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Abstract. The paper is devoted to estimating the speed of approxi-
mation of solutions of the Dirichlet problem for the Poisson equation
on non-compact model Riemannian manifolds to their boundary data
at "in�nity". Quantitative characteristics that estimate the speed of the
approximation are found in terms of the metric of the manifold and the
smoothness of the inhomogeneity in the Poisson equation.
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1. Introduction

The work is devoted to studying of asymptotic behaviour of solutions of the
Dirichlet problem for the Poisson equation on non-compact model Riemannian
manifolds.

Active studies on solutions to partial di�erential equations on non-compact
Riemannian manifolds started in the middle of the 1970s and continue until the
present time. The following statements of problems in this area of mathematics are
historically established.

1. Find the conditions that ensure that every solution of an equation from the
given class is trivial (Liouville-type theorems).

2. Find the conditions that ensure unique solvability of boundary value and
external boundary value problems.
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One of the sources of the mentioned issues is the classi�cation theory of two-
dimensional non-compact Riemannian surfaces. A distinctive feature of two-dimen-
sional surfaces of parabolic type is that Liouville-type theorems, stating that every
positive supergharmonic function on the given surface is the identity constant,
hold for them (see, for example, [1, 2]). This property has served as the basis for
extending of the notions of parabolicity and hyperbolicity of the type onto arbitrary
non-compact Riemannian manifolds.

In particular, non-compact Riemannian manifolds, on which every superharmonic
function bounded from below is constant, are called manifolds of a parabolic type
(see [3]). In the opposite case, a manifold is said to be of a hyperbolic, or in other
words, non-parabolic type.

The �rst results in de�ning types of a Riemannian manifold by using geometrical
characteristics include a theorem by S.Y. Cheng and S.T. Yau [4], stating that a
complete manifold is parabolic if the volume of a geodesic ball of radius R grows
not faster than R2 for R→∞.

Studies dedicated to �nding the conditions of parabolicity of the type of non-
compact Riemannian manifolds have a su�ciently extended history. In recent years,
a number of conditions ensuring parabolicity (non-parabolicity) of the type of
non-compact Riemannian manifolds in terms of volume growth, cross-section area,
changes of di�erent curvatures (sectional, Ricci, and others), capacity characteristics,
etc. (see, for example, [3, 4, 5, 6, 7]). A general idea on present state of research on
this issue can be obtained in survey [3].

Questions on existence of non-trivial harmonic and superharmonic functions
naturally lead to Liouville-type theorems. In traditional formulation, the Liouville
theorem states that every bounded harmonic function in Euclidean space is the
identity constant. During the last decades, dozens of di�erent conditions have been
found for geometric structure of non-compact Riemannian manifolds that ensure
triviality of some classes of solutions to elliptic equations. Most often, bounded,
positive, summable, having a �nite Dirichlet integral, and some other spaces of
harmonic functions and solutions of other elliptic equations and inequalities are
studied (see, for example, [3, 4, 8, 9, 10, 11, 12]).

At the same time, the class of non-compact Riemannian manifolds, on which
there exist non-trivial bounded harmonic functions, is quite large. In recent time,
the approach to Liouville-type theorems tends to be more general. In particular, the
dimension of di�erent spaces of harmonic functions on non-compact Riemannian
manifolds is estimated (see, for example, [9, 13, 14, 15]).

Equally interesting are the questions of solubility of di�erent boundary value
problems, for example, the Dirichlet problem on reconstruction of a harmonic
function by continuous boundary data on "in�nity".

Generally speaking, on arbitrary non-compact Riemannian manifold, the common
statement of the Dirichlet problem is quite challenging. However, in some cases
geometric compacti�cation of a manifold allows to do it using the classic formulation.
One class of Riemannian manifolds for which the statement of boundary value
problems has a natural geometric interpretation is the class of manifolds with
a negative sectional curvature. For example, M. Anderson and D. Sullivan (see
[16, 17]) showed that on a complete simply connected manifold with a negative
sectional curvature sectM , satisfying the conditions −b2 ≤ sectM ≤ −a2 < 0, the
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Dirichlet problem on reconstruction of a harmonic function on such manifold by
continuous boundary data is uniquely solvable.

