p B,{ }_{p-2} E+A, E+p B\right]^{-1}} \\
& \quad \times \prod_{s=1}^{(p-3) / 2}\left[\left[E+p B,{ }_{p-2-s} E+A\right],\left[E+p B,{ }_{s} E+A\right]\right]^{(-1)^{s+1}} \\
& \quad=\alpha e_{n, 1}-p^{2} e_{n, 2}-p^{2} e_{n-1,1}
\end{aligned}
$$

where $\alpha \in \mathbb{Z}_{p^{3}}$.
Proof. First, we will show that $\left[E+p B,{ }_{s} E+A\right]=E$, if $s \geqslant 2 n$. In particular, $\left[E+p B,{ }_{p-1} E+A\right]=E$, since $p \geqslant 7$, and therefore $n \geqslant 3$, hence,

$$
p-1=3 n-3=2 n+(n-3) \geqslant 2 n
$$

We introduce the following notation:

$$
\phi\left(x,{ }^{r} y\right)=[x, y], \quad \phi\left(x,{ }^{l} y\right)=[y, x],
$$

by induction for $q \geqslant 2$, we put

$$
\phi\left(x,{ }^{\alpha_{1}} y_{1}, \ldots,{ }^{\alpha_{q}} y_{q}\right)=\phi\left(\phi\left(x,{ }^{\alpha_{1}} y_{1}, \ldots,{ }^{\alpha_{q-1}} y_{q-1}\right),{ }^{\alpha_{q}} y_{q}\right)
$$

where $\alpha_{i}=r$ or $\alpha_{i}=l$.

We decompose the matrices $E+A$ and $E+p B$ into the product of transvections:

$$
E+A=t_{21}(1) t_{32}(1) \ldots t_{n, n-1}(1), \quad E+p B=t_{1 n}(p)
$$

Commutator identities

$$
[x, y z]=[x, y][x, y, z][x, z], \quad[y z, x]=[z, x][z,[x, y]][y, x]
$$

yield that $\left[E+p B,{ }_{s} E+A\right]$ can be factorized into a commutator product of the form

$$
\begin{equation*}
\phi\left(t_{1 n}(p),{ }^{\alpha_{1}} t_{i_{1}, i_{1}-1}(1), \ldots,{ }^{\alpha_{q}} t_{i_{q}, i_{q}-1}(1)\right), \quad q \geqslant s \tag{5}
\end{equation*}
$$

We study in detail the expression (5). The relation

$$
\begin{align*}
& {\left[t_{i j}(\alpha), t_{k m}(\beta)\right]=} \tag{6}\\
& \quad=\left(1-\delta_{j k}\right)\left(1-\delta_{i m}\right) E+\delta_{j k}\left(1-\delta_{i m}\right) t_{i m}(\alpha \beta)+\delta_{i m}\left(1-\delta_{j k}\right) t_{k j}(-\alpha \beta)
\end{align*}
$$

that holds when $j \neq k$ or $i \neq m$, implies that if we commute transvections with differences between the first and second indices being equal to s_{1} and s_{2}, we obtain the identity matrix, or a transvection with index difference $s_{1}+s_{2}$. Therefore, the expression (5) for $q=n-2$ is an identity matrix, or a transvection with index difference that equals -1 , that is,

$$
\phi\left(t_{1 n}(p),{ }^{\alpha_{1}} t_{i_{1}, i_{1}-1}(1), \ldots,{ }^{\alpha_{n-2}} t_{i_{n-2}, i_{n-2}-1}(1)\right)=t_{i, i+1}\left(\epsilon_{i} p\right),
$$

where $\epsilon_{i}=0$ or $\epsilon_{i}= \pm 1$ for some i. Next, using the relation

$$
\begin{equation*}
\left[t_{i j}(\alpha), t_{j i}(\beta)\right]=t_{i j}\left(c^{-1} \alpha^{2} \beta\right) d_{i j}(c) t_{j i}\left(-c^{-1} \alpha \beta^{2}\right) \tag{7}
\end{equation*}
$$

where $d_{i j}(c)=E+(c-1) e_{i i}+\left(c^{-1}-1\right) e_{j j}$, that holds if the element $c=1-\alpha \beta$ is invertible (in this case that is true, since $c \equiv 1(\bmod p)$), we obtain

$$
\begin{align*}
& {\left[t_{i, i-1}\left(\epsilon_{i} p\right), t_{i_{n-1}, i_{n-1}-1}(1)\right]=} \tag{8}\\
& \quad=\left(1-\delta_{i, i_{n-1}}\right) E+\delta_{i, i_{n-1}} t_{i, i+1}\left(\epsilon_{i}^{2} p^{2}\right) d_{i, i+1}\left(1-\epsilon_{i} p\right) t_{i+1, i}\left(-\epsilon_{i} p\left(1-\epsilon_{i} p\right)^{-1}\right)
\end{align*}
$$

Here we used the fact that $p^{3}=0$ in $\mathbb{Z}_{p^{3}}$ and therefore, $\epsilon_{i}^{2} p^{2}\left(1-\epsilon_{i} p\right)^{-1}=\epsilon_{i}^{2} p^{2}$. Finally, the relations (6), (7) and

$$
\begin{equation*}
\left[t_{k m}(\alpha), \operatorname{diag}\left(\beta_{1}, \ldots, \beta_{n}\right)\right]=t_{k m}\left(\alpha\left(\beta_{m} \beta_{k}^{-1}-1\right)\right) \tag{9}
\end{equation*}
$$

show that commuting (8) with the transvection $t_{i_{n}, i_{n}-1}(1)$ yields: the identity matrix if $i_{n} \neq i-1, i, i+1$; the matrix from the unitriangular group $U T_{n}\left(\mathbb{Z}_{p^{3}}\right)$ if $i_{n}=i-1, i+1$; and finally, the matrix $d_{i, i+1}\left(1-\epsilon_{i}^{2} p^{2}\right) \theta$, where $\theta \in U T_{n}\left(\mathbb{Z}_{p^{3}}\right)$, if $i_{n}=i$. This and (9) yield that the expression (5) given $q=n+1$ belongs to $U T_{n}\left(\mathbb{Z}_{p^{3}}\right)$ and equals E given $q=2 n$, since the group $U T_{n}\left(\mathbb{Z}_{p^{3}}\right)$ is of nilpotency class $n-1$.

Note that if $p>7$, we have $p-2 \geqslant 2 n$, and hence,

$$
\left[E+p B,{ }_{p-2} E+A, E+p B\right]=E .
$$

When $p=7$, we have $n=3$, and direct calculations show that

$$
\left[E+p B,{ }_{p-2} E+A\right]=t_{31}\left(-3 p^{2}\right), \quad\left[t_{31}\left(-3 p^{2}\right), t_{13}(p)\right]=E
$$

Therefore, in all cases,

$$
\left[E+p B,{ }_{p-1} E+A\right]\left[E+p B,{ }_{p-2} E+A, E+p B\right]^{-1}=E
$$

We will calculate the remaining product. According to item 3) of Lemma 8, we have

$$
\begin{equation*}
\left[\left[E+p B,{ }_{p-2-s} E+A\right],\left[E+p B,{ }_{s} E+A\right]\right]=E+p^{2} F(p-2-s) F(s) \tag{10}
\end{equation*}
$$

Suppose that $s \geqslant 2 n-1$. Then the expression

$$
A^{k}(B, A) A^{s-j-1}=A^{k} B A^{s-j}+A^{k+1} B A^{s-j-1}
$$

equals zero matrix, if $0 \leqslant j \leqslant s$ and $k \geqslant j$, since $A^{n}=O$. Indeed, when $0 \leqslant j \leqslant$ $n-2$, we have $s-j-1 \geqslant n$; if $j=n-1$, then $s-j \geqslant n$ and $k+1 \geqslant n$; finally, if $j \geqslant n$, then $k \geqslant n$. This and Lemma 6 yield that $F(s)=O$, when $s \geqslant 2 n-1$, and $F(p-2-s)=O$, when $p-2-s \geqslant 2 n-1$. Therefore, commutator (10) is distinct from E when

$$
n-2 \leqslant s \leqslant \min \{2 n-2,(p-3) / 2\}=(3 n-5) / 2
$$

We put $s=n-2+\alpha$. Then

$$
\begin{align*}
& \prod_{s=1}^{(p-3) / 2}\left[\left[E+p B,{ }_{p-2-s} E+A\right],\left[E+p B,{ }_{s} E+A\right]\right]^{(-1)^{s+1}} \tag{11}\\
= & \prod_{\alpha=0}^{(n-1) / 2}\left[\left[E+p B,{ }_{2 n-2-\alpha} E+A\right],\left[E+p B,{ }_{n-2+\alpha} E+A\right]\right]^{(-1)^{\alpha+1}} \\
= & E+p^{2} \sum_{\alpha=0}^{(n-1) / 2}(-1)^{\alpha+1}(F(2 n-2-\alpha), F(n-2+\alpha)) .
\end{align*}
$$

The nilpotency class of the group $P_{n}\left(p^{3}\right)$ equals $3 n-1=p+1$. Hence, the product (11), consisting of commutators of weight p, belongs to the hypercenter and equals to

$$
E+p^{2} \theta e_{n, 1}+p^{2} \beta e_{n-1,1}+p^{2} \gamma e_{n, 2}
$$

for the suitable θ, β, γ.
We will calculate the coefficient β for $e_{n-1,1}$. To do that, using Lemma 6, we choose in the factorization of $F(2 n-2-\alpha)$ into matrix units the summands with the first index that equals $n-1$, and in $F(n-2-\alpha)$ the summands with the second index that equals 1 :

$$
\begin{gather*}
\sum_{j=0}^{n-2}(-1)^{n-2}\binom{2 n-2-\alpha}{j}\binom{3 n-5-\alpha-j}{2 n-3-\alpha} e_{n-1,-n+2+\alpha+j} \tag{12}\\
\sum_{k=\alpha-1}^{n-1}(-1)^{k}\binom{n-2+\alpha}{\alpha-1}\binom{n-2+k}{n-3+\alpha} e_{k+1,1} \tag{13}
\end{gather*}
$$

