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DESCRIPTION OF MODAL LOGICS WHICH ENJOY CO-COVER

PROPERTY

V.V. RIMATSKIY

Abstract. Here we use admissible rules to determine whenever modal
logic satis�es weak co-cover property. We prove that logic λ over S4
satis�es such property i� the given set of rules are admissible in λ.

Keywords: modal logic, inference rule, Kripke frame and model, admis-
sible rule.

1. Introduction

For modern application of logic in Computer Science and Arti�cial Intelligence
it is often required that the capable language of representing the knowledge about
dynamic systems. Distinct non-standard logics (e.g. modal and temporal, logic for
multi-agent reasoning) e�ciently serve these applications. Firstly they describe a
statements by formulas which are peculiar to studied a models in general, and
do not take to consideration a variable conditions and a changing assumptions.
These conditions and assumptions can be modeled by distinct variations of the
notion of logical consequence. The problem of such adequate modeling is one of
extremely important problems originated from mathematical logic and mathematics
in general. Most important component of our approach consists of the fact that
we study logical consequence in terms of inference rules, clauses, but not only
the formulas or statements. The formalism concerning description of properties
by formulas is well-developed, widely spread and well represented in a scienti�c
literature. It is a representing basis of human reasoning. But formulas describe only
a stable, static events; the statement only �x the fact, and isn't able to handle a
changing conditions.
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Therefore study of (structural) inference rules (or sequents), expressions which
have a premise - a given collection of assumptions - and a conclusion, brings us more
�exibility and more expressive power to model human reasoning and computing.
Premises gives us a current informations collected as assumptions and conclusions
represent a knowledge, i.e. facts which we can obtain from our assumptions. The
intelligence of reasoning (as a part of AI) again requires the understanding of
what are the consistent consequences of observable facts. Within Computer Science
these aspects are involved in the analysis of correct instructions for computations,
veri�cation of programs and many other areas. Such rules allow us to model a
standard situation in a study of logical consequence: given certain assumptions,
what does follow from them?

Evidently the notion of inference rule generalizes the notion of formulas, and
any formula can be viewed as a structural inference rule without premise and
assumption. But admissible inference rules are actually stronger then the clauses,
since Harrop (1960, [2]) we know that even the intuitionistic logicH is not structurally
complete: it has the admissible inference rules which cannot be represented by
formulas, which are not inferred. The same is valid for a broad range of basic
modal logics since examples of G. Mints [3] and J. Port [4].

Notion of a admissible inference rule goes back to Lorenzen ([5], 1955). For
arbitrary logic admissible rules are exactly those, under which the logic is closed.
Clearly any derivable rule is admissible, but, in general, not vice versa. Also, directly
from the de�nition, we see that the set of all rules admissible in a logic λ is the
greatest class of inference rules by which we can extend an axiomatic system of the
logic λ preserving the theorems of λ. Derivable rules may replace some fragments of
the �xed length in derivations, thereby linearly shortening them. Admissible rules,
which are not derivable, basically may reduce a derivations even more drastically.

The history of study an admissible rules could be dated since H. Fridman's
question ([6], 1975) about an existence of an algorithm which could distinguish rules
admissible in intuitionistic logic H. In the middle of 70-th G. Mints [3] found the
strong su�cient conditions for derivability inH admissible rules in special form. The
Fridman's question about the existence of an algorithm recognizing admissibility
of inference rule was answered a�rmatively by V. Rybakov (1984, cf. [7]) for the
intuitionistic logic H and a broad class of modal logics (e.g. K4, S4, GL, cf. [1]).

In 2000-2010 a few results on describing of explicit bases for admissible inference
rules for nonstandard logics (S4, K4, H etc.) appeared (see for example [9]). The
key condition of these results was weak co-cover property. Possible, weak co-cover
property, disjunction property and FMP of logic allow us to describe such basis.
Beside the improvement of deductive power in logic, an admissible rule are able to
describe some semantic property of given logic. One of the �rst attempt was the
description of intuitionistic logic H by the set of admissible inference rules (cf. R.
Iemho� [8]). That's why this property is interest of article. Here we use admissible
rules to determine whenever given modal logic satisfy weak co-cover property. We
prove that FMP logic λ over S4 satisfy such property i� the given set of rules are
admissible in λ.

2. Denotation, preliminary facts

We assume the reader to be familiar with the algebraic and Kripke semantics
for modal logics and to have basic knowledge concerning inference rules and their



318 V.V. RIMATSKIY

admissibility (though we brie�y recall all necessary facts below). Among modern
literature we recommend Rybakov [1] as a good entry point to the subject: it
contains both basic and advanced techniques concerning modal logics and inference
rules. Following modern trends by a logic we understand the set of all theorems
provable in a given axiomatic system, or the set of valid formulas for a certain class
of Kripke frames. In particular, a normal modal logic λ is a set of modal formulas
which is closed under substitution, modus ponens and necessitation rule A / �A,
and contains all theorems of the minimal propositional modal logic K. In what
follows by a modal logic we understand an algebraic propositional logic extending
S4 that satis�es the �nite model property.

A frame F := 〈F,R〉 is a pair, where F is a non-empty set and R is a binary
relation on F . The frame and its underlying set are often denoted by the same letter
for simplicity. Further we consider only frames where R is a transitive and re�exive
relation.

A model is a tripleM = 〈W, R, V 〉, where F := 〈F,R〉 is a frame and V is a
valuation of a set of propositional letters P in the frame F that is V : P → 2W .
Dom(V ) = P is called the domain of V .

A frame F = 〈F, R〉 is called an open subframe of frame G = 〈G, R〉 (denoted
F v G) if F ⊆ G and ∀a ∈ F ∀b ∈ G (aRb =⇒ b ∈ F ) holds. IfM1 = 〈W1, R1, V1〉,
M2 = 〈W2, R2, V2〉 are models then we callM1 an open submodel ofM2 (denoted
M1 vM2) if : 1) 〈W1, R1〉 is open subframe of 〈W2, R2〉 ; 2) Dom(V1) = Dom(V2)
and ∀p ∈ Dom(V1) V1(p) = V2(p) ∩W1.

A mapping f : 〈F, R〉 → 〈G, S〉 is called p-morphism if (1) aRb =⇒ f(a)Sf(b);
(2) f(x)Sz =⇒ ∃y ∈ F : f(y) = z&xRy.

We say a mapping f : M1 = 〈W1, R1, V1〉 → M2 = 〈W2, R2, V2〉 is a
p-morphism of the model M1 into the M2 if 1) f is a p-morphism of the frame
F1 = 〈W1, R1〉 into the frame F2 = 〈W2, R2〉 ; 2) the valuations V1, V2 are de�ned
on the same set of propositional letters; 3) ∀ p ∈ Dom(V1),∀a ∈ W1(a |=V1

p ⇐⇒
f(a) |=V2 p).

The primary property of open submodels and p-morphisms consist of the fact
that they preserve the truth of formulas:

Proposition 1 (cf. [1]). 1) If M1 is an open submodel of a model M2 then for
every formula α,M2 |= α impliesM1 |= α;

2) If f is a p-morphism of model M1 = 〈W1, R1, V1〉 onto model M2 =
〈W2, R2, V2〉 then for any formula α which is built out of letters from the domain
Dom(V1), then ∀a ∈W1(a |=V1

α ⇐⇒ f(a) |=V2
α) .

Let Fi = 〈Wi, Ri〉, i ∈ I be a family of pairwise disjoint frames, i.e.Wi∩Wj = ∅
for i 6= j ∈ I. The disjoin union of this family is the frame ti∈IFi = 〈W, R〉, where
W = ∪i∈IWi, R = ∪i∈IRi. Disjoint union of models is de�ned analogously.

By Lemma 2.5.26 [1] disjoint union of frames (or models) preserves the truth of
formulas: ti∈IFi |= α ⇐⇒ ∀i(Fi |= α). A disjoint union of λ-frames is λ-frame.

Any subset C of a frame F , which is a set C satisfying the following properties:
(1) ∀x, y ∈ C(xRy& yRx); (2) ∀x ∈ C∀y ∈ W (xRy& yRx =⇒ y ∈ C), is called
a cluster C of the frame F . A cluster is proper if |C| > 1, otherwise that cluster
is called degenerated, singleton. For any element a ∈ F a cluster generated by a is
denoted by C(a). Any set of clusters of F which are non comparable by R is called
an antichain. The antichain A is non-trivial if it consists of at least two clusters;
otherwise A is trivial.
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The maximal number of clusters in ascending chains of starting with the given
element (or cluster) we call the depth of this element (or cluster). For any frame F
(or a Kripke model M) n-slice Sn(F ) (Sn(M)) is the set of all elements of depth
n from F (M respectively). And S≤n(F ) is the set of all elements from F with a
depth not more than n.

We say a frame F is an λ�frame for a logic λ if all theorems of λ are valid at F ,
and λ(F ) � the set of all formulas valid in F � is the logic generated by F . A frame
F is rooted if ∃ a ∈ F such that ∀ b ∈ F aRb. Then we say C(a) is the root of F .

We put bR := {x|∃y ∈ C(b) : yRx}; b<R := bR \ C(b). For any subset X ⊆ F
XR is ∪{xR|x ∈ X}. That is subframe bR of F is upwards cone generated by
b, and XR is subframe of F generated by X respectively. An element b ∈ F or
cluster C(b) is a co-cover for a set X ⊆ F , if bR\C(b) = XR. We understand a
cluster C as λ-co-cover for X if it generate λ-frame CR := XR∪C as the root. We'll
identify one-element cluster C(a) and re�exive element a (generating this cluster)
as co-cover since the set of R-accessible elements is the same for both.

A subset X of the given model M is de�nable if there is a formula α such
∀x ∈M [x ∈ X ⇐⇒ x |=V α]. And a valuation V is de�nable in a modelM if for
any letter p, the set V (p) is de�nable.

Let α1, . . . , αn, β to be some formulas. By a (structural) inference rule r we
understand an expression where

r :=
α1(x1, . . . , xn), ..., αn(x1, . . . , xn)

β(x1, . . . , xn)
,

which derives s(β) from s(α1), ..., s(αn) for every substitution s. We say r is derivable
in a logic λ if there is a derivation β in λ from the set of assumptions {α1, ..., αn}.

An inference rule r = {α1(x1, . . . , xn), . . . , αk(x1, . . . , xn)/β(x1, . . . , xn)} is called
admissible in a logic λ, if for any formulas δ1, . . . , δn the assertion

((α1(δ1, . . . , δn) ∈ λ) · · · (αk(δ1, . . . , δn) ∈ λ) =⇒ β(δ1, . . . , δn) ∈ λ)

holds.
The admissible inference rules have the following algebraic description

Proposition 2 ([1]). An inference rule r = {α1, . . . , αk/β} is admissible in a
logic λ i� quasi-identity r∗ = {α1 = 1 & . . .& αk = 1 =⇒ β = 1} is true on free
algebra of countable rank Fw(λ) from the variety V ar(λ) generated by λ.

Any derivable rule is admissible, but the inverse does not necessarily hold. Also
directly from the de�nition we see that the set of all rules admissible in a logic λ is
the largest class of inference rules by which we can extend axiomatic system of the
logic λ preserving the theorems of λ. Derivable rules may replace some fragments of
the �xed length in derivations, thereby shortening them linearly. Admissible rules,
which are not derivable, in principle may reduce derivations even more drastically.

For a given frame F , valuation V and inference rule r := α1, ..., αn/β, we say r
is valid on F wrt V , and write F |=V r, if as soon as ∀x ∈ F and ∀i (x |=V αi)
holds, we have ∀x ∈ F(x |=V β). A rule r is valid on a frame F if r is valid at F
under any valuation, we write then F |= r.

A logic λ satis�es the �nite model property (FMP) if for any α 6∈ λ there exists
a �nite λ-model on which α is not valid.



320 V.V. RIMATSKIY

A Kripke Model 〈F,R, V 〉, where V : Pn → 2F , Pn = {p1, p2, . . . , pn}, is n-
characteristic for a logic λ i� for any formula α which is built up on p1, . . . , pn
α ∈ λ i� 〈F,R, V 〉 |= α.

The admissibility of inference rules in modal logic λ over S4 can be described
via their validity in certain special n-characteristic Kripke models. The description
of these models Chn(λ) and criteria for recognizing admissibility in λ by means of
them are given, for instance, in [1]. As we will make heavy use of these techniques
in the sequel, we brie�y recall the construction of Chn(λ) for FMP logic λ over S4
and the semantic criterion for recognizing admissibility.

Given a FMP logic λ over S4, a set Pn := {p1, ..., pn} of propositional letters,
we construct the �rst slice S1(Chn(λ)) as that follows. It consists of the collection
of all clusters with all possible valuations V of letters from Pn which does not have
doubling � no two elements within the same cluster should be evaluated the way,
and no clusters which are isomorphic as Kripke models.

Assuming S≤m(Chn(λ)) to be constructed, we put in Sm+1(Chn(λ)) the clusters
as that follows. For any antichain X from S≤m(Chn(λ)) with at least one cluster
of depth m and any cluster C in S1(Chn(λ)) put a copy of C as a co-cover of X ,
provided

(i) CR is a λ�frame and

(ii) X is not an open submodel of C in case X is a trivial antichain.

Iterating this procedure we get the model Chn(λ) as the result. We need the
following facts:

Theorem 3 (cf. [1]). For any FMP logic λ over S4 the model Chn(λ) is n-
characteristic for λ.

Theorem 4 (cf. [1]). For any inference rule r, r is admissible in FMP logic λ over
S4 i� r is valid in the frame of Chn(λ) wrt any de�nable valuation for any given n.

3. Main results

We say that a logic λ, extending logic S4, has weak co-cover property (WCP
for short) whenever for every �nite rooted λ-frame F and an arbitrary non-trivial
antichain X of clusters from F , the frame F1 which is result of adjoining a singleton
re�exive co-covering as the root to the frame

⋃
c∈XR cR is a λ-frame as well.

Given n ∈ N with n > 1, de�ne the formulas:

πi := pi ∧
∧
j 6=i

¬pj ; 1 ≤ i, j ≤ n, An :=
∧

1≤i≤n

♦πi;

An,1 := �
[ ∧
1≤i≤n

(pi → ¬♦q)
]
; B := q ∨ ¬♦q.

Also we de�ne the rules:

Rn :=
�
(
An,1 ∧ ¬(An ∧B)

)
�¬An

; n = 2, 3, . . .

Note, these rules are special case of those from [9] which gives an explicit basis for
admissible rules of logic S4. Next theorem is almost the same as in Lemma 3.1 [9].
The WCP of logic is a key condition in proof of this statement. Let's reproduce
common part of that proof.



DESCRIPTION OF MODAL LOGICS WHICH ENJOY CO-COVER PROPERTY 321

Theorem 1. The rules Rn, n > 1, are admissible in every FMP logic λ over S4
that enjoys the weak co-cover property.

Proof. Assume not. Let for some n the rule

Rn :=
�
(
An,1 ∧ ¬(An ∧B)

)
�¬An

is not admissible in λ. Hence there is a de�nable valuation V of variables from Rn
in a certain constructive k�characteristic model Chλ(k). Therefore

Chλ(k) |=V �
(
An,1 ∧ ¬(An ∧B)

)
& Chλ(k) 6|=V �¬An. (1)

Consequently there exists element a ∈ Chλ(k) such that a 6|=V �¬An. Then
there are elements b1, . . . , bn ∈ Chλ(k) such that aRbi & bi |=V pi. Note if all
elements b1, . . . , bn ∈ Chλ(k) belong to the same cluster (say C(b1) for example)
then b1 |=V An holds and by (1) b1 |=V An,1. Therefore b1 |=V ¬♦q, e.g. we obtain
b1 |=V An ∧B which contradicts to b1 |=V �¬(An ∧B) by the assumption (1). So,
elements b1, . . . , bn ∈ Chλ(k) generate non-trivial antichain and there are i, j ≤ n :
C(bi) 6= C(bj).

By the weak co-cover property there exists a re�exive element b ∈ Chλ(k) which
is a co-cover for the set of R-minimal clusters from the set {C(b1), . . . , C(bn)}, that
is:

{b}R := {b} ∪
⋃

1≤i≤n

(bi)
R.

By (1) it follows that b |=V An,1 and b |=V An. Since b is a co-cover for {b1, . . . , bn}
that's clear that b |=V B. Indeed bi |=V pi and b |=V An,1 holds, therefore ∀i ≤
n bi |=V ¬♦q. From this we conclude b |=V q or b |=V ¬q and hence b |=V ¬♦q.
Therefore we obtain b |=V An∧B which contradicts the fact that b |=V �¬(An∧B)
by the assumption (1). �

Theorem 2. If ∀n the rules {Rn, n > 1} are admissible in FMP logic λ, over S4
then logic λ enjoys weak co-cover property.

Proof. Suppose all rules Rn, n > 1, n ∈ N, are admissible in FMP logic λ over
S4, but λ does not enjoy weak co-cover property. By de�nition there exists a �nite
rooted λ-frame G = bR and a non-trivial antichain of clusters X ⊂ G such that
frame εR :=

⋃
c∈XR cR∪{ε} which is obtained by adjoining a singleton re�exive co-

cover ε as a root to the frame
⋃
c∈XR cR, is not a λ-frame. Let's �x this non-trivial

antichain of clusters X ⊂ G. We'll prove that in such case at least one rule Rn
is not admissible in the logic λ. To do this we construct a λ-frame M containing
the frame G as an open subframe and refuting Rn, n > 1, under some valuation.
Then we de�ne p-morphism from the frame of k-characteristic model Chk(λ) for
some k on M. Transferring a valuation from M onto Chk(λ) we will then refute
Rn, n > 1, on Chk(λ), which will contradict the admissibility of Rn

Let's take a frame G t {e} where {e} is re�exive singleton which is not R-
comparable to any element in G. The frame {e} is λ-frame as p-mor�c image of G.
So the frame G t {e} is λ-frame as disjoint union of λ-frames.

We de�ne λ-successorM of Gt{e} as follows. Let's �x the non-trivial antichaine
X from G and de�ne λ-frame M0 = G t {e} . Then we choose all non-trivial
antichaines of clusters {Xt ⊆ S1(M0)} which don't have singleton co-cover inM0

and add such co-cover t whenever it generates λ-frame tR = {t}∪XR
t as a root. So,
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we obtainM1. Notice by constructionM1 is λ-frame (we add elements generating
λ-frame as a root to λ-frame G t {e}) and G v G t {e} v M1 as we add new
elements as co-covers to G t {e}.

Assuming thatMk has already been constructed and G t {e} v Mk, we obtain
Mk+1 as follows: we choose in S≤(k+1)(Mk) all non-trivial antichaines {Xt ⊆
S≤(k+1)(Mk)} which don't have singleton co-cover and have at least one cluster
of depth k + 1. Then we add singleton re�exive element t as co-cover to each
chosen antichain whenever it generates λ-frame tR = {t} ∪ XR

t as a root. Notice
by constructionMk+1 is λ-frame and G t {e} v Mk+1 as we add new elements as
λ-co-covers toMk and G t {e} v Mk.

Continuing this process we obtain λ-successor M = ∪k∈NMk of G t {e}. This
frame is potentially in�nite.

By construction, the frameM has following properties:

• �rst slice S1(M) ofM contains at least one singleton cluster C(e) = {e};
• �xed antichain X ⊂ G does not have co-cover in M as on each step of
construction we adjoin only co-cover generating λ-frame as a root;

• the frame G is open subframe ofM;
• every non-trivial antichain of clusters of M (di�er from X ) has singleton
λ-co-cover inM (whenever it generates as a root λ-frame).

Proposition 3. M 6|=V Rn holds for some n and valuation V .

Proof. We de�ne a valuation V onM as follows. Let's suppose that �xed antichain
X ⊂ bR consists of clusters {C1, C2, . . . , Cn}.

Now we de�ne X−R = {x : xRC1&xRC2& . . . xRCn} and

V (q) := {y ∈M \ XR : y 6∈ X−R &∃x ∈ X−R(xRy)}, V (pi) := Ci,

e.g. ∀x ∈ Ci x |=V pi. Let's prove that premise of Rn is valued on M under V
while conclusion is not.

By de�nition of V we obtain:

∀x ∈ XR x |=V ¬♦q; ∀x ∈M x |=V pi ⇐⇒ x ∈ Ci.

If some element z ∈M R-sees �xed antichain X = {C1, C2, . . . , Cn} and z |=V An
holds, then z ∈ X−R. Therefore z |=V ¬q holds by de�nition of V (q). Since the
cluster C(z) can't be a co-cover for antichain X by construction ofM, there should
be some y such that y 6∈ X−R, y 6∈ XR and zRy, in which case y |=V q and
z |=V ¬q ∧ ♦q holds too, that infer z |=V ¬(An ∧B).

Indeed if the cluster C(z) is immediate R-predecessor for X , but not co-cover for
X (that is the depth d(C(z)) of C(z) ismaxi∈X d(i)+1), then there should be at least
one element y such that zRy and C(y)∪X form antichain for which C(z) is co-cover
(there can be a few elements y1, . . . , yk with such property � C(y1)∪· · ·∪C(yk)∪X
form antichain). Then for this y holds y 6∈ X−R, y 6∈ XR and zRy.

If the cluster C(z) is not immediate R-predecessor for X , then from it is R-
accessible some cluster C(z1) which is immediateR-predecessor for X or R-accessible
some elements z1, z2, . . . , zk which are immediate R-predecessor for some subsets of
X and X ⊆ zR1 ∪ · · · ∪ zRk . In �rst case (as before) we obtain some element y such
that y 6∈ X−R, y 6∈ XR and z1Ry (and hence zRy be transitivity of R). In second
case we can take as y element z1 wich has desirable property.

So, we conclude ∀x ∈M x |=V ¬(An ∧B).
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By the de�nition of valuation V , ∀x ∈M x 6|=V
∨

1≤i≤n pi∧♦q is true obviously.
In force of

�An,1 ≡ �
∧
1,n

(pi → ¬♦q) ≡ �
∧
1,n

(¬pi ∨ ¬♦q) ≡ �¬[
∨
1,n

(pi ∧ ♦q)],

we have ∀x ∈ M x |=V �An,1. Consequently we proved that the premise of the
rule is valued on arbitrary elements ofM.

As element b is R-predecessor for �xed antichain X = {C1, C2, . . . , Cn} and
∀x ∈ Ci x |=V pi holds, we have b |=V

∧
1≤i≤n ♦pi, e.g. b |=V An. From this we

infer b 6|=V �¬An. �

Proposition 4. The rule Rn is not admissible in logic λ, where n > 1 is a number
of clusters of antichain X = {C1, C2, . . . Cn}.

Proof. Let's choose some (the least) k so thatM v Chk(λ). Indeed, we can start
with model on the �nite frame M0 = G t {e} and valuation S which compare to
each element ci ∈M0, i ∈ I, |I| = |M0| < w, an individual variable pi:

∀i ∈ I ci |=S pi; ci 6|= pj , i 6= j.

Under such valuation S all clusters of M0 are not isomorphic as models and all
elements of any cluster have di�erent valuation.

It's easy to see that model 〈M0, S〉 is open submodel of Chk(λ) for k = |M0|:
(1) For each cluster C ∈ S1(〈M0, S〉) we can �nd cluster K ∈ S1(Chk(λ)) which

is isomorphic to cluster C as model. So we have S1(〈M0, S〉) v S1(Chk(λ)) as
models.

(2) Let's take some cluster C1 ∈ S2(〈M0, S〉) which is co-cover for antichain
A ⊆ S1(〈M0, S〉). By (1) there is antichain B ⊆ S1(Chk(λ)) : 〈A,S〉 ∼= B as
models. Since CR1 = C1 ∪ A is λ-frame by construction of Chk(λ) there is cluster
K1 ∈ S2(Chk(λ)) such that 〈CR1 , S〉 ∼= KR

1 v Chk(λ) as models. So, we have
〈S≤2(M), S〉 v Chk(λ).

(3) Continuing slice by slice this reasoning we conclude 〈M0, S〉 v Chk(λ).
Therefore the frameM0 is open subframe of the frame of Chk(λ).

It's easy to see the process of construction ofM is the part of one of the frame
of Chk(λ) and the resulting frame is open subframe of the frame Chk(λ).

(a) At �rst step of construction ofM we take non-trivial antichain Xt ⊆ S1(M0)
which don't have singleton co-cover in M0 and add such co-cover whenever it
generates λ-frame tR = {t}∪Xt as a root. Since 〈M0, S〉 v Chk(λ) there is antichain
B ⊆ S1(Chk(λ)) : 〈Xt, S〉 ∼= B as models. As tR is λ-frame by construction of model
Chk(λ) we can �nd co-cover for B � cluster CB such that tR ∼= CRB as frames. So
we can transfer valuation from CB on t and obtain 〈tR, S〉 ∼= CRB as models. Hence
we have 〈M1, S〉 v Chk(λ).

(b) Assume 〈Mk, S〉 v Chk(λ). By construction of Mk+1 we take non-trivial
antichain Xt ⊆ S≤(k+1)(Mk) which don't have singleton co-cover inMk and have
at least one cluster of depth k+1. Then we add such co-cover whenever it generates
λ-frame tR = {t} ∪ Xt as a root. For this antichain Xt there is antichain B ⊆
Sk+1(Chk(λ)) : 〈XR

t , S〉 ∼= BR as models. As tR is λ-frame by construction of
model Chk(λ) we can �nd co-cover for antichain B � cluster CB such that tR ∼= CRB
as frames. So we can transfer valuation from CB on t and obtain 〈tR, S〉 ∼= CRB as
models. Hence we have 〈Mk+1, S〉 v Chk(λ).
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(c) Continuing slice by slice this reasoning we conclude 〈M, S〉 v Chk(λ).
Therefore the frameM is open subframe of the frame of Chk(λ).

Note as all elements of model Chk(λ) are de�nable and 〈M, S〉 v Chk(λ)
holds then all elements of 〈M, S〉 de�nable too (the de�nition and structure of
this formula β one can �nd in the proof of Theorem 3.3.7 [1]):

∀x ∈M∃βx : x |=S βx & (y 6= x =⇒ y 6|=S βx).

So we conclude that any (�nite) subset A ⊆M is de�nable too under valuation S:
β(A) =

∨
a∈A βa. Hence, now we can de�ne :

V(pi) =
∨
x∈Ci

βx, 1 ≤ i ≤ n; V(q) = {y ∈ F \XR : y 6∈ X−R&∃z ∈ X−R(zRy)} =

= V

(
¬
∧
βj∈X

♦βj ∧ ¬�
( ∨
βj∈XR

βi
)
∧
∨
{βy : ∃βz(z |=S

∧
βj∈X

♦βj =⇒ z |=S ♦βy}
)
.

So the sets V (pi), 1 ≤ i ≤ n, and V (q) are de�nable in model 〈M, S〉.
Now we de�ne a p-morphism from the frame of k-characteristic model Chk(λ)

onto frameM as follows.

• for elements of frameMv Ck(λ) we de�ne the p-morphism f as identical,
e.g ∀ x ∈M f(x) := x.

• for all elements x ∈ S1(Ck(λ) \M) we set f(x) := e, where {e} is singleton
cluster of �rst slice of G t {e}.

• Let's suppose that for all elements x ∈ S≤t(Chk(λ) \M) of the depth no
more than t required p-morphism is de�ned already. Let's choose arbitrary
element y ∈ St+1(Chk(λ) \ M) which is co-cover for antichain (possible
trivial) A ⊂ S≤t(Chk(λ)). By the construction of k-characteristic model
Chk(λ) the frames yR = C(y) ∪ AR and AR are λ-frames.

By inductive conjecture p-morphism f(AR) is de�ned already. If f(A) =
C is trivial antichain and is a cluster C we de�ne f(y) := ε ∈ f(A).

Assume f(AR) is not trivial. As p-morphism preserves the truth of
formulas the subframe f(AR) is λ-frame. And the result of adding co-cover
(root) to f(AR) would be a p-morphic image of yR and thus also a λ-frame.
From this by construction of λ-successorM we infer that the antichain of
R-minimal clusters from f(AR) has singleton re�exive co-cover ε inM and
such element actually exists in M. So we can de�ne f(y) := ε . As thus
co-cover is unique inM so all elements of C(y) will be mapped to it.

Accordingly to the arbitrariness of y in such way we de�ne p-morphism
f on whole slice St+1(Chk(λ).

• Continue this process we obtain p-morphism f from the frame of k-characteristic
model Chk(λ) onto M. Note the mapping f is de�ned in a way that
preserves the property of being a h-morphism.

Then we transfer the valuation V fromM on Chk(λ) as

∀x ∈ Chk(λ) x |=f−1(V ) p ⇐⇒ f(x) |=V p.

This gives us the p-morphism of models:

〈Chk(λ), f−1(V )〉 −→f 〈M, V 〉.
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Note as the sets V (pi), 1 ≤ i ≤ n, and V (q) are de�nable in model 〈M, S〉 and
p-morphism preserves the truth of formulas, hence the sets f−1(V (pi)), 1 ≤ i ≤ n,
and f−1(V (q)) are de�nable in model Chk(λ) too.

As p-morphism f preserves the truth of formulas and the rule Rn is refuted
on 〈M, V 〉 we refute this rule on k-characteristic model 〈Chk(λ), f−1(V )〉 under
de�nable valuation. Consequently the rule Rn is not admissible in logic λ. �

Taking into account Proposition 3 and Proposition 4, Theorem 2 is proved. �

So from theorems 1 and 2 we obtain

Theorem 5. Let FMP logic λ extends S4. All rules Rn, n > 1, n ∈ N, are
admissible in λ ⇐⇒ logic λ enjoys the weak co-cover property.

References

[1] V.V. Rybakov, Admissibility of logical inference rules, Studies in Logic and the Foundations
of Mathematics, 136, Elsevier, Amsterdam, 1997. Zbl 0872.03002

[2] R. Harrop, Concerning formulas of the types A → B ∨ C, A → (∃x)B(x) in intuitionistic
formal systems, J. Symb. Log., 25:1 (1960), 27�32. Zbl 0098.24201

[3] G.E. Mints, Derivability of admissible rules, J. Sov. Math., 6:4 (1976), 417�421. Zbl 0375.02014
[4] J. Porte, The deducibilities of S5, J. Phylos. Logic, 10:1 (1981), 409�422. Zbl 0475.03005
[5] P. Lorenzen. Einf�ung in die operative Logik und Mathematik, Springer-Verlag, Berlin-

G�ottingen-Heidelberg, 1955. Zbl 0068.00801
[6] H. Friedman, One hundred and two problems in mathematical logic, J. Symb. Log., 40:3 (1975),

113�130. Zbl 0318.02002
[7] V.V. Rybakov, A criterion for admissibility of rules in the modal system S4 and intuitionistic

logic, Algebra Logic, 23:5 (1984), 369�384. Zbl 0598.03013
[8] R. Iemho�, A(nother) characterization of intuitionistic propositional logic, Ann. Pure Appl.

Logic, 113:1-3 (2002), 161�173. Zbl 0988.03045
[9] V.V. Rybakov, An explicit basis for rules admissible in modal system S4, Bull. Sect. Log.,

Univ.  L�od�z, Dep. Log., 28:3 (1999), 135�143. Zbl 0961.03021

Vytalii Valentinovich Rimatskiy

Siberian Federal University,

79, Svobodny ave.,

Krasnoyarsk, 660041, Russia

Email address: Gemmeny@rambler.ru