The exact conditions for unique solvability of the Dirichlet problem for harmonic
functions and solutions of the stationary Schr�odinger equation on non-compact
model manifolds generalizing spherically symmetric ones are obtained in works
[6, 11, 13, 18].

Note that the majority of articles in the framework of the topic is devoted to
studying of solutions of homogeneous elliptic equations. However, �rst works were
suggested in recent years dedicated to studies of asymptotic behavior of solutions
to nonhomogeneous elliptic equation on non-compact Riemannian manifolds (see,
for example, [19, 20, 21]).

In studies on solvability of boundary value problems, traditionally a lot of atten-
tion is paid to the following question: in what sense, for example, in which metrics,
we should understand the proximity of the solution to the boundary data (see
[18, 22, 23]). At the same time, it is of interest to obtain quantitative characteristics
estimating the speed of approximation of the solution to the boundary data. Among
others, here we can mention the renowned "lemma on increasing"(see [23]). Our
work is carried out exactly in this direction. In particular, we obtained signi�cantly
accurate estimates of the speed of approximation of solutions to the Dirichlet
problem to their boundary data on non-compact Riemannian manifolds of some
special form.

2. Statement of the problem

One class of Riemannian manifolds on which the statement of boundary value
problems has a natural geometric interpretation is the set of manifolds of the
following form (referred to as model ones):Mg = B∪D, whereB is some precompact
with a non-empty interior, and D is isometric to the direct product [r0; +∞) × S
(r0 > 0 and S is a compact Riemannian manifold without an edge) with the metric

ds2 = dr2 + g2 (r) dθ2.

Here g(r) is a positive and smooth function on [r0; +∞), and dθ2 is a metric on S.
Examples of such manifolds include the Euclidean space Rn, hyperbolic space Hn,
surfaces of revolution and others. Manifolds of type D are sometimes referred to as
"metric horns".

In recent years, a number of papers dedicated to studying of the behavior of
solutions to distinct elliptic equations and inequalities on manifolds of this type and
some on their generalizations were published (see, for example, [6, 9, 11, 13, 18, 19]).
In particular, work [19] studies the solutions of the Poisson equation u ∈ C2(Mg)

(1) ∆u = f(x),

where f ∈ C0,α(Mg)
⋂
G[ 3n

2 ](D). Here n = dimMg, and

Gp(D) = {(r, θ) : ∀r ∈ [r0; +∞) f(r, θ) ∈ Cp(S)}

is a subset of the space of H�older functions on Mg, that are p times continuously
di�erentiable at the second argument on D for every �xed �rst argument. We
introduce the notation

ϕ0(r) = ‖f(r, θ)‖L1(S), ϕm(r) = ‖∆m
θ f(r, θ)‖L2(S),
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(2) hm(r) =

∞∫
r

g1−n(t)

 t∫
r0

(
1

g2(ξ)
+ ϕ0(ξ) + ϕm(ξ))gn−1(ξ)dξ

 dt.

In [19], the following statement was proved.

Theorem 1 ([19]). Let the manifold Mg be such that hm(r0) <∞, where m = [ 3n4 ].
Then for every function Φ(θ) ∈ C(S) on Mg there exists a unique solution u(x) of
equation (1) such that on D the following equality holds:

lim
r→∞

u(r, θ) = Φ(θ).

Also note that the passage to the limit in boundary conditions at "in�nity" is
understood in the sense of uniform convergence. In particular, it is implied that the
following equality holds:

lim
r→∞

||u(r, θ)− Φ(θ)||C(Mg\B(r)) = 0,

where B(r) is a geodesic ball of radius r with the center at some �xed point.
Therefore, solvability of the Dirichlet problem for the Poisson equation on model

Riemannian manifolds was proved. However, a quite interesting question remains:
what exactly is the speed of convergence of the solution to its boundary data at
"in�nity". This work is devoted to studying of asymptotic behavior at "in�nity" of
solutions to the Poisson equation on such manifolds, and, in particular, estimating
the asymptotic convergence speed of the solution to the boundary data.

