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A QUADRATIC PART OF A BENT FUNCTION CAN BE ANY

N.N. TOKAREVA

Abstract. Boolean functions in n variables that are on the maximal
possible Hamming distance from all a�ne Boolean functions in n variab-
les are called bent functions (n is even). They are intensively studied
since sixties of XX century in relation to applications in cryptography
and discrete mathematics. Often, bent functions are represented in their
algebraic normal form (ANF). It is well known that the linear part of
ANF of a bent function can be arbitrary. In this note we prove that a
quadratic part of a bent function can be arbitrary too.
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1. Introduction

Recall that Boolean functions in even number of variables that are on the
maximal possible Hamming distance from the set of all a�ne Boolean functions
are called bent functions [7]. Bent functions play an important role in constructions
of symmetric ciphers since they help to defend ciphers against linear cryptanalysis[4]
and have many applications in discrete mathematics and communications, see [8].
It is well known that every Boolean function can be in the unique way represented
in its Algebraic Normal Form (ANF). This representation is used very often for
property description and realization of a Boolean function. It is known that bent
functions are too far from classi�cation. No conditions on ANF of a Boolean function
are known in order to say that the function is bent.

In this paper a new problem in bent functions is stated and studied: is it true
that an arbitrary homogeneous Boolean function of degree k in n variables (n is
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even) is a k-degree part in ANF of some bent function in n variables? For small k
it can be formulated like this. Is it true that linear (quadratic, cubic, etc.) part of
ANF of a bent function can be arbitrary? For sure, this question is interesting nor
only for bent functions.

It is well known that a linear part in ANF of a bent function can be arbitrary.
Moreover, any linear function can be added to a bent function without changing its
property to be bent. In this paper we prove that a quadratic part of a bent function
can also be arbitrary. Namely, we prove that an arbitrary quadratic homogeneous
Boolean function in n variables is a quadratic part of some bent function in n
variables, where n is even, n > 6. For cubic parts the question remains open.

2. Preliminaries

We use the following standard notation:

Fn
2 � the vector space over F2;

x = (x1, . . . , xn) � a binary vector;
f, g : Fn

2 → F2 � Boolean functions;
dist(f, g) � Hamming distance between f and g, i. e. the number of coordinates

in which their vectors of values di�er;
a1x1 ⊕ . . .⊕ anxn ⊕ b � an a�ne function in variables x1, . . . , xn, where a ∈ Fn

2

and b ∈ F2, sign ⊕ stands for addition modulo 2 (XOR);
bent function � a Boolean function in n variables (n is even) that is on the

maximal possible Hamming distance from the set of all a�ne functions. It is known
[7] that this distance is equal to 2n−1 − 2(n/2)−1;
An � the set of all a�ne functions in n variables;
Bn � the set of all bent functions in n variables.

Recall that any Boolean function can be uniquely represented in its algebraic normal

form (ANF):

f(x1, . . . , xn) =

 n⊕
k=1

⊕
i1,...,ik

ai1,...,ik xi1 · . . . · xik

⊕ a0,

where for each k indices i1, . . . , ik are pairwise distinct and sets {i1, . . . , ik} are
exactly all di�erent nonempty subsets of the set {1, . . . , n}; coe�cients ai1,...,ik , a0
take values from F2. For a Boolean function f the number of variables in the longest
item of its ANF is called the algebraic degree of a function (or brie�y degree) and
is denoted by deg(f). A Boolean function is a�ne, quadratic, cubic and so on if its
degree is not more than 1, or equal to 2, 3, etc.

In what follows let n be an even number.
According to O.Rothaus (1966, 1976) [7] and V. A. Eliseev, O. P. Stepchenkov

(1962) [8], degree deg(f) of a bent function f in n > 4 variables is not more than
n/2. If n = 2 a bent function is quadratic. For any possible degree from 2 to n/2 it
is not di�cult to construct a bent function of such degree.

Several restrictions on ANF of bent functions can be naturally considered. A bent
function is called homogeneous if all monomials of its ANF are of the same degree.
C. Qu, J. Seberri and J. Pieprzyk proved [14] that there are 30 homogeneous
bent functions of degree 3 in 6 variables. Partial results on classi�cation of cubic
homogeneous bent functions in 8 variables were obtained by C.Charnes et al. in [1].
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C. Charnes, M. Rotteler and T. Beth [2] have proved the following fact that we will
use further.

Proposition 1. There exist cubic homogeneous bent functions in each even number
of variables n for n > 6.

For the homogeneous bent functions of higher degrees it is known only a little.