Note that in (13) for $\alpha=0$ and $k=-1$, not only e_{01} equals zero matrix, but the binomial coefficient $\binom{n-2+\alpha}{\alpha-1}=\binom{n-2}{-1}$ also equals zero. Taking into account that $-n+2+\alpha+j \leqslant \alpha \leqslant k+1$, the coefficient at $e_{n-1,1}$ in the product of (12) and (13) equals

$$
\begin{gather*}
(-1)^{n-2+\alpha-1}\binom{2 n-2-\alpha}{n-2}\binom{3 n-5-\alpha-n+2}{2 n-3-\alpha}\binom{n-2+\alpha}{\alpha-1}\binom{n-2+\alpha-1}{n-3+\alpha} \\
=(-1)^{\alpha}\binom{2 n-2-\alpha}{n-2}\binom{n-2+\alpha}{n-1} \tag{14}
\end{gather*}
$$

(When $\alpha=0$, the expression (14), obviously, equals zero). Next, selecting in the expansion of $F(n-2+\alpha)$ the summands with the first index equal to $n-1$, and in $F(2 n-2-\alpha)$ the summands with the second index equal to 1 , we obtain

$$
\begin{gather*}
\sum_{j=0}^{n-2}(-1)^{n-2}\binom{n-2+\alpha}{j}\binom{2 n-5+\alpha+j}{n-3+\alpha} e_{n-1,2-\alpha+j} \tag{15}\\
\sum_{k=n-1-\alpha}^{n-1}(-1)^{k}\binom{2 n-2-\alpha}{n-1-\alpha}\binom{n-2+k}{2 n-3-\alpha} e_{k+1,1} \tag{16}
\end{gather*}
$$

Taking into account that $2-\alpha+j \leqslant n-\alpha \leqslant k+1$, the coefficient at $e_{n-1,1}$ in the product of (15) and (16) equals

$$
\begin{align*}
& (-1)^{n-2+n-1-\alpha}\binom{n-2+\alpha}{n-2}\binom{2 n-5+\alpha-n+2}{n-3+\alpha}\binom{2 n-2-\alpha}{n-1-\alpha}\binom{2 n-3-\alpha}{2 n-3-\alpha} \\
& 17) \quad=(-1)^{\alpha+1}\binom{n-2+\alpha}{n-2}\binom{2 n-2-\alpha}{n-1} . \tag{17}
\end{align*}
$$

Multiplying the difference between (14) and (17) by $(-1)^{\alpha+1}$, and then summing over α, we can see that

$$
\begin{equation*}
\beta=-\sum_{\alpha=0}^{(n-1 / 2)}\left[\binom{2 n-2-\alpha}{n-2}\binom{n-2+\alpha}{n-1}+\binom{n-2+\alpha}{n-2}\binom{2 n-2-\alpha}{n-1}\right] . \tag{18}
\end{equation*}
$$

We calculate the obtained sum. We have

$$
\begin{aligned}
& \sum_{\alpha=0}^{(n-1) / 2}\binom{2 n-2-\alpha}{n-2}\binom{n-2+\alpha}{n-1}=\sum_{\alpha=-(n-1) / 2}^{0}\binom{2 n-2+\alpha}{n-2}\binom{n-2-\alpha}{n-1} \\
= & \sum_{\alpha=n-(n-1) / 2}^{n}\binom{n-2+\alpha}{n-2}\binom{2 n-2-\alpha}{n-1}=\sum_{\alpha=(n+1) / 2}^{n}\binom{n-2+\alpha}{n-2}\binom{2 n-2-\alpha}{n-1} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
&-\beta=\sum_{\alpha=0}^{n}\binom{n-2+\alpha}{n-2}\binom{2 n-2-\alpha}{n-1}=\sum_{\alpha=n-2}^{2 n-2}\binom{\alpha}{n-2}\binom{3 n-4-\alpha}{n-1} \\
&=\binom{3 n-3}{2 n-2}=\binom{p-1}{2 n-2} \equiv(-1)^{2 n-2} \equiv 1 \quad(\bmod p) .
\end{aligned}
$$

Here we used the fact that $\binom{3 n-4-(2 n-2)}{n-1}=0$, and the proved in [10] identity

$$
\sum_{i=b}^{n-a}\binom{n-i}{a}\binom{i}{b}=\binom{n+1}{a+b+1}
$$

We calculate the coefficient γ. We select in the expansion of $F(2 n-2-\alpha)$ the summands with the first index equal to n, and in $F(n-2-\alpha)$ the summands with the second index equal to 2 :

$$
\begin{equation*}
\sum_{j=0}^{n-1}(-1)^{n-1}\binom{2 n-2-\alpha}{j}\binom{3 n-4-\alpha-j}{2 n-3-\alpha} e_{n,-n+2+\alpha+j} \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{k=\alpha}^{n-1}(-1)^{k}\binom{n-2+\alpha}{\alpha}\binom{n-3+k}{n-3+\alpha} e_{k+1,2} \tag{20}
\end{equation*}
$$

Taking into account that $-n+2+\alpha+j \leqslant \alpha+1 \leqslant k+1$, the coefficient at $e_{n, 2}$ in the product of (19) and (20) equals

$$
\begin{gather*}
(-1)^{n-1+\alpha}\binom{2 n-2-\alpha}{n-1}\binom{2 n-3-\alpha}{2 n-3-\alpha}\binom{n-2+\alpha}{\alpha}\binom{n-3+\alpha}{n-3+\alpha} \\
=(-1)^{\alpha}\binom{2 n-2-\alpha}{n-1}\binom{n-2+\alpha}{n-2} . \tag{21}
\end{gather*}
$$

Next, selecting in the expansion of $F(n-2+\alpha)$ the summands with the first index equal to n, and of $F(2 n-2-\alpha)$ the ones with the second index equal to 2 , we obtain

$$
\begin{gather*}
\sum_{j=0}^{n-1}(-1)^{n-1}\binom{n-2+\alpha}{j}\binom{2 n-4+\alpha-j}{n-3+\alpha} e_{n, 2-\alpha+j} \tag{22}\\
\sum_{k=n-\alpha}^{n-1}(-1)^{k}\binom{2 n-2-\alpha}{n-\alpha}\binom{n-3+k}{2 n-3-\alpha} e_{k+1,2} \tag{23}
\end{gather*}
$$

Note that in (22) when $\alpha=0$ and $j=n-1$, the matrix $e_{n, n+1}$ is zero and its binomial coefficient $\binom{n-2}{n-1}$ equals zero. The sum (23) for $\alpha=0$ also by definition equals zero. Taking into account that $2-\alpha+j \leqslant n-\alpha+1 \leqslant k+1$, the coefficient at $e_{n, 2}$ in the product of (22) and (23) equals

$$
\begin{gather*}
(-1)^{n-1+n-\alpha}\binom{n-2+\alpha}{n-1}\binom{n-3+\alpha}{n-3+\alpha}\binom{2 n-2-\alpha}{n-\alpha}\binom{2 n-3-\alpha}{2 n-3-\alpha} \\
=(-1)^{\alpha+1}\binom{n-2+\alpha}{n-1}\binom{2 n-2-\alpha}{n-2} . \tag{24}
\end{gather*}
$$

(When $\alpha=0$, the expression (24), obviously, equals zero). Summing over α the difference between (21) and (24), multiplied by $(-1)^{\alpha+1}$, we obtain again the expression (18). Therefore, $\gamma=-1$.

Lemma 10. The derived subgroup of the subgroup $H=\langle E+A, E+p B\rangle$ of the group $P_{n}\left(\mathbb{Z}_{p^{3}}\right)$ is generated by the commutators

$$
\begin{gathered}
y_{i}=\left[E+p B,{ }_{i} E+A\right], i=1,2, \ldots, \\
y_{j l}=\left[\left[E+p B,{ }_{j} E+A\right],\left[E+p B,{ }_{l} E+A\right]\right], j, l=0,1, \ldots
\end{gathered}
$$

If $d \in H^{\prime}$ and $d^{p} \in G^{(p)}$ (the p-th element of the lower central series of the group $P_{n}\left(\mathbb{Z}_{p^{3}}\right)$, then

$$
d^{p}=E+\lambda p^{2} e_{n, 1}-\tau p^{2}\binom{2 n-3}{n-2} e_{n-1,1}+\tau p^{2}\binom{2 n-3}{n-2} e_{n, 2}
$$

Proof. Note that $y_{i} \in K_{n}(J)$ and $y_{j l} \in K_{n}\left(J^{2}\right)$ for every i, j, l. Since $K_{n}\left(J^{3}\right)=\langle E\rangle$ and by Lemma 4 , the following inclusions are true: $\left[K_{n}(J), K_{n}\left(J^{2}\right)\right] \subseteq K_{n}\left(J^{3}\right)$ and $\left[K_{n}\left(J^{2}\right)\right]^{p} \subseteq K_{n}\left(J^{3}\right)$, then $\left[y_{i}, y_{j l}\right]=E$ and $y_{j l}^{p}=E$. Therefore, due to Corollary 2, we can assume that

$$
d=y_{1}^{\tau_{1}} \ldots y_{3 n-1}^{\tau_{3 n-1}}
$$

Next, if $i \geqslant 2 n-1$, then $y_{i} \in G^{(2 n)} \subseteq K_{n}\left(J^{2}\right)$ and hence, $y_{i}^{p}=E$. Therefore, the product $y_{2 n-1}^{\tau_{2 n-1}} \ldots y_{3 n-1}^{\tau_{3 n-1}}$ in the expansion of d can be dropped as well.