3. Asymptotic behavior of solutions of the exterior boundary value

Dirichlet problem

In this paragraph, we will consider the Poisson equation on a manifold D

∆u(r, θ) = f(r, θ),

where f ∈ C0,α(D)
⋂
G[ 3n

2 ]+2(D).
We will de�ne the exterior boundary value Dirichlet problem for the Poisson

equation on D in the following way: �nd a function u(r, θ), such that

(3)


∆u(r, θ) = f(r, θ),

u(r0, θ) = Ψ(θ),

lim
r→∞
||u(r, θ)− Φ(θ)||C(D\B(r)) = 0,

where Ψ(θ) and Φ(θ) are some functions given on D.
Traditionally, the solution of a nonhomogeneous problem is searched in the form

u(r, θ) = u1(r, θ) + u2(r, θ),

where u1(r, θ) is the solution of the Dirichlet problem for the homogeneous equation

(4)


∆u1(r, θ) = 0,

u1(r0, θ) = Ψ(θ),

lim
r→∞
||u1(r, θ)− Φ(θ)||C(D\B(r)) = 0,
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and u2(r, θ) is the solution of the homogeneous boundary value problem for the
nonhomogeneous equation

(5)


∆u2(r, θ) = f(r, θ),

u2(r0, θ) = 0,

lim
r→∞
||u2(r, θ)||C(D\B(r)) = 0.

In works [13] and [19], the solvability conditions for the corresponding boundary
value problems were obtained.

Now, we introduce the notation

q (r) =

∞∫
r

g1−n(t)

 t∫
r0

gn−3(ξ)dξ

 dt.

It is clear that for all r ≥ r0 the condition hm(r) ≥ q(r) is ful�lled.
We put m1 = [ 3n4 ] + 1 and formulate the �rst main result of this paper.

Theorem 2. Let the Riemannian manifold Mg and the right-hand side of the
Poisson equation f be such that hm1

(r0) < ∞. Then for all functions Ψ (θ) ∈
C2m1(S) and Φ (θ) ∈ C2m1(S) on D there exists a unique solution u(r, θ) of the
Poisson equation, such that

u(r0, θ) = Ψ(θ) and |u(r, θ)− Φ(θ)| ≤ Chm1
(r)

for all (r, θ) given r > r0, where the constant C > 0 does not depend on (r, θ).

Äîêàçàòåëüñòâî. We will search for the solution of the nonhomogeneous problem
in the form u(r, θ) = u1(r, θ)+u2(r, θ), where u1(r, θ) and u2(r, θ) are the solutions of
the corresponding problems (4) and (5). As it was shown in [13], due to convergence
of the integral hm1

(r0) < ∞, the solution u1(r, θ) on D exists and is unique. We
will show that the inequality

|u1(r, θ)− Φ(θ)| ≤ Chm1
(r)

holds for all (r, θ) given r > r0, where the constant C > 0 does not depend on (r, θ).
Let {wk(θ)} be an orthonormal basis in L2(S) formed of eigenfunctions of the

Laplace operator −∆θ, and λk be the corresponding eigenvalue (0 = λ0 < λ1 ≤
. . . ), that is,

∆θwk(θ) + λkwk(θ) = 0.

Then the following expansions are true:

Φ (θ) =

∞∑
k=0

ckwk(θ), Ψ (θ) =

∞∑
k=0

zkwk(θ),

where

ck =

∫
S

Φ (θ)wk(θ)dθ, zk =

∫
S

Ψ (θ)wk(θ)dθ.

Also, for every �xed r, the following representation for the harmonic function
u1(r, θ) is true:

u1 (r, θ) =

∞∑
k=0

vk (r)wk(θ), where vk (r) =

∫
S

u1 (r, θ)wk(θ)dθ.
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In work [9], it was shown that for every k ≥ 0, the Fourier coe�cients vk(r)
satisfy the ordinary di�erential equation

(6) v
′′

k (r) + (n− 1)
g
′
(r)

g (r)
v
′

k (r)− λk
g2 (r)

vk (r) = 0,

to which we will refer as spectral. In this case, vk(r) also satis�es the boundary
conditions vk (r0) = zk, lim

r→∞
vk (r) = ck. Moreover, in [13] it is shown that for all

r ≥ r0 the following inequality holds |vk (r)| ≤ |ck|+ |zk| , along with the absolute
and uniform convergence of the series

∞∑
k=1

vk (r)wk(θ),

∞∑
k=0

ckwk(θ),

∞∑
k=0

zkwk(θ).

Using the triangle inequality, we estimate the following di�erence:

| u1(r, θ)− Φ(θ) |=

∣∣∣∣∣
∞∑
k=0

vk(r)ωk(θ)−
∞∑
k=0

ckωk(θ)

∣∣∣∣∣ =

(7) ≤ |(v0(r)− c0)ω0(θ)|+
∞∑
k=1

|vk(r)− ck| |ωk(θ)| .

Further, we estimate the �rst summand from the above. Integrating twice the
spectral equation (6) for k = 0, as in [13], we obtain

v0(r) = v′0(r0)gn−1(r0)

r∫
r0

dt

gn−1(t)
+ v0(r0).

Since lim
r→∞

v0 (r) = c0, we have that

c0 = v′0(r0)gn−1(r0)

∞∫
r0

dt

gn−1(t)
+ v0(r0).

From the de�nition of eigenfunction it follows that w0(θ) = 1√
|S|
, where |S| is the

volume of S. Then the following equality holds:

|(v0(r)− c0)ω0(θ)| = 1√
|S|
|v0(r)− c0| =

=
1√
|S|

∣∣∣∣∣∣v′0(r0)gn−1(r0)

r∫
r0

dt

gn−1(t)
+ v0(r0)− v′0(r0)gn−1(r0)

∞∫
r0

dt

gn−1(t)
− v0(r0)

∣∣∣∣∣∣ =

=
1√
|S|
|v′0(r0)| gn−1(r0)

∞∫
r

dt

gn−1(t)
≤ 1√

|S|
|v′0(r0)| gn−1(r0)q (r) = Cq (r) .

Here C is a constant that does not depend on r.
Now, we will estimate from above every member of the series in the inequality

(7). Integrating twice the spectral equation (6) for k > 0, we obtain

(8) vk(r) = λk

r∫
r0

dt

gn−1(t)

t∫
r0

gn−3(z)vk(z)dz+ v′k(r0)gn−1(r0)

r∫
r0

dt

gn−1(t)
+ vk(r0).
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Taking into account the boundary conditions vk (r0) = zk and lim
r→∞

vk (r) = ck, we

have

ck = λk

∞∫
r0

dt

gn−1(t)

t∫
r0

gn−3(z)vk(z)dz + v′k(r0)gn−1(r0)

∞∫
r0

dt

gn−1(t)
+ zk.

From here, we express zk

zk = ck − λk

∞∫
r0

dt

gn−1(t)

t∫
r0

gn−3(z)vk(z)dz − v′k(r0)gn−1(r0)

∞∫
r0

dt

gn−1(t)
.

Substituting the obtained expression into (8), we obtain

vk(r) = λk

r∫
r0

dt

gn−1(t)

t∫
r0

gn−3(z)vk(z)dz + v′k(r0)gn−1(r0)

r∫
r0

dt

gn−1(t)
+

+ck − λk

∞∫
r0

dt

gn−1(t)

t∫
r0

gn−3(z)vk(z)dz − v′k(r0)gn−1(r0)

∞∫
r0

dt

gn−1(t)
=

= ck − λk

∞∫
r

dt

gn−1(t)

t∫
r0

gn−3(z)vk(z)dz − v′k(r0)gn−1(r0)

∞∫
r

dt

gn−1(t)
.

Therefore, the following inequalities hold:

|vk(r)− ck| =

∣∣∣∣∣∣−λk
∞∫
r

dt

gn−1(t)

t∫
r0

gn−3(z)vk(z)dz − v′k(r0)gn−1(r0)

∞∫
r

dt

gn−1(t)

∣∣∣∣∣∣ ≤
≤ λk

∞∫
r

dt

gn−1(t)

t∫
r0

gn−3(z) |vk(z)| dz + |v′k(r0)| gn−1(r0)

∞∫
r

dt

gn−1(t)
.

Recall that |vk (r)| ≤ |ck| + |zk|. Then the last inequality can be continued in the
following way:

|vk(r)− ck| ≤ λk (|ck|+ |zk|)
∞∫
r

dt

gn−1(t)

t∫
r0

gn−3(z)dz+|v′k(r0)| gn−1(r0)

∞∫
r

dt

gn−1(t)
≤

≤ λk (|ck|+ |zk|) q (r) + |v′k(r0)| gn−1(r0)q (r) .

Taking into account what was said above, we continue the estimate (7)

∞∑
k=1

|vk(r)− ck| |ωk(θ)| ≤ q (r)

∞∑
k=1

(
λk (|ck|+ |zk|) + gn−1(r0) |v′k(r0)|

)
|ωk(θ)| ≤

≤ q (r)

∞∑
k=1

(
λk |ck| |ωk(θ)|+ λk |zk| |ωk(θ)|+ gn−1(r0) |v′k(r0)| |ωk(θ)|

)
≤

≤ q (r)

( ∞∑
k=1

λk |ck| |ωk(θ)|+
∞∑
k=1

λk |zk| |ωk(θ)|+
∞∑
k=1

gn−1(r0) |v′k(r0)| |ωk(θ)|

)
.
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Next, we will show the convergence of the series

∞∑
k=1

λk |ck| |ωk(θ)| .

Using Green's formula and the de�nition of eigenfunction, we obtain

|ck| =

∣∣∣∣∣∣
∫
S

Φ (θ)wk(θ)dθ

∣∣∣∣∣∣ =
1

λk

∣∣∣∣∣∣
∫
S

Φ (θ) ∆θwk(θ)dθ

∣∣∣∣∣∣ =
1

λk

∣∣∣∣∣∣
∫
S

∆θΦ (θ)wk(θ)dθ

∣∣∣∣∣∣ .
We apply Green's formula m1 =

[
3n
4

]
+ 1 times

|ck| =
1

λm1

k

∣∣∣∣∣∣
∫
S

∆m1

θ Φ (θ)wk(θ)dθ

∣∣∣∣∣∣ .
Now, we use the Cauchy-Schwarz inequality

|ck| ≤
1

λm1

k

∫
S

(∆m1

θ Φ (θ))
2
dθ

 1
2
∫
S

w2
k(θ)dθ

 1
2

=
C

λm1

k

,

where C is a constant that depends on the choice of boundary conditions, and also
on S and m1.

The following estimates of eigenfunctions and eigenvalues (Weyl law) of the
Laplace operator in L2(S) are well known (see, for example, [24])

‖wk‖C(S) ≤ C1λ
n−2
4

k , C2k
2

n−1 ≤ λk ≤ C3k
2

n−1 .

Taking into account the above-mentioned estimates, we obtain that the following
inequalities hold:

∞∑
k=1

λk |ck| |ωk(θ)| ≤
∞∑
k=1

C3k
2

n−1
C

λm1

k

C1λ
n−2
4

k ≤
∞∑
k=1

C3k
2

n−1
C∗

k
2m1
n−1

C∗1k
2

n−1
n−2
4 ≤

≤ C∗3
∞∑
k=1

k
2

n−1−
2m1
n−1+

n−2
2n−2 = C∗3

∞∑
k=1

k
4−4m1+n−2

2n−2 = C∗3

∞∑
k=1

k
2−4m1+n

2n−2 <∞.

The last series converges due to the fact that, given m1 =
[
3n
4

]
+ 1, the following

inequality is true:
2− 4m1 + n

2n− 2
< −1.

The convergence of the following series is proved in the similar way:

∞∑
k=1

λk |zk| |ωk(θ)| and

∞∑
k=1

|v′k(r0)| |ωk(θ)| .

We will take a closer look at the study of the last series. First, we separately estimate
v′k(r). By de�nition, we have

vk(r) =

∫
S

u1(r, θ)wk(θ)dθ.
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Di�erentiating both sides of the equality and also using the de�nition of eigenfunctions
wk(θ), we obtain

|v′k(r)| =

∣∣∣∣∣∣
∫
S

∂u1
∂r

(r, θ)wk(θ)dθ

∣∣∣∣∣∣ =
1

λk

∣∣∣∣∣∣
∫
S

∂u1
∂r

(r, θ) ∆θwkdθ

∣∣∣∣∣∣ .
We apply Green's formula m1 times and use the Cauchy-Schwarz inequality

|v′k (r0)| = 1

λm1

k

∣∣∣∣∣∣
∫
S

∆m1

θ

∂u1
∂r

(r0, θ)wk(θ)dθ

∣∣∣∣∣∣ ≤
≤ 1

λm1

k

√√√√∫
S

(
∆m1

θ

∂u1
∂r

(r0, θ)

)2

dθ

√√√√∫
S

w2
k(θ)dθ =

C

λm1

k

,

where C > 0 is some constant depending on S and m1. From Weyl law, it follows
that

|v′k (r0)| ≤ C

λm1

k

≤ C∗(
k

2
n−1

)m1
.

Further proof of the convergence of this series literally coincides with the study of
the convergence of the �rst series.

Taking into account the convergence of the series, we obtain that the following
inequalities hold:

| u1(r, θ)− Φ(θ) |≤ |v0(r)ω0 − c0ω0|+
∞∑
k=1

|vk(r)− ck| |ωk(θ)| ≤ q(r)
(
C+

+

∞∑
k=1

λk |ck| |ωk(θ)|+
∞∑
k=1

λk |zk| |ωk(θ)|+
∞∑
k=1

gn−1(r0) |v′k(r0)| |ωk(θ)|

)
≤ C∗∗q (r)

for all (r, θ) given r > r0, where C
∗∗ > 0 is some constant that depends on S and m1

and on the choice of boundary conditions, and does not depend on (r, θ).
Next, we consider the solution u2(r, θ) of the homogeneous boundary value

problem for the Poisson equation (5). Solvability of this problem was obtained
in [19]. We will prove that the estimate

|u2(r, θ)| ≤ Qhm1 (r)

is true for all (r, θ) when r > r0 with some constant Q > 0 that does not depend
on (r, θ).

In work [19], the solution of the boundary value problem (5) was constructed in
the form

u2(r, θ) =

∞∑
k=0

vk(r)ωk(θ).

Here vk(r) is the solution of the nonhomogeneous spectral equation

(9) v
′′

k (r) + (n− 1)
g
′
(r)

g (r)
v
′

k (r)− λk
g2 (r)

vk (r) = pk (r) ,
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where λk are eigenvalues of the Laplace operator on S, and pk(r) are the coe�cients
of expansion into Fourier series by eigenfunctions of the Laplace operator of the
right-hand side of the Poisson equation f(r, θ), that is,

f(r, θ) =

∞∑
k=0

pk(r)wk(θ).

Integrating twice the equation (9) within the limits [r0, r], we obtain the following
integral equation equivalent to the spectral equation (9):

vk (r) = λk

r∫
r0

dt

gn−1 (t)

r∫
r0

gn−3 (z) vk (z) dz +

r∫
r0

dt

gn−1 (r)

r∫
r0

gn−1 (z) pk (z) dz+

(10) +gn−1 (r0) v
′

k (r0)

r∫
r0

dt

gn−1 (t)
+ vk (r0) .

For k = 0, taking into account λ0 = 0, we obtain

(11) v0(r) =

r∫
r0

dt

gn−1(t)

t∫
r0

p0(z)gn−1(z)dz + v′0(r0)gn−1(r0)

r∫
r0

dt

gn−1(t)
+ v0(r0).

In both cases, vk(r) also satis�es the boundary conditions vk (r0) = 0, lim
r→∞

vk (r) =

0.
In the mentioned paper, also the following estimates of the coe�cients pk(r) and

the solutions of the nonhomogeneous spectral equation (9) were obtained:

(12) |p0(r)| ≤ 1√
| S |

ϕ0(r), |pk(r)| ≤ ϕm1
(r)

λm1

k

, |vk(r)| ≤ hm1
(r0)

λm1

k

.

Then we have

|u2(r, θ)| =

∣∣∣∣∣
∞∑
k=0

vk(r)ωk(θ)

∣∣∣∣∣ =

∣∣∣∣∣v0(r)ω0(θ) +

∞∑
k=1

vk(r)ωk(θ)

∣∣∣∣∣ ≤
≤ |v0(r)ω0(θ)|+

∣∣∣∣∣
∞∑
k=1

vk(r)ωk(θ)

∣∣∣∣∣ ≤ |v0(r)| |ω0(θ)|+
∞∑
k=1

|vk(r)| |ωk(θ)| .