3. On the quadratic part of ANF of a bent function

It is well known that the class of bent functions is closed under addition of a�ne
functions and under a�ne transformations of variables, see [3]. In other words it
holds

Proposition 2. For any bent function g in n variables (n is even, n > 2) the
function g′(x) = g(Ax ⊕ b) ⊕ c1x1 ⊕ . . . ⊕ cnxn ⊕ d is also bent, where A is a
nonsingular matrix, b, c are arbitrary binary vectors of length n, d is a constant
from F2.

Functions g and g′ are called EA-equivalent.
Note that we can add an arbitrary a�ne function to a bent function without

changing its property to be bent. Recall that it is not possible to �nd a non a�ne
Boolean function that does the same, since for any non a�ne Boolean function f
there exists a bent function g such that f ⊕ g is not bent, see [12], [9]. For instance,
it is not possible even to add a quadratic function to all bent functions in order to
save their property to be bent. But we want to prove that it is possible to �nd a
bent function with an arbitrary quadratic part of ANF!

In this section we show that an arbitrary quadratic homogeneous Boolean function
in n variables is a quadratic part of some bent function in n variables, where n is
even, n > 6.

To prove this fact, we need the following statements.
In [6] one can �nd

Proposition 3. There exist exactly 156 nonisomorphic graphs with 6 vertices.

In [6] all these graphs can be found. Let us prove �rst the following result.

Proposition 4. An arbitrary quadratic homogeneous Boolean function in 6 variables
is a quadratic part of some bent function in 6 variables.

Proof. Let us put into the correspondence to an arbitrary quadratic homogeneous
Boolean function f in 6 variables a graph Gf on 6 vertices by the following rule:
vertices correspond to variables; there is an edge between two vertices if and only
if the product of corresponding variables belongs to ANF of f .

Consider only those quadratic homogeneous Boolean functions that correspond
to nonisomorphic graphs. It is clear that if a quadratic homogeneous function f is
a quadratic part of some bent function then any quadratic homogeneous function
f ′ with graph Gf ′ isomorphic to Gf is also a quadratic part of some bent function.
It holds since any permutation on vertices produce an a�ne transformation of
variables and hence by Proposition 2 does not change a property of a function to
be bent.

According to Proposition 3 there are exactly 156 nonisomorphic graphs with 6
variables. We prove the statement by listing in the table in Appendix 1 all 156
corresponding (to graphs) homogeneous quadratic Boolean functions and cubic
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parts that can be added to them in order to get a bent function in every case.
So, the function equal to the sum of the quadratic function from the second column
and cubic function from the third column of the table is always bent. Note that
we list quadratic parts in the lexicographical order. For every quadratic part we
have found a cubic part of the minimal possible length. Sometimes it is of length 0
and we put sign "−" in the table: it means that a quadratic part is already a bent
function. Symbol | in both columns should be replaced by ⊕, and items like 12 and
123 by x1x2 and x1x2x3 respectively. We use such short notation in the table for a
compactness. Thus, we prove the statement. �

The following iterative construction was proposed by O. Rothaus (1966, 1976)
and J. Dillon (1974), see [8].

Proposition 5. Let f ′, f ′′, f ′′′ be bent functions in n variables such that f ′⊕f ′′⊕
f ′′′ is a bent function too. Then

g(x, xn+1, xn+2) = f ′(x)f ′′(x)⊕ f ′(x)f ′′′(x)⊕ f ′′(x)f ′′′(x)⊕
xn+1f

′(x)⊕ xn+1f
′′(x)⊕ xn+2f

′(x)⊕ xn+2f
′′′(x)⊕ xn+1xn+2

is a bent function in n+ 2 variables.

Now let us prove the main result.

Theorem 1. An arbitrary quadratic homogeneous Boolean function in n variables
is a quadratic part of some bent function in n variables, where n is even, n > 6.

Proof. Let us prove it by induction. For n = 6 the result follows from Proposition
4. Suppose that it is proven for some n. Consider the case of n+ 2 variables. Let x
be a vector of variables (x1, . . . , xn). Assume that q(x, xn+1, xn+2) is an arbitrary
homogeneous quadratic Boolean function in n+2 variables. If q is identically zero,
then by Proposition 1 there exists a cubic homogeneous bent function in every
number of variables: it will be a bent function with an empty quadratic part.

Let us consider a nonzero q. Since it is nonzero, there exists at least one item
in its ANF. W.l.o.g. suppose that ANF of q contains item xn+1xn+2. Otherwise
by renumbering of variables we turn to this case. So, q(x, xn+1, xn+2) is of the
form: q(x, xn+1, xn+2) = h(x) ⊕ a(x)xn+1 ⊕ b(x)xn+2 ⊕ xn+1xn+2, where h is
a homogeneous quadratic Boolean function in n variables, a, b are some linear
functions in n variables.