Suppose that $1 \leqslant i \leqslant 2 n-4$. Then $y_{i} \in G^{(i+1)}$ and by Lemma 4, we have $y_{i}^{p} \in G^{(i+n+1)}$. We will show that $y_{i}^{p} \notin G^{(i+n+2)}$. Indeed, if $1 \leqslant i \leqslant n-1$, then using Lemmas 4 and 8, we obtain

$$
\begin{aligned}
y_{i}^{p}= & \left(E+p F(i)+p^{2} Q(i)\right)^{p}=E+p^{2} F(i) \\
& =E+\ldots+(-1)^{0}\binom{i}{0}\binom{i-1}{i-1} p^{2} e_{1, n-i}+\ldots=E+\ldots+p^{2} e_{1, n-i}+\ldots
\end{aligned}
$$

At the same time,

$$
f_{n}(1, n-i, i+n+2)=-\left[\frac{1-(n-i)-(i+n+2)}{n}\right]=3
$$

which means that the element located at the position $(i, n-i)$, of the arbitrary matrix from $G^{(i+n+2)}$ belongs to the ideal J^{3}. Similarly, if $n \leqslant i \leqslant 2 n-4$, then

$$
y_{i}^{p}=E+\ldots+(-1)^{i+1-n}\binom{i}{i+1-n}\binom{i-1}{i-1} p^{2} e_{i+2-n, 1}+\ldots
$$

and $\binom{i}{i+1-n} \not \equiv 0(\bmod p)$, and on the other hand,

$$
f_{n}(i+2-n, 1, i+n+2)=-\left[\frac{i+2-n-1-(i+2+n)}{n}\right]=3
$$

Therefore, $y_{i}^{p} \notin G^{(i+n+2)}$. This and the inclusion $d^{p} \in G^{p}=G^{(3 n-2)}$ yield that the commutators $y_{1}, \ldots, y_{2 n-4}$ must be included into the expansion of d with exponents divisible by p, and hence, they can also be dropped. Therefore, we can assume that $d=y_{2 n-3}^{\tau} y_{2 n-2}^{\mu}$. Using again Corollary 2 and Lemma 7, we find

$$
\begin{aligned}
& \quad d^{p}=y_{2 n-3}^{p \tau} y_{2 n-2}^{p \mu}=\left(E+p^{2} F(2 n-3)\right)^{\tau}\left(E+p^{2} F(2 n-2)\right)^{\mu} \\
& \quad=\left(E+p^{2}(2 n-3)\binom{2 n-3}{n-2} e_{n, 1}-p^{2}\binom{2 n-3}{n-2} e_{n-1,1}+p^{2}\binom{2 n-3}{n-2} e_{n, 2}\right)^{\tau} \\
& \times\left(E+p^{2}\binom{2 n-2}{n-1} e_{n, 1}\right)^{\mu}=E+\gamma p^{2} e_{n, 1}-\tau p^{2}\binom{2 n-3}{n-2} e_{n-1,1}+\tau p^{2}\binom{2 n-3}{n-2} e_{n, 2} .
\end{aligned}
$$

We will now prove Theorem 2. From Lemmas 9 and 10 it follows that in the case when the subgroup H is regular, the following equivalences have to be solvable simultaneously

$$
-\tau\binom{2 n-3}{n-2} \equiv-1 \quad(\bmod p), \quad \tau\binom{2 n-3}{n-2} \equiv-1 \quad(\bmod p)
$$

with respect to τ. Summing them, we obtain $0 \equiv-2(\bmod p)$, which is a contradiction. Therefore, the group $P_{\frac{p+2}{3}}\left(\mathbb{Z}_{p^{3}}\right)$ is not regular. Theorem 2 is proved.

5. Proof of Theorem 3

Hereinafter, a, b are fundamental roots of a root system of type G_{2}, moreover, $|a|<|b|$. As above, we will split the calculations necessary for the proof of the theorem into separate statements. The list of all nontrivial Chevalley commutator formulas is provided in Appendix 2. The numbers $C_{i j, r s}$ in the formulas are defined
with respect to the structural constants $\epsilon_{1}=N_{a, b}, \epsilon_{2}=N_{a, a+b}, \epsilon_{3}=N_{a, 2 a+b}$, $\epsilon_{4}=N_{b, 3 a+b}$, that correspond to the extraspecial pairs $(a, b),(a, a+b),(a, 2 a+b)$, $(b, 3 a+b)$. In the calculations, we everywhere assume that $\epsilon_{1}=\epsilon_{2}=\epsilon_{3}=\epsilon_{4}=1$.
Lemma 11. Suppose that

$$
g=x_{b}(\alpha) x_{a+b}(\beta) x_{2 a+b}(\gamma) x_{3 a+b}(\delta) x_{3 a+2 b}(\epsilon) \in P G_{2}\left(\mathbb{Z}_{p}\right)
$$

The following equalities hold:

$$
\begin{gathered}
g^{x_{a}(1)}= \\
x_{b}(\alpha) x_{a+b}(\beta-\alpha) x_{2 a+b}(\gamma+\alpha-2 \beta) x_{3 a+b}(\delta-\alpha+3 \beta-3 \gamma) x_{3 a+2 b}\left(\epsilon-\alpha^{2}-3 \beta^{2}+3 \alpha \beta\right) \\
g^{x_{b}(1)}=x_{b}(\alpha) x_{a+b}(\beta) x_{2 a+b}(\gamma) x_{3 a+b}(\delta) x_{3 a+2 b}(\epsilon-\delta)
\end{gathered}
$$

Proof. Using the identity $x y=y x[x, y]$ and the Chevalley commutator formula (formulas (29), (28), (27), (31) from Appendix 2), we will switch places the element $x_{a}(1)$ and every factor from g in the product $g x_{a}(1)$:

$$
\begin{aligned}
g x_{a}(1)= & x_{b}(\alpha) x_{a+b}(\beta) x_{2 a+b}(\gamma) x_{3 a+b}(\delta) x_{3 a+2 b}(\epsilon) x_{a}(1) \\
= & x_{b}(\alpha) x_{a+b}(\beta) x_{2 a+b}(\gamma) x_{a}(1) x_{3 a+b}(\delta) x_{3 a+2 b}(\epsilon) \\
= & x_{b}(\alpha) x_{a+b}(\beta) x_{a}(1) x_{2 a+b}(\gamma)\left[x_{2 a+b}(\gamma), x_{a}(1)\right] x_{3 a+b}(\delta) x_{3 a+2 b}(\epsilon) \\
= & x_{b}(\alpha) x_{a+b}(\beta) x_{a}(1) x_{2 a+b}(\gamma) x_{3 a+b}(-3 \gamma) x_{3 a+b}(\delta) x_{3 a+2 b}(\epsilon) \\
= & x_{b}(\alpha) x_{a}(1) x_{a+b}(\beta)\left[x_{a+b}(\beta), x_{a}(1)\right] x_{2 a+b}(\gamma) x_{3 a+b}(\delta-3 \gamma) x_{3 a+2 b}(\epsilon) \\
= & x_{a}(1) x_{b}(\alpha)\left[x_{b}(\alpha), x_{a}(1)\right] x_{a+b}(\beta) x_{2 a+b}(-2 \beta) x_{3 a+b}(3 \beta) \times \\
& x_{3 a+2 b}\left(-3 \beta^{2}\right) x_{2 a+b}(\gamma), x_{3 a+b}(\delta-3 \gamma) x_{3 a+2 b}(\epsilon) \\
= & x_{a}(1) x_{b}(\alpha) x_{a+b}(-\alpha) x_{2 a+b}(\alpha) x_{3 a+b}(-\alpha) x_{3 a+2 b}\left(-\alpha^{2}\right) x_{a+b}(\beta) \times \\
& x_{2 a+b}(\gamma-2 \beta) x_{3 a+b}(\delta+3 \beta-3 \gamma) x_{3 a+2 b}\left(\epsilon-3 \beta^{2}\right) \\
= & x_{a}(1) x_{a+b}(\beta-\alpha) x_{2 a+b}(\gamma+\alpha-2 \beta) x_{3 a+b}(\delta-\alpha+3 \beta-3 \gamma) \times \\
& x_{3 a+2 b}\left(\epsilon-\alpha^{2}-3 \beta^{2}+3 \alpha \beta\right) .
\end{aligned}
$$

Therefore,

$$
\begin{gathered}
g x_{a}(1)=x_{a}(1) x_{b}(\alpha) x_{a+b}(\beta-\alpha) \times \\
x_{2 a+b}(\gamma+\alpha-2 \beta) x_{3 a+b}(\delta-\alpha-3 \beta-3 \gamma) x_{3 a+2 b}\left(\epsilon-\alpha^{2}-3 \beta^{2}+3 \alpha \beta\right)
\end{gathered}
$$

which yields the required equality.
Similarly,

$$
\begin{aligned}
g x_{b}(1) & =x_{b}(\alpha) x_{a+b}(\beta) x_{2 a+b}(\gamma) x_{3 a+b}(\delta) x_{3 a+2 b}(\epsilon) x_{b}(1) \\
& =x_{b}(\alpha) x_{a+b}(\beta) x_{2 a+b}(\gamma) x_{b}(1) x_{3 a+b}(\delta)\left[x_{3 a+b}(\delta), x_{b}(1)\right] x_{3 a+2 b}(\epsilon) \\
& =x_{b}(\alpha) x_{a+b}(\beta) x_{2 a+b}(\gamma) x_{b}(1) x_{3 a+b}(\delta) x_{3 a+2 b}(\epsilon-\delta) \\
& =x_{b}(1) x_{b}(\alpha) x_{a+b}(\beta) x_{2 a+b}(\gamma) x_{3 a+b}(\delta) x_{3 a+2 b}(\epsilon-\delta) .
\end{aligned}
$$

Lemma 12. Let

$$
g=x_{a+b}(\alpha) x_{2 a+b}(\beta) x_{3 a+b}(\gamma) x_{3 a+2 b}(\delta) \in P G_{2}\left(\mathbb{Z}_{p}\right)
$$

For every $n \in \mathbb{N}$, the following equality holds:

$$
g^{n}=x_{a+b}(n \alpha) x_{2 a+b}(n \beta) x_{3 a+b}(n \gamma) x_{3 a+2 b}\left(n \delta+3\binom{n}{2} \alpha \beta\right)
$$

Proof. Induction on n and formula (29) from Appendix 2.

$$
\begin{aligned}
g^{n+1}= & g^{n} g \\
= & x_{a+b}(n \alpha) x_{2 a+b}(n \beta) x_{3 a+b}(n \gamma) x_{3 a+2 b}\left(n \delta+3\binom{n}{2} \alpha \beta\right) \times \\
& x_{a+b}(\alpha) x_{2 a+b}(\beta) x_{3 a+b}(\gamma) x_{3 a+2 b}(\delta) \\
= & x_{a+b}((n+1) \alpha) x_{2 a+b}((n+1) \beta) x_{3 a+b}((n+1) \gamma) \times \\
& x_{3 a+2 b}\left((n+1) \delta+3\binom{n}{2} \alpha \beta+3 n \alpha \beta\right) \\
= & x_{a+b}((n+1) \alpha) x_{2 a+b}((n+1) \beta) x_{3 a+b}((n+1) \gamma) \times \\
& x_{3 a+2 b}\left((n+1) \delta+3\binom{n+1}{2} \alpha \beta\right) .
\end{aligned}
$$

Lemma 13. In the group $P G_{2}\left(\mathbb{Z}_{p}\right)$, the following relations hold:

$$
\begin{aligned}
\left(x_{a}(1) x_{b}(1)\right)^{2} & =x_{a}(2) x_{b}(2) x_{a+b}(-1) x_{2 a+b}(1) x_{3 a+b}(-1) \\
\left(x_{a}(1) x_{b}(1)\right)^{3} & =x_{a}(3) x_{b}(3) x_{a+b}(-3) x_{2 a+b}(5) x_{3 a+b}(-9) x_{3 a+2 b}(-4) \\
\left(x_{a}(1) x_{b}(1)\right)^{4} & =x_{a}(4) x_{b}(4) x_{a+b}(-6) x_{2 a+b}(14) x_{3 a+b}(-36) x_{3 a+2 b}(-31) \\
\left(x_{a}(1) x_{b}(1)\right)^{5} & =x_{a}(5) x_{b}(5) x_{a+b}(-10) x_{2 a+b}(30) x_{3 a+b}(-100) x_{3 a+2 b}(-127)
\end{aligned}
$$

Proof. We put $D=x_{a}(1) x_{b}(1)$ and use Lemma 11.

$$
\begin{aligned}
(D)^{2} & =x_{a}(1) x_{b}(1) x_{a}(1) x_{b}(1) \\
& =x_{a}(2) x_{b}(1)\left[x_{b}(1), x_{a}(1)\right] x_{b}(1) \\
& =x_{a}(2) x_{b}(1) x_{a+b}(-1) x_{2 a+b}(1) x_{3 a+b}(-1) x_{3 a+2 b}(-1) x_{b}(1) \\
& =x_{a}(2) x_{b}(2) x_{a+b}(-1) x_{2 a+b}(1) x_{3 a+b}(-1) \\
(D)^{3} & =x_{a}(2) x_{b}(2) x_{a+b}(-1) x_{2 a+b}(1) x_{3 a+b}(-1) x_{a}(1) x_{b}(1) \\
& =x_{a}(3) x_{b}(2) x_{a+b}(-3) x_{2 a+b}(5) x_{3 a+b}(-9) x_{3 a+2 b}(-13) x_{b}(1) \\
& =x_{a}(3) x_{b}(3) x_{a+b}(-3) x_{2 a+b}(5) x_{3 a+b}(-9) x_{3 a+2 b}(-4) \\
(D)^{4} & =x_{a}(3) x_{b}(3) x_{a+b}(-3) x_{2 a+b}(5) x_{3 a+b}(-9) x_{3 a+2 b}(-4) x_{a}(1) x_{b}(1) \\
& =x_{a}(4) x_{b}(3) x_{a+b}(-6) x_{2 a+b}(14) x_{3 a+b}(-36) x_{3 a+2 b}(-67) x_{b}(1) \\
& =x_{a}(4) x_{b}(4) x_{a+b}(-6) x_{2 a+b}(14) x_{3 a+b}(-36) x_{3 a+2 b}(-31) \\
(D)^{5} & =x_{a}(4) x_{b}(4) x_{a+b}(-6) x_{2 a+b}(14) x_{3 a+b}(-36) x_{3 a+2 b}(-31) x_{a}(1) x_{b}(1) \\
& =x_{a}(5) x_{b}(4) x_{a+b}(-10) x_{2 a+b}(30) x_{3 a+b}(-100) x_{3 a+2 b}(-227) x_{b}(1) \\
& =x_{a}(5) x_{b}(5) x_{a+b}(-10) x_{2 a+b}(30) x_{3 a+b}(-100) x_{3 a+2 b}(-127) .
\end{aligned}
$$

Lemma 14. In the group $P G_{2}\left(\mathbb{Z}_{p^{m}}\right)$ for $i=1, \ldots, 12$ the following equalities hold:

$$
V_{i}=\left[x_{-3 a-2 b}(p),{ }_{i} x_{a}(1) x_{b}(1)\right]=W_{i+1} Y_{i+2}, \quad Y_{i+2} \in S^{(i+2)},
$$

where

i	W_{i}	i	W_{i}	i	W_{i}	i	W_{i}
2	$x_{-3 a-b}(p)$	5	$x_{-a}(-2 p) x_{-b}(6 p)$	8	$x_{a+b}(28 p)$	11	$x_{3 a+2 b}(-168 p)$
3	$x_{-2 a-b}(p)$	6	$h_{-a}(1+2 p) h_{-b}(1-6 p)$	9	$x_{2 a+b}(-56 p)$	12	1
4	$x_{-a-b}(2 p)$	7	$x_{a}(10 p) x_{b}(-18 p)$	10	$x_{3 a+b}(168 p)$	13	1

Proof. The case when $i=1$. Formula (44) from Appendix 2:

$$
V_{1}=\left[x_{-3 a-2 b}(p), x_{b}(1)\right]=x_{-3 a-b}(p)
$$

The case when $i=2$. Formula (40) from Appendix 2:
$V_{2}=\left[x_{-3 a-b}(p), x_{a}(1) x_{b}(1)\right] \equiv\left[x_{-3 a-b}(p), x_{a}(1)\right] \equiv x_{-2 a-b}(p) \quad\left(\bmod S^{(4)}\right)$.
The case when $i=3$. Formula (39) from Appendix 2:
$V_{3}=\left[x_{-2 a-b}(p) Y_{4}, x_{a}(1) x_{b}(1)\right] \equiv\left[x_{-2 a-b}(p), x_{a}(1)\right] \equiv x_{-a-b}(2 p) \quad\left(\bmod S^{(5)}\right)$.
The case when $i=4$. Formulas (13) and (18) from Appendix 2:

$$
\begin{aligned}
V_{4}= & {\left[x_{-a-b}(2 p) Y_{5}, x_{a}(1) x_{b}(1)\right] \equiv } \\
& \equiv\left[x_{-a-b}(2 p), x_{b}(1)\right]\left[x_{-a-b}(2 p), x_{a}(1)\right] \equiv x_{-a}(-2 p) x_{-b}(6 p) \quad\left(\bmod S^{(6)}\right)
\end{aligned}
$$

The case when $i=5$. Relations between the opposite root elements:

$$
\begin{aligned}
& V_{5}=\left[x_{-a}(-2 p) x_{-b}(6 p) Y_{6}, x_{a}(1) x_{b}(1)\right] \equiv \\
& \quad \equiv\left[x_{-a}(-2 p), x_{a}(1)\right]\left[x_{-b}(6 p), x_{b}(1)\right] \equiv h_{-a}(1+2 p) h_{-b}(1-6 p) \quad\left(\bmod S^{(7)}\right)
\end{aligned}
$$

The case when $i=6$. Relations between root and diagonal elements and Table 2 from Appendix 1:

$$
\begin{aligned}
& V_{6}=\left[h_{-a}(1+2 p) h_{-b}(1-6 p) Y_{7}, x_{a}(1) x_{b}(1)\right] \equiv \\
& \equiv\left[h_{-a}(1+2 p) h_{-b}(1-6 p), x_{b}(1)\right]\left[h_{-a}(1+2 p) h_{-b}(1-6 p), x_{a}(1)\right] \equiv \\
& \\
& \quad \equiv x_{a}(10 p) x_{b}(-18 p) \quad\left(\bmod S^{(8)}\right) .
\end{aligned}
$$

The case when $i=7$. Formulas (26) and (27) from Appendix 2:

$$
\begin{aligned}
V_{7}=\left[x_{a}(10 p) x_{b}\right. & \left.(-18 p) Y_{8}, x_{a}(1) x_{b}(1)\right] \equiv \\
& \equiv\left[x_{a}(10 p), x_{b}(1)\right]\left[x_{b}(-18 p), x_{a}(1)\right] \equiv x_{a+b}(28 p) \quad\left(\bmod S^{(9)}\right)
\end{aligned}
$$

The case when $i=8$. Formula (28) from Appendix 2:

$$
\begin{aligned}
V_{8}=\left[x_{a+b}(28 p) Y_{9}, x_{a}(1) x_{b}(1)\right] & \equiv \\
& \equiv\left[x_{a+b}(28 p), x_{a}(1)\right] \equiv x_{2 a+b}(-56 p) \quad\left(\bmod S^{(10)}\right)
\end{aligned}
$$

The case when $i=9$. Formula (29) from Appendix 2:

$$
\begin{aligned}
& V_{9}=\left[x_{2 a+b}(-56 p) Y_{10}, x_{a}(1) x_{b}(1)\right] \equiv \\
& \quad \equiv\left[x_{2 a+b}(-56 p), x_{a}(1)\right] \equiv x_{3 a+b}(168 p) \quad\left(\bmod S^{(11)}\right) .
\end{aligned}
$$

The case when $i=10$. Formula (30) from Appendix 2:

$$
\begin{aligned}
V_{10}=\left[x_{3 a+b}(168 p) Y_{11},\right. & \left.x_{a}(1) x_{b}(1)\right] \equiv \\
& \equiv\left[x_{3 a+b}(168 p), x_{b}(1)\right] \equiv x_{3 a+2 b}(-168 p) \quad\left(\bmod S^{(12)}\right)
\end{aligned}
$$

The case when $i=11$. We have

$$
V_{11}=\left[x_{3 a+2 b}(-168 p) Y_{12}, x_{a}(1) x_{b}(1)\right] \equiv\left[Y_{12}, x_{a}(1) x_{b}(1)\right] \in S^{(13)}
$$

The case when $i=12$ is trivial.

Lemma 15. In the group $P G_{2}\left(\mathbb{Z}_{p^{m}}\right)$ for $i=1, \ldots, 5$ the following equalities hold

$$
U_{i}=\left[\left[x_{-3 a-2 b}(p),{ }_{11-i} x_{a}(1) x_{b}(1)\right],\left[x_{-3 a-2 b}(p),{ }_{i} x_{a}(1) x_{b}(1)\right]\right]=P_{i} Q_{i}
$$

where $Q_{i} \in S^{(14)}, P_{1}=x_{b}\left(-168 p^{2}\right)$ and

i	2	3	4	5
P_{i}	$x_{a}\left(168 p^{2}\right)$	$x_{a}\left(-224 p^{2}\right)$	$x_{a}\left(168 p^{2}\right) x_{b}\left(168 p^{2}\right)$	$x_{a}\left(-100 p^{2}\right) x_{b}\left(-324 p^{2}\right)$

Proof. We use Lemma 14, noting that $W_{i} \in S^{(i)}$.
The case when $i=1$. Formula (66) from Appendix 2:

$$
\begin{aligned}
& U_{1}=\left[x_{3 a+2 b}(-168 p) Y_{12}, x_{-3 a-b}(p) Y_{3}\right] \equiv \\
&
\end{aligned}
$$

The case when $i=2$. Formula (60) from Appendix 2:

$$
\begin{aligned}
U_{2}=\left[x_{3 a+b}(168 p) Y_{11},\right. & \left.x_{-2 a-b}(p) Y_{4}\right] \equiv \\
& \equiv\left[x_{3 a+b}(168 p), x_{-2 a-b}(p)\right] \equiv x_{a}\left(168 p^{2}\right) \quad\left(\bmod S^{(14)}\right) .
\end{aligned}
$$

The case when $i=3$. Formula (52) from Appendix 2:

$$
\begin{aligned}
U_{3}=\left[x_{2 a+b}(-56 p) Y_{10}, x_{-a-b}(2 p) Y_{5}\right] & \equiv \\
& \equiv\left[x_{2 a+b}(-56 p), x_{-a-b}(2 p)\right] \equiv x_{a}\left(-224 p^{2}\right) \quad\left(\bmod S^{(14)}\right)
\end{aligned}
$$

The case when $i=4$. Formulas (45) and (47) from Appendix 2:

$$
\begin{aligned}
& U_{4}=\left[x_{a+b}(28 p) Y_{9}, x_{-a}(-2 p) x_{-b}(6 p) Y_{6}\right] \equiv \\
& \equiv\left[x_{a+b}(28 p), x_{-a}(-2 p)\right]\left[x_{a+b}(28 p), x_{-b}(6 p)\right] \equiv \\
& \equiv x_{b}\left(168 p^{2}\right) x_{a}\left(168 p^{2}\right) \quad\left(\bmod S^{(14)}\right) .
\end{aligned}
$$

The case when $i=5$. Relations between root and diagonal elements and Table 2 from Appendix 1:

$$
\begin{aligned}
& U_{5}=\left[x_{a}(10 p) x_{b}(-18 p) Y_{8}, h_{-a}(1+2 p) h_{-b}(1-6 p) Y_{7}\right] \equiv \\
& \begin{aligned}
\equiv\left[x_{a}(10 p), h_{-a}(1+2 p) h_{-b}(1-6 p)\right][& \left.x_{b}(-18 p), h_{-a}(1+2 p) h_{-b}(1-6 p)\right] \equiv \\
& \equiv x_{a}\left(-100 p^{2}\right) x_{b}\left(-324 p^{2}\right) \quad\left(\bmod S^{(14)}\right) .
\end{aligned}
\end{aligned}
$$

We will now prove Theorem 3. According to [11], the nilpotency class of a Sylow p-subgroup $P G_{2}\left(\mathbb{Z}_{p^{m}}\right)$ equals $m h-1=6 m-1$, therefore, it is regular when $6 m-1<$ p. On the other hand, in [6] it is shown that the group $P G_{2}\left(\mathbb{Z}_{p^{m}}\right)$ is regular if $p>\left|G_{2}\right|+\left|\Pi\left(G_{2}\right)\right|=12+2=14$, that is, when $p \geqslant 17$. Hence, it suffices to study the cases when $p \in\{2,3,5,7,11\}$.

First, we will show that the group $P G_{2}\left(\mathbb{Z}_{p}\right)$ is not regular when $p=2,3,5$. Note that in these cases $P G_{2}\left(\mathbb{Z}_{p}\right)$ coincides with the unipotent subgroup $U G_{2}\left(\mathbb{Z}_{p}\right)$ of the Chevalley group $G_{2}\left(\mathbb{Z}_{p}\right)$. The derived subgroup $U G_{2}\left(\mathbb{Z}_{p}\right)$, according to [11], belongs to the subgroup

$$
H=\left\langle x_{a+b}(1), x_{2 a+b}(1), x_{3 a+b}(1), x_{3 a+2 b}(1)\right\rangle
$$

where every element g can be uniquely represented in the form

$$
g=x_{a+b}(\alpha) x_{2 a+b}(\beta) x_{3 a+b}(\gamma) x_{3 a+2 b}(\delta), \quad \alpha, \beta, \gamma, \delta \in \mathbb{Z}_{p}
$$

We put $A=x_{a}(1)$ and $B=x_{b}(1)$. Obviously, $[\langle A, B\rangle,\langle A, B\rangle]^{p} \subseteq H^{p}$.
The case when $p=2$. By Lemma 13, in $P G_{2}\left(\mathbb{Z}_{2}\right)$ the following equality holds:

$$
C=B^{-2} A^{-2}(A B)^{2}=x_{a+b}(1) x_{2 a+b}(1) x_{3 a+b}(1)
$$

Due to Lemma $12, H^{2} \subseteq x_{3 a+2 b}\left(\mathbb{Z}_{p}\right)$, therefore, $C \notin H^{2}$. Hence, the group $P G_{2}\left(\mathbb{Z}_{2}\right)$ is not regular. Since it is a homomorphic image of $P G_{2}\left(\mathbb{Z}_{2^{m}}\right)$ for every $m \geqslant 2$, we imply that $P G_{2}\left(\mathbb{Z}_{2^{m}}\right)$ is irregular for $m \geqslant 1$.

The case when $p=3,5$. By Lemma 12, in both cases $H^{p}=1$. At the same time, by Lemma $13(A B)^{3}=A^{3} B^{3} \cdot x_{2 a+b}(2) x_{3 a+2 b}(2)$ in $P G_{2}\left(\mathbb{Z}_{3}\right)$ and $(A B)^{5}=$ $A^{5} B^{5} \cdot x_{3 a+2 b}(2)$ in $P G_{2}\left(\mathbb{Z}_{5}\right)$. Hence, the groups $P G_{2}\left(\mathbb{Z}_{3^{m}}\right), P G_{2}\left(\mathbb{Z}_{5^{m}}\right)$ are irregular for $m \geqslant 1$.

Cases when $p=7,11$. We will prove that the group $P G_{2}\left(\mathbb{Z}_{p^{2}}\right)$ is not regular for the given p. We put $A=x_{a}(1) x_{b}(1)$ and $B=x_{-3 a-2 b}(p)$. The element B belongs to the congruence subgroup $G_{2}(J)$, which is normal in $P G_{2}\left(\mathbb{Z}_{p^{2}}\right)$ and is an elementary Abelian p-group. Therefore, every commutator of the elements A and B belongs to $G_{2}(J)$ and equals one to the power which is a multiple of p. Hence, $\left[\langle A, B\rangle^{\prime}\right]^{p}=1$. On the other hand, every commutator of A and B, that has more than two occurrences of B, equals one, therefore,

$$
B^{-p} A^{-p}(A B)^{p}=[B, A]^{\binom{p}{2}} \ldots\left[B,{ }_{p-1} A\right]^{\binom{p}{p}}=\left[B,{ }_{p-1} A\right] .
$$

By Lemma 14 , the commutator $\left[B,{ }_{p-1} A\right]$ equals $x_{a}(10 p) x_{b}(-18 p) Y_{8} \neq 1$ in $P G_{2}\left(\mathbb{Z}_{7^{2}}\right)$ and equals $x_{3 a+2 b}(-168 p) \neq 1$ in $P G_{2}\left(\mathbb{Z}_{11^{2}}\right)$. Hence, the groups $P G_{2}\left(\mathbb{Z}_{7^{2}}\right), P G_{2}\left(\mathbb{Z}_{11^{2}}\right)$ are not regular. This yields irregularity of the groups $P G_{2}\left(\mathbb{Z}_{7^{m}}\right)$ and $P G_{2}\left(\mathbb{Z}_{11^{m}}\right)$ for every $m \geqslant 2$.

The case when $p=13$. We will prove that the group $P G_{2}\left(\mathbb{Z}_{13^{3}}\right)$ is not regular. We put $A=x_{a}(1) x_{b}(1)$ and $B=x_{-3 a-2 b}(p)$. Elements A and B satisfy conditions 1) and 2) of Corollary 1. Indeed, every commutator from A and B with weight more than 12 or having two occurrences of B, belongs to the elementary Abelian p-group $G_{2}\left(J^{2}\right)$, which is centralized by the element B.

Assume that the group $P G_{2}\left(\mathbb{Z}_{p^{3}}\right)$ is regular. Then by Corollary 1, there exists an element $d \in\langle A, B\rangle^{\prime}$ such that

$$
\begin{equation*}
d^{p} \equiv\left[B,{ }_{12} A\right]\left[B,{ }_{11} A, B\right]^{-1} \prod_{i=1}^{5}\left[\left[B,{ }_{11-i} A\right],\left[B,{ }_{i} A\right]\right]^{(-1)^{i+1}}\left(\bmod S^{(14)}\right) \tag{25}
\end{equation*}
$$

The group $\langle A, B\rangle^{\prime}$ is generated by the commutators $y_{i}=\left[B,{ }_{i} A\right], i=1,2, \ldots$, and $y_{i j}=\left[y_{i}, y_{j}\right], i, j=1,2, \ldots$, that satisfy Lemma 1 and Corollary 2. Moreover, $y_{i j}^{p}=1$ for every i, j, and $y_{i}^{p}=1$, when $i \geqslant 12$. Therefore, due to Corollary 1 we can assume that

$$
d=[B, A]^{\alpha_{1}} \ldots\left[B,{ }_{11} A\right]^{\alpha_{11}}
$$

for some $\alpha_{1}, \ldots, \alpha_{11}$. The element $\left[B{ }_{i} A\right]^{p}$ belongs to $S^{(i+7)}$, but does not belong to $S^{(i+8)}$ for $i=1, \ldots, 10$. Indeed, using Lemmas 14 and 1, we obtain

$$
\left[B,_{i} A\right]^{p}=W_{i+1}^{p} Y_{i+2}^{p}\left[W_{i+1}, Y_{i+2}\right]^{\binom{p}{2}}
$$

By Lemma $4, y_{i+2}^{p} \in S^{(i+9)},\left[W_{i+1}, Y_{i+2}\right]^{\binom{p}{2}} \in S^{(2 i+9)}, W_{i+1}^{p} \in S^{(i+7)}$, but, obviously, $W_{i+1}^{p} \notin S^{(i+8)}$. Since the right-hand side of (25) lies in $S^{(13)}$, and

$$
d^{p}=[B, A]^{p \alpha_{1}} \ldots\left[B,{ }_{11} A\right]^{p \alpha_{11}}
$$

then the numbers $\alpha_{1}, \ldots, \alpha_{6}$ must be multiples of p. Therefore, we can assume that

$$
d=\left[B,{ }_{7} A\right]^{\alpha_{7}} \ldots\left[B,{ }_{11} A\right]^{\alpha_{11}}
$$

Finally, $\left[B,{ }_{i} A\right]^{p} \in S^{(14)}$ when $i \geqslant 8$, therefore,

$$
d^{p} \equiv\left[B,{ }_{7} A\right]^{\alpha_{7}} \equiv x_{a}\left(10 \alpha_{7} p^{2}\right) x_{b}\left(-18 \alpha_{7} p^{2}\right) \quad\left(\bmod S^{(14)}\right)
$$

On the other hand, using Lemmas 14 and 15, we obtain

$$
\begin{aligned}
& {\left[B,{ }_{12} A\right]\left[B,{ }_{11} A, B\right]^{-1} \prod_{i=1}^{5}\left[\left[B,{ }_{11-i} A\right],\left[B,{ }_{i} A\right]\right](-1)^{i+1} \equiv} \\
& \equiv 1 \cdot 1 \cdot
\end{aligned} \begin{aligned}
& x_{b}\left(-168 p^{2}\right)\left(x_{a}\left(168 p^{2}\right)\right)^{-1} x_{a}\left(-224 p^{2}\right)\left(x_{b}\left(168 p^{2}\right) x_{a}\left(168 p^{2}\right)\right)^{-1} \times \\
& \quad \times x_{a}\left(-100 p^{2}\right) x_{b}\left(-324 p^{2}\right) \equiv x_{a}\left(-660 p^{2}\right) x_{b}\left(-212 p^{2}\right) \quad\left(\bmod S^{(14)}\right)
\end{aligned}
$$

It is easy to see that both equalities $10 \alpha_{7} p^{2}=9 p^{2}$ and $8 \alpha_{7} p^{2}=3 p^{2}$ simultaneously are not fulfilled in the ring $\mathbb{Z}_{13^{3}}$ given any α_{7}. Therefore, the group $P G_{2}\left(\mathbb{Z}_{13^{3}}\right)$, along with the groups $P G_{2}\left(\mathbb{Z}_{13^{m}}\right)$, $m \geqslant 3$, is not regular. Theorem 3 is proved.

6. Appendix 1

According to [13, p.319], in a three-dimentional Eucledian space with the orthonormal $\operatorname{basic} \varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}$, we choose two vectors

$$
a=\varepsilon_{1}-\varepsilon_{2}, \quad b=-2 \varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}
$$

Then the set of vectors
$-3 a-2 b,-3 a-b,-2 a-b,-a-b,-a,-b, a, b, a+b, 2 a+b, 3 a+b, 3 a+2 b$
forms a root system of type G_{2}, and the roots

$$
a, b, a+b, 2 a+b, 3 a+b, 3 a+2 b
$$

form its subsystem of positive roots. The roots a and b form a fundamental system of roots.

Structural constants of the Lie algebra of type G_{2} are listed in the following lemma.

Lemma 16. We put

$$
N_{a, b}=\epsilon_{1}, \quad N_{a, a+b}=2 \epsilon_{2}, \quad N_{a, 2 a+b}=3 \epsilon_{3}, \quad N_{b, 3 a+b}=\epsilon_{4}
$$

and suppose that $\epsilon_{5}=\frac{\epsilon_{1} \epsilon_{3}}{\epsilon_{4}}$. Then nonzero constants $N_{r, s}$ have the forms provided in the following table:

Table 1.

$N_{r, s}$	Nิ 1 0 \sim	0 1 0 0	0 1 1 \sim 1	0 1 0 1	$\stackrel{0}{1}$	\bigcirc	\bigcirc	\sim	0 + 0	\sim + + -	\sim + 8 8	® + ¢ ¢
$-3 a-2 b$								ϵ_{4}	$-\epsilon_{5}$	ϵ_{5}	$-\epsilon_{4}$	
$-3 a-b$						ϵ_{4}	ϵ_{3}			$-\epsilon_{3}$		$-\epsilon_{4}$
$-2 a-b$				$-3 \epsilon_{5}$	$3 \epsilon_{3}$		$2 \epsilon_{2}$		$-2 \epsilon_{2}$		$-\epsilon_{3}$	ϵ_{5}
$-a-b$			$3 \epsilon_{5}$		$2 \epsilon_{2}$		$3 \epsilon_{1}$	$-\epsilon_{1}$		$-2 \epsilon_{2}$		$-\epsilon_{5}$
-b		$-\epsilon_{4}$			ϵ_{1}				$-\epsilon_{1}$			ϵ_{4}
-a			$-3 \epsilon_{3}$	$-2 \epsilon_{2}$		$-\epsilon_{1}$			$3 \epsilon_{1}$	$2 \epsilon_{2}$	ϵ_{3}	
a		$-\epsilon_{3}$	$-2 \epsilon_{2}$	$-3 \epsilon_{1}$				ϵ_{1}	$2 \epsilon_{2}$	$3 \epsilon_{3}$		
b	$-\epsilon_{4}$			ϵ_{1}			$-\epsilon_{1}$				ϵ_{4}	
$a+b$	ϵ_{5}		$2 \epsilon_{2}$		$-3 \epsilon_{1}$	ϵ_{1}	$-2 \epsilon_{2}$			$-3 \epsilon_{5}$		
$2 a+b$	$-\epsilon_{5}$	ϵ_{3}		$2 \epsilon_{2}$	$-2 \epsilon_{2}$		$-3 \epsilon_{3}$		$3 \epsilon_{5}$			
$3 a+b$	ϵ_{4}		ϵ_{3}		$-\epsilon_{3}$			$-\epsilon_{4}$				
$3 a+2 b$		ϵ_{4}	$-\epsilon_{5}$	ϵ_{5}		$-\epsilon_{4}$						

Proof. According to [12, Theorem 4.2.2.], structural constants of an simple Lie algebra of type Φ over \mathbb{C} satisfy the following relations:
(i) $N_{s, r}=-N_{r, s}, r, s \in \Phi$;
(ii) $\frac{N_{r_{1}, r_{2}}}{\left(r_{3}, r_{3}\right)}=\frac{N_{r_{2}, r_{3}}}{\left(r_{1}, r_{2}\right)}=\frac{N_{r_{3}, r_{1}}}{\left(r_{2}, r_{2}\right)}$, if $r_{1}, r_{2}, r_{3} \in \Phi$ and $r_{1}+r_{2}+r_{3}=0$;
(iii) $N_{r, s} N_{-r,-s}=-(p+1)^{2}, r, s, r+s \in \Phi$;
(iv) $\frac{N_{r_{1}, r_{2}} N_{r_{3}, r_{4}}}{\left(r_{1}+r_{2}, r_{1}+r_{3}\right)}+\frac{N_{r_{2}, r_{3}} N_{r_{1}, r_{4}}}{\left(r_{2}+r_{3}, r_{2}+r_{3}\right)}+\frac{N_{r_{3}, r_{1}} N_{r_{2}, r_{4}}}{\left(r_{3}+r_{1}, r_{3}+r_{1}\right)}=0$,
if $r_{1}, r_{2}, r_{3}, r_{4} \in \Phi, r_{1}+r_{2}+r_{3}+r_{4}=0$ and there are no opposite pairs among the roots $r_{1}, r_{2}, r_{3}, r_{4}$.

From the equalities

$$
\begin{gathered}
b+(-a-b)+a=0,(a+b)+(-2 a-b)+a=0 \\
(2 a+b)+(-3 a-b)+a=0,(3 a+b)+(-3 a-2 b)+b=0
\end{gathered}
$$

and item (ii) it follows that

$$
\begin{gathered}
\frac{N_{b,-a-b}}{2}=\frac{N_{-a-b, a}}{6}=\frac{N_{a, b}}{2}=\frac{\epsilon_{1}}{2}, \quad \frac{N_{a+b,-2 a-b}}{2}=\frac{N_{-2 a-b, a}}{2}=\frac{N_{a, a+b}}{2}=\epsilon_{2}, \\
\frac{N_{2 a+b,-3 a-b}}{2}=\frac{N_{-3 a-b, a}}{2}=\frac{N_{a, 2 a+b}}{6}=\frac{\epsilon_{3}}{2} \\
\frac{N_{3 a+b,-3 a-2 b}}{6}=\frac{N_{-3 a-2 b, b}}{6}=\frac{N_{b, 3 a+b}}{6}=\frac{\epsilon_{4}}{6} .
\end{gathered}
$$

Next, the equality

$$
(a+b)+(2 a+b)+(-b)+(-3 a-b)=0
$$

and item (iv) yield that

$$
\frac{N_{a+b, 2 a+b} N_{-b,-3 a-b}}{6}+\frac{N_{-b, a+b} N_{2 a+b,-3 a-b}}{2}=0,
$$

hence,

$$
N_{a+b, 2 a+b}=-3 \frac{N_{-b, a+b} N_{2 a+b,-3 a-b}}{N_{-b,-3 a-b}}=-3 \frac{\left(-\epsilon_{1}\right) \epsilon_{3}}{-\epsilon_{4}}=-3 \frac{\epsilon_{1} \epsilon_{3}}{\epsilon_{4}}=-3 \epsilon_{5} .
$$

Finally, from the equality

$$
(2 a+b)+(-3 a-2 b)+(a+b)=0
$$

it follows that

$$
\frac{N_{2 a+b,-3 a-2 b}}{2}=\frac{N_{-3 a-2 b, a+b}}{2}=\frac{N_{a+b, 2 a+b}}{6}=-\frac{\epsilon_{5}}{2} .
$$

The remaining structural constants $N_{r, s}$ are defined from the relations:

$$
N_{r, s}=N_{-s,-r}=-N_{s, r}=-N_{-r,-s}
$$

The following table lists the values of the dot product $\left(h_{s}, r\right)$.

Table 2.

$h_{r} \backslash s$	a	b	$a+b$	$2 a+b$	$3 a+b$	$3 a+2 b$
h_{a}	2	-3	-1	1	3	0
h_{b}	-1	2	1	0	-1	1
h_{a+b}	-1	3	2	1	0	3
$h_{2 a+b}$	1	0	1	2	3	3
$h_{3 a+b}$	1	-1	0	1	2	1
$h_{3 a+2 b}$	0	1	1	1	1	2

7. Appendix 2

The Chevalley's commutator formulas for the type G_{2}
Let Φ be a reduced indecomposable root system, K is a field or associativecommutative ring with a unit. According to [12, Theorem 5.2.2], the commutator

$$
\left[x_{s}(u), x_{r}(t)\right]=x_{s}(u)^{-1} x_{r}(t)^{-1} x_{s}(u) x_{r}(t)
$$

where $r, s \in \Phi$ and $u, t \in K$, equals identity, if $r+s \notin \Phi$ and $r \neq-s$, and can be decomposed into a product of root elements by the formula

$$
\left[x_{s}(u), x_{r}(t)\right]=\prod_{\substack{i r+j s \in \Phi, i, j>0}} x_{i r+j s}\left(C_{i j, r s}(-t)^{i} u^{j}\right)
$$

if $r+s \in \Phi$. Co-factors of the product are located with respect to the increase of the sum $i+j$, and the constants $C_{i j, r s}$ are integers and are defined by the formulas [12, Theorem 5.2.2]:

$$
C_{i 1, r s}=M_{r, s, i}, C_{1 j, r s}=(-1)^{j} M_{s, r, j}, C_{32, r s}=\frac{1}{3} M_{r+s, r, 2}, C_{23, r s}=-\frac{2}{3} M_{s+r, s, 2}
$$

In turn, the numbers $M_{r, s, i}$ are expressed with respect to the structural constants $N_{r, s}$ of the corresponding Lie algebra by the formula [12, p. 61]

$$
M_{r, s, i}=\frac{1}{i!} N_{r, s} N_{r, r+s} \ldots N_{r,(i-1) r+s}
$$

The list of formulas.

Positive roots

$$
\begin{align*}
& {\left[x_{b}(u), x_{a}(t)\right]=} \tag{26}\\
& \quad=x_{a+b}\left(-\epsilon_{1} t u\right) x_{2 a+b}\left(\epsilon_{1} \epsilon_{2} t^{2} u\right) x_{3 a+b}\left(-\epsilon_{1} \epsilon_{2} \epsilon_{3} t^{3} u\right) x_{3 a+2 b}\left(-\epsilon_{2} \epsilon_{5} t^{3} u^{2}\right)
\end{align*}
$$

$$
\begin{equation*}
\left[x_{-a}(u), x_{-b}(t)\right]= \tag{33}
\end{equation*}
$$

$$
=x_{-a-b}\left(-\epsilon_{1} t u\right) x_{-2 a-b}\left(-\epsilon_{1} \epsilon_{2} t u^{2}\right) x_{-3 a-b}\left(-\epsilon_{1} \epsilon_{2} \epsilon_{3} t u^{3}\right)
$$

$$
\begin{equation*}
\left[x_{-a-b}(u), x_{-a}(t)\right]=x_{-2 a-b}\left(2 \epsilon_{2} t u\right) x_{-3 a-b}\left(3 \epsilon_{2} \epsilon_{3} t^{2} u\right) x_{-3 a-2 b}\left(-3 \epsilon_{2} \epsilon_{5} t u^{2}\right) \tag{34}
\end{equation*}
$$

$$
\begin{equation*}
\left[x_{-2 a-b}(u), x_{-a}(t)\right]=x_{-3 a-b}\left(3 \epsilon_{3} t u\right) \tag{35}
\end{equation*}
$$

$$
\begin{equation*}
\left[x_{-3 a-b}(u), x_{-b}(t)\right]=x_{-3 a-2 b}\left(\epsilon_{4} t u\right) \tag{36}
\end{equation*}
$$

$$
\begin{equation*}
\left[x_{-2 a-b}(u), x_{-a-b}(t)\right]=x_{-3 a-2 b}\left(-3 \epsilon_{5} t u\right) \tag{37}
\end{equation*}
$$

$$
\begin{equation*}
\left[x_{a}(u), x_{-3 a-b}(t)\right]= \tag{41}
\end{equation*}
$$

$$
=x_{-2 a-b}\left(-\epsilon_{3} t u\right) x_{-a-b}\left(-\epsilon_{2} \epsilon_{3} t u^{2}\right) x_{-b}\left(-\epsilon_{1} \epsilon_{2} \epsilon_{3} t u^{3}\right) x_{-3 a-2 b}\left(2 \epsilon_{2} \epsilon_{5} t^{2} u^{3}\right)
$$

$$
\begin{equation*}
\left[x_{b}(u), x_{-a-b}(t)\right]= \tag{42}
\end{equation*}
$$

$$
=x_{-a}\left(\epsilon_{1} t u\right) x_{-2 a-b}\left(-\epsilon_{1} \epsilon_{2} t^{2} u\right) x_{-3 a-2 b}\left(\epsilon_{1} \epsilon_{2} \epsilon_{5} t^{3} u\right) x_{-3 a-b}\left(-\epsilon_{2} \epsilon_{3} t^{3} u^{2}\right)
$$

$$
\begin{align*}
& {\left[x_{-b}(u), x_{-a}(t)\right]=} \tag{32}\\
& \quad=x_{-a-b}\left(\epsilon_{1} t u\right) x_{-2 a-b}\left(\epsilon_{1} \epsilon_{2} t^{2} u\right) x_{-3 a-b}\left(\epsilon_{1} \epsilon_{2} \epsilon_{3} t^{3} u\right) x_{-3 a-2 b}\left(-\epsilon_{2} \epsilon_{5} t^{3} u^{2}\right)
\end{align*}
$$

Mixed roots

$$
\begin{gather*}
{\left[x_{-a-b}(u), x_{a}(t)\right]=x_{-b}\left(3 \epsilon_{1} t u\right)} \tag{38}\\
{\left[x_{-2 a-b}(u), x_{a}(t)\right]=x_{-a-b}\left(2 \epsilon_{2} t u\right) x_{-b}\left(3 \epsilon_{1} \epsilon_{2} t^{2} u\right) x_{-3 a-2 b}\left(3 \epsilon_{2} \epsilon_{5} t u^{2}\right)} \tag{39}\\
{\left[x_{-3 a-b}(u), x_{a}(t)\right]=} \tag{40}\\
=x_{-2 a-b}\left(\epsilon_{3} t u\right) x_{-a-b}\left(\epsilon_{2} \epsilon_{3} t^{2} u\right) x_{-b}\left(\epsilon_{1} \epsilon_{2} \epsilon_{3} t^{3} u\right) x_{-3 a-2 b}\left(\epsilon_{2} \epsilon_{5} t^{3} u^{2}\right),
\end{gather*}
$$

$\left[x_{-a-b}(u), x_{b}(t)\right]=$

$$
\begin{equation*}
=x_{-a}\left(-\epsilon_{1} t u\right) x_{-2 a-b}\left(\epsilon_{1} \epsilon_{2} t u^{2}\right) x_{-3 a-2 b}\left(-\epsilon_{1} \epsilon_{2} \epsilon_{5} t u^{3}\right) x_{-3 a-b}\left(-2 \epsilon_{2} \epsilon_{3} t^{2} u^{3}\right), \tag{43}
\end{equation*}
$$

$$
\begin{gather*}
{\left[x_{-3 a-2 b}(u), x_{b}(t)\right]=x_{-3 a-b}\left(\epsilon_{4} t u\right)} \tag{44}\\
{\left[x_{-a}(u), x_{a+b}(t)\right]=x_{b}\left(3 \epsilon_{1} t u\right)} \tag{45}
\end{gather*}
$$

(46) $\left[x_{-b}(u), x_{a+b}(t)\right]=$

$$
=x_{a}\left(-\epsilon_{1} t u\right) x_{2 a+b}\left(-\epsilon_{1} \epsilon_{2} t^{2} u\right) x_{3 a+2 b}\left(-\epsilon_{1} \epsilon_{2} \epsilon_{5} t^{3} u\right) x_{3 a+b}\left(-\epsilon_{2} \epsilon_{3} t^{3} u^{2}\right),
$$

(47) $\left[x_{a+b}(u), x_{-b}(t)\right]=$

$$
=x_{a}\left(\epsilon_{1} t u\right) x_{2 a+b}\left(\epsilon_{1} \epsilon_{2} t u^{2}\right) x_{3 a+2 b}\left(\epsilon_{1} \epsilon_{2} \epsilon_{5} t u^{3}\right) x_{3 a+b}\left(-2 \epsilon_{2} \epsilon_{3} t^{2} u^{3}\right),
$$

$$
\begin{equation*}
\left[x_{-2 a-b}(u), x_{a+b}(t)\right]=x_{-a}\left(-2 \epsilon_{2} t u\right) x_{b}\left(-3 \epsilon_{1} \epsilon_{2} t^{2} u\right) x_{-3 a-b}\left(3 \epsilon_{2} \epsilon_{3} t u^{2}\right), \tag{48}
\end{equation*}
$$

(49) $\left[x_{-3 a-2 b}(u), x_{a+b}(t)\right]=$

$$
=x_{-2 a-b}\left(-\epsilon_{5} t u\right) x_{-a}\left(\epsilon_{2} \epsilon_{5} t^{2} u\right) x_{b}\left(\epsilon_{1} \epsilon_{2} \epsilon_{5} t^{3} u\right) x_{3 a+b}\left(\epsilon_{2} \epsilon_{3} t^{3} u^{2}\right),
$$

(50) $\left[x_{a+b}(u), x_{-3 a-2 b}(t)\right]=$

$$
=x_{-2 a-b}\left(\epsilon_{5} t u\right) x_{-a}\left(-\epsilon_{2} \epsilon_{5} t u^{2}\right) x_{b}\left(-\epsilon_{1} \epsilon_{2} \epsilon_{5} t u^{3}\right) x_{3 a+b}\left(2 \epsilon_{2} \epsilon_{3} t^{2} u^{3}\right),
$$

$$
\begin{align*}
& {\left[x_{-a}(u), x_{2 a+b}(t)\right]=x_{a+b}\left(2 \epsilon_{2} t u\right) x_{3 a+2 b}\left(-3 \epsilon_{2} \epsilon_{5} t^{2} u\right) x_{b}\left(-3 \epsilon_{1} \epsilon_{2} t u^{2}\right),} \tag{51}\\
& {\left[x_{-a-b}(u), x_{2 a+b}(t)\right]=x_{a}\left(-2 \epsilon_{2} t u\right) x_{3 a+b}\left(-3 \epsilon_{2} \epsilon_{3} t^{2} u\right) x_{-b}\left(3 \epsilon_{1} \epsilon_{2} t u^{2}\right),} \tag{52}\\
& {\left[x_{-3 a-b}(u), x_{2 a+b}(t)\right]=} \tag{53}\\
& \quad=x_{-a}\left(-\epsilon_{3} t u\right) x_{a+b}\left(-\epsilon_{2} \epsilon_{3} t^{2} u\right) x_{3 a+2 b}\left(\epsilon_{1} \epsilon_{2} \epsilon_{5} t^{3} u\right) x_{b}\left(-\epsilon_{1} \epsilon_{2} t^{3} u^{2}\right),
\end{align*}
$$

(54) $\left[x_{2 a+b}(u), x_{-3 a-b}(t)\right]=$

$$
=x_{-a}\left(\epsilon_{3} t u\right) x_{a+b}\left(\epsilon_{2} \epsilon_{3} t u^{2}\right) x_{3 a+2 b}\left(-\epsilon_{2} \epsilon_{3} \epsilon_{5} t u^{3}\right) x_{b}\left(-2 \epsilon_{1} \epsilon_{2} t^{2} u^{3}\right),
$$

(55) $\quad\left[x_{-3 a-2 b}(u), x_{2 a+b}(t)\right]=$

$$
=x_{-a-b}\left(\epsilon_{5} t u\right) x_{a}\left(-\epsilon_{2} \epsilon_{5} t^{2} u\right) x_{3 a+b}\left(-\epsilon_{2} \epsilon_{3} \epsilon_{5} t^{3} u\right) x_{-b}\left(\epsilon_{1} \epsilon_{2} t^{3} u^{2}\right),
$$

(56) $\quad\left[x_{2 a+b}(u), x_{-3 a-2 b}(t)\right]=$

$$
=x_{-a-b}\left(-\epsilon_{5} t u\right) x_{a}\left(\epsilon_{2} \epsilon_{5} t u^{2}\right) x_{3 a+b}\left(\epsilon_{2} \epsilon_{3} \epsilon_{5} t u^{3}\right) x_{-b}\left(2 \epsilon_{1} \epsilon_{2} t^{2} u^{3}\right),
$$

(57) $\left[x_{-a}(u), x_{3 a+b}(t)\right]=$

$$
=x_{2 a+b}\left(\epsilon_{3} t u\right) x_{a+b}\left(-\epsilon_{2} \epsilon_{3} t u^{2}\right) x_{b}\left(\epsilon_{1} \epsilon_{2} \epsilon_{3} t u^{3}\right) x_{3 a+2 b}\left(2 \epsilon_{2} \epsilon_{5} t^{2} u^{3}\right),
$$

(58) $\left[x_{3 a+b}(u), x_{-a}(t)\right]=$

$$
=x_{2 a+b}\left(-\epsilon_{3} t u\right) x_{a+b}\left(\epsilon_{2} \epsilon_{3} t^{2} u\right) x_{b}\left(-\epsilon_{1} \epsilon_{2} \epsilon_{3} t^{3} u\right) x_{3 a+2 b}\left(\epsilon_{2} \epsilon_{5} t^{3} u^{2}\right),
$$

(59) $\quad\left[x_{-2 a-b}(u), x_{3 a+b}(t)\right]=$

$$
=x_{a}\left(-\epsilon_{3} t u\right) x_{-a-b}\left(\epsilon_{2} \epsilon_{3} t u^{2}\right) x_{-3 a-2 b}\left(\epsilon_{2} \epsilon_{3} \epsilon_{5} t u^{3}\right) x_{-b}\left(-2 \epsilon_{1} \epsilon_{2} t^{2} u^{3}\right),
$$

(60) $\left[x_{3 a+b}(u), x_{-2 a-b}(t)\right]=$

$$
=x_{a}\left(\epsilon_{3} t u\right) x_{-a-b}\left(-\epsilon_{2} \epsilon_{3} t^{2} u\right) x_{-3 a-2 b}\left(-\epsilon_{2} \epsilon_{3} \epsilon_{5} t^{3} u\right) x_{-b}\left(-\epsilon_{1} \epsilon_{2} t^{3} u^{2}\right),
$$

$$
\begin{equation*}
\left[x_{-3 a-2 b}(u), x_{3 a+b}(t)\right]=x_{-b}\left(-\epsilon_{4} t u\right), \tag{61}
\end{equation*}
$$

$$
\begin{align*}
& {\left[x_{-a-b}(u), x_{3 a+2 b}(t)\right]=} \tag{62}\\
& \quad=x_{2 a+b}\left(-\epsilon_{5} t u\right) x_{a}\left(-\epsilon_{2} \epsilon_{5} t u^{2}\right) x_{-b}\left(\epsilon_{1} \epsilon_{2} \epsilon_{5} t u^{3}\right) x_{3 a+b}\left(2 \epsilon_{2} \epsilon_{3} t^{2} u^{3}\right) \\
& \qquad \begin{array}{c}
{\left[x_{3 a+2 b}(u), x_{-a-b}(t)\right]=} \\
\quad=x_{2 a+b}\left(\epsilon_{5} t u\right) x_{a}\left(\epsilon_{2} \epsilon_{5} t^{2} u\right) x_{-b}\left(-\epsilon_{1} \epsilon_{2} \epsilon_{5} t^{3} u\right) x_{3 a+b}\left(\epsilon_{2} \epsilon_{3} t^{3} u^{2}\right)
\end{array} \tag{63}
\end{align*}
$$

$$
\begin{align*}
& {\left[x_{-2 a-b}(u), x_{3 a+2 b}(t)\right]=} \tag{64}\\
& \quad=x_{a+b}\left(\epsilon_{5} t u\right) x_{-a}\left(\epsilon_{2} \epsilon_{5} t u^{2}\right) x_{-3 a-b}\left(-\epsilon_{2} \epsilon_{3} \epsilon_{5} t u^{3}\right) x_{b}\left(2 \epsilon_{1} \epsilon_{2} t^{2} u^{3}\right)
\end{align*}
$$

$$
\begin{align*}
& {\left[x_{3 a+2 b}(u), x_{-2 a-b}(t)\right]=} \tag{65}\\
& =x_{a+b}\left(-\epsilon_{5} t u\right) x_{-a}\left(-\epsilon_{2} \epsilon_{5} t^{2} u\right) x_{-3 a-b}\left(\epsilon_{2} \epsilon_{3} \epsilon_{5} t^{3} u\right) x_{b}\left(\epsilon_{1} \epsilon_{2} t^{3} u^{2}\right) \\
& \quad\left[x_{-3 a-b}(u), x_{3 a+2 b}(t)\right]=x_{a+b}\left(-\epsilon_{4} t u\right) \tag{66}
\end{align*}
$$

References

[1] V.D. Mazurov (ed.), E.I. Huhro (ed.), The Kourovka notebook. Unsolved problems in group theory. Including archive of solved problems. 16th ed. Institute of Mathematics, Novosibirsk, Zbl 1084.20001
[2] M. Hall, The theory of groups, Inostrannaya Literatura, Moscow, 1962. Zbl 0103.25502
[3] Yu.I. Merzlyakov, Central series and commutator series of matrix groups, Algebra i Logika Sem., 3:4 (1964), 49-58. MR0169927
[4] A.V. Yagzhev, On the regularity of Sylow subgroups of full linear groups over residue rings, Math. Notes, 56:6 (1994), 1283-1290. Zbl 0837.20027
[5] S.G. Kolesnikov, Regularity of Sylow p-subgroups of groups $G L_{n}\left(\mathbb{Z}_{p^{m}}\right)$, Issl. po matem. analizu i algebre, 3 (2001), 117-124.
[6] S.G. Kolesnikov, On the regular Sylow p-subgroups of Chevalley groups over $\mathbb{Z}_{p^{m}}$, Sib. Math. J., 47:6 (2006), 1054-1059. Zbl 1137.20044
[7] S.G. Kolesnikov, V.M. Leontiev, G.P. Egorychev, Two collection formulas, J. Group Theory, 23:4 (2020), 607-628. Zbl 1471.20026
[8] S.G. Kolesnikov, On necessary conditions for regularity of Sylow p-subgroups of the group $G L_{n}\left(\mathbb{Z}_{p^{m}}\right)$, Izv. Irkutsk. Gos. Univ., Ser. Mat., 6:2 (2013), 18-25. Zbl 1290.20040
[9] P. Hall, A contribution to the theory of groups of prime-power order, Proc. Lond. Math.Soc., II. Ser., 36 (1933), 29-95. Zbl 0007.29102
[10] V.M. Leontiev, On divisibility of some sums of binomial coefficients arising from collection formulas, J. Sib. Fed. Univ. Math. Phys., 11:5 (2018), 603-614. Zbl 7325452
[11] V.M. Levchuk, Commutator structure of some subgroups of Chevalley groups, Ukr. Math. J., 44:6 (1992), 710-718. Zbl 0784.20020
[12] R. Carter, Simple groups of Lie type, Wiley \& Sons, London etc., 1972. Zbl 0248.20015
[13] N. Bourbaki, Lie groups and algebras, Mir, Moscow, 1972. Zbl 0249.22001
Sergey Gennadievich Kolesnikov
Siberian Federal University,
79, Svobodny ave.,
Krasnoyrsk, 660041, Russia
Email address: sklsnkv@mail.ru
Vladimir Markovich Leontiev
Siberian Federal University, 79, Svobodny ave., Krasnoyrsk, 660041, Russia Email address: v.m.leontiev@outlook.com

[^0]: Kolesnikov, S.G., Leontiev, V.M., One necessary condition for the regularity of a p-Group and its application to Wehrfritz's problem.
 (C) 2022 Kolesnikov S.G., Leontiev V.M.

 This work is supported by the Krasnoyarsk Mathematical Center and financed by the Ministry of Science and Higher Education of the Russian Federation (Agreement No. 075-02-2022-876).

 Received December, 4, 2021, published March, 5, 2022.