We will estimate each of the summands in the last expression. Taking into account
that ω0(θ) = 1√

|S|
, the boundary conditions and (11), for the �rst summand we

have:

|v0(r)| |ω0(θ)| ≤ 1√
| S |

∣∣∣∣∣∣
r∫

r0

dt

gn−1(t)

t∫
r0

p0(z)gn−1(z)dz + v
′

0(r0)gn−1(r1)

r∫
r0

dt

gn−1(t)

∣∣∣∣∣∣ ≤

≤ 1√
| S |

r∫
r0

dt

gn−1(t)

t∫
r0

|p0(z)| gn−1(z)dz +

∣∣∣v′0(r0)
∣∣∣√

| S |
gn−1(r0)

r∫
r0

dt

gn−1(t)
.
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Taking into account the estimate (12), we obtain

|v0(r)| |ω0(θ)| ≤ 1

| S |

r∫
r0

dt

gn−1(t)

t∫
r0

ϕ0(z)gn−1(z)dz+

∣∣∣v′0(r0)
∣∣∣√

| S |
gn−1(r0)

r∫
r0

dt

gn−1(t)
≤

≤ Q1

r∫
r0

dt

gn−1(t)

t∫
r0

ϕ0(z)gn−1(z)dz +Q2

r∫
r0

dt

gn−1(t)
.

Each summand separately does not exceed Qihm1(r), which yields the estimate

|v0(r)| |ω0(θ)| ≤ Qhm1(r),

where the constantQ depends on the compact S, and also on the boundary conditions
of the problem.

Similarly, we will estimate vk(r), taking into account (10)

|vk(r)| =

∣∣∣∣∣∣λk
r∫

r0

dt

gn−1(t)

t∫
r0

vk(z)gn−3(z)dz +

r∫
r0

dt

gn−1(t)

t∫
r0

pk(z)gn−1(z)dz+

+v
′

k(r0)gn−1(r0)

r∫
r0

dt

gn−1(t)

∣∣∣∣∣∣ ≤ λk
r∫

r0

dt

gn−1(t)

t∫
r0

|vk(z)| gn−3(z)dz+

+

r∫
r0

dt

gn−1(t)

t∫
r0

|pk(z)| gn−1(z)dz +
∣∣∣v′k(r0)

∣∣∣ gn−1(r0)

r∫
r0

dt

gn−1(t)
.

Applying the second estimate in (12), we obtain

|vk(r)| ≤ λk

r∫
r0

dt

gn−1(t)

t∫
r0

|vk(z)| gn−3(z)dz+

+
1

λm1

k

r∫
r0

dt

gn−1(t)

t∫
r0

ϕm1
(z)gn−1(z)dz +

∣∣∣v′k(r0)
∣∣∣ gn−1(r0)

r∫
r0

dt

gn−1(t)
.

Taking into account the above-mentioned considerations and the estimates of the
eigenvalues and eigenfunctions of the Laplace operator, in a way similar to the
above, we estimate the series

∞∑
k=1

|vk(r)| |ωk(θ)| ≤ C
∞∑
k=1

λk r∫
r0

dt

gn−1(t)

t∫
r0

|vk(z)| gn−3(z)dz+

+
1

λm1

k

r∫
r0

dt

gn−1(t)

t∫
r0

ϕm1(z)gn−1(z)dz +
∣∣∣v′k(r0)

∣∣∣ gn−1(r0)

r∫
r0

dt

gn−1(t)

 k
n−2

2(n−1) .

Next, we substitute the third estimate from (12) and obtain

∞∑
k=1

|vk(r)| |ωk(θ)| ≤ C
r∫

r0

dt

gn−1(t)

t∫
r0

gn−3(z)dz

∞∑
k=1

λk
1

λm1

k

k
n−2

2(n−1) +
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(13)

+C

r∫
r0

dt

gn−1(t)

t∫
r0

ϕm1
(z)gn−1(z)dz

∞∑
k=1

1

λm1

k

k
n−2

2(n−1) +C

r∫
r0

dt

gn−1(t)

∞∑
k=1

k
n−2

2(n−1)

∣∣∣v′k(r0)
∣∣∣ .

In a way similar to the above, we �nd the estimate |v′k(r)| ≤ C∗(
k

2
n−1

)m1 for the

solutions of the nonhomogeneous spectral equation, and from (13), we obtain

∞∑
k=1

|vk(r)| |ωk(θ)| ≤ C1

r∫
r0

dt

gn−1(t)

t∫
r0

gn−3(z)dz

∞∑
k=1

1

λm1−1
k

k
n−2

2(n−1) +

+C2

r∫
r0

dt

gn−1(t)

t∫
r0

ϕm1(z)gn−1(z)dz

∞∑
k=1

1

λm1

k

k
n−2

2(n−1) +C3

r∫
r0

dt

gn−1(t)

∞∑
k=1

k−
2m1
n−1 k

n−2
2(n−1) .

We will prove the convergence of every series on the right-hand side of the last
inequality. We will estimate the series from the �rst summand. Taking into account
that m1 =

[
3n
4

]
+ 1, we obtain the convergence of this series

∞∑
k=1

1

λm1−1
k

k
n−2

2(n−1) ≤ C
∞∑
k=1

k
2−2m1
n−1 k

n−2
2(n−1) = C

∞∑
k=1

k
n−4m1+2

2(n−1) <∞.

Similarly, the convergence of the remaining series on the right-hand side of the
inequality is proved:

∞∑
k=1

1

λm1

k

k
n−2

2(n−1) ≤ C
∞∑
k=1

k−
2m1
n−1 k

n−2
2(n−1) = C

∞∑
k=1

k
n−4m1−2

2(n−1) <∞.

Taking into account the convergence of the series and the de�nition of the integral
hm1

(r), we obtain that the following estimate is true:

∞∑
k=1

|vk(r)| |ωk(θ)| ≤ C∗1

r∫
r0

dt

gn−1(t)

t∫
r0

gn−3(z)dz+C∗2

r∫
r0

dt

gn−1(t)

t∫
r0

ϕm(z)gn−1(z)dz+

+C∗3

r∫
r0

dt

gn−1(t)
≤ (C∗1 + C∗2 + C∗3 )hm1(r).

Combining the previous inequality and the estimate of the �rst summand in the
expansion for the function u2(r, θ), we obtain

|u2(r, θ)| ≤ |v0(r)ω0|+
∞∑
k=1

|vk(r)| |ωk(θ)| ≤ Q∗hm1(r)

for all (r, θ) given r > r0, where Q
∗ > 0 is some constant that does not depend on

(r, θ).
Now, we will prove the main statement

|u(r, θ)− Φ(θ)| = |u1(r, θ) + u2(r, θ)− Φ(θ)| ≤ |u1(r, θ)− Φ(θ)|+ |u2(r, θ)| ≤

≤ (C∗∗ +Q∗)hm1
(r) ≤ Chm1

(r)

for all (r, θ) given r > r0, where C > 0 is some constant that does not depend on
(r, θ). The theorem is proved. �
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4. Asymptotic behaviour of solutions of the Dirichlet problem on a

model manifold

In this section, we will demonstrate a possibility of continuing the solution of
the exterior boundary value problem for the Poisson equation in the area D onto
the whole model manifold preserving the asymptotic inequality. We will formulate
the main result.

Theorem 3. Let the Riemannian manifold Mg and the right-hand side of the
Poisson equation f be such that hm1

(r0) < ∞. Then for every function Φ (θ) ∈
C2m1(S) on Mg there exists a unique solution u(x) of the Poisson equation, such
that on D the inequality

|u(r, θ)− Φ(θ)| ≤ Chm1(r)

holds for all (r, θ), given r > r0, where the constant C > 0 does not depend on
(r, θ).

Äîêàçàòåëüñòâî. Let u0 be the solution of the exterior boundary value problem
(3), whose existence in the conditions of this theorem is shown in Theorem 2.
Moreover, u0 on D satis�es the asymptotic inequality

|u0(r, θ)− Φ(θ)| ≤ C∗hm1
(r)

for all (r, θ), given r > r0, where the constant C
∗ > 0 does not depend on (r, θ).

Next, consider the function U = u0 · φ, where φ is a smooth function on Mg,

such that φ = 0 on the precompact set B′ ⊂ B and φ = 1 outside B. Then
U ∈ C2m1(Mg) and ∆U = ∆(u0 · φ) = f∗, where f∗ ∈ C0,α(Mg