Consider the quadratic homogeneous Boolean function h(x) ⊕ a(x)b(x) in n
variables. By induction, there exists a cubic homogeneous Boolean function c(x)
such that f ′(x) = c(x) ⊕ h(x) ⊕ a(x)b(x) is a bent function in n variables. Let
f ′′(x) = f ′(x)⊕a(x) and f ′′′(x) = f ′(x)⊕b(x). According to Proposition 2 functions
f ′′, f ′′′ are bent too. Note that f ′ ⊕ f ′′ ⊕ f ′′′ is also bent by the same reason.

Then, by Proposition 5 a Boolean function

g(x, xn+1, xn+2) = f ′(x)f ′′(x)⊕ f ′(x)f ′′′(x)⊕ f ′′(x)f ′′′(x)

⊕xn+1f
′(x)⊕ xn+1f

′′(x)⊕ xn+2f
′(x)⊕ xn+2f

′′′(x)⊕ xn+1xn+2

is a bent function in n+ 2 variables. We see that

g(x, xn+1, xn+2)

= f ′(x)(f ′(x)⊕ a(x))⊕ f ′(x)(f ′(x)⊕ b(x))⊕ (f ′(x)⊕ a(x))(f ′(x)⊕ b(x))

⊕xn+1f
′(x)⊕ xn+1(f

′(x)⊕ a(x))⊕ xn+2f
′(x)⊕ xn+2(f

′(x)⊕ b(x))⊕ xn+1xn+2
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= f ′(x)⊕ a(x)b(x)⊕ a(x)xn+1 ⊕ b(x)xn+2 ⊕ xn+1xn+2.

Hence, we get a bent function

g(x, xn+1, xn+2) = c(x)⊕ h(x)⊕ a(x)xn+1 ⊕ b(x)xn+2 ⊕ xn+1xn+2

= c(x)⊕ q(x, xn+1, xn+2)

in n+ 2 variables with prescribed quadratic part q(x, xn+1, xn+2). �

4. Future remarks

Can a k-degree part of ANF of a bent function be any?
In particular, is it true that the cubic part of a bent function can be arbitrary?
• In case n = 6 the answer is no, since there exists only three classes of

nonequivalent cubic bent functions: 123⊕14⊕25⊕36, 123⊕245⊕12⊕14⊕26⊕35⊕45
and 123⊕ 245⊕ 346⊕ 14⊕ 26⊕ 34⊕ 35⊕ 36⊕ 45⊕ 46, but there are �ve classes
of nonequivalent homogeneous cubic Boolean functions in 6 variables. So, we need
to have items of the next degree in order to have a possibility to �put� all variants
of the cubic part in a bent function. Here in notation we again use 123 for x1x2x3

and so on.
• Case n = 8 is still open. The problem is that the existing classi�cation of

quartic bent functions in 8 variables (obtained by P. Langevin and G. Leander in
2011, see [5]) does not include the list of representatives of EA-classes.

We think it is a very interesting open problem to study in the general case.
In 2011 we have formulated the following hypothesis, see [11].

Hypothesis 1. Any Boolean function in n variables of degree not more than n/2
can be represented as the sum of two bent functions in n variables (n is even, n > 2).

The problem to prove or disprove this hypothesis is known now as the Bent sum
decomposition problem. It is closely connected to the problem of asymptotic of the
number of all bent functions.

For now the following is known in relation to this hypothesis.
• Hypothesis is con�rmed for n = 2, 4, 6 (see [11] and [13]).
• Hypothesis was proved for quadratic Boolean functions, Maiorana�McFarland

bent functions, partial spread functions, see [13].
• A weakened variant of the hypothesis was proved: every Boolean function in

n variables of a constant degree d, where d 6 n/2, n is even, can be represented as
the sum of constant number of bent functions in n variables, see [10].

Hypothesis 1 can be reformulated like this: an arbitrary ANF of degree not more
than n/2 can be �divided� into two parts � every part gives the ANF of a bent
function.

Here we just give an idea that follows from Hypothesis 1 (assuming it holds):
k-degree part of the ANF of a bent function �tends� to be arbitrary. It is necessary

that at least
√

2(
n
k) di�erent variants of k-degree part of ANF should be realized

in a bent function. Recall that the total number of all such variants is 2(
n
k).
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5. Conclusion

It is very interesting to study if it is possible to de�ne a bent function through
the conditions on ANF. Of course, these questions are interesting in respect to an
arbitrary class of cryptographic Boolean functions, not only to bent functions. The
author is very grateful to E. Ponomareva for valuable contribution in proving of
Theorem 1, to V. Idrisova for kind help and remarks, and to the reviewer of this
paper for the careful reading of the work and comments.
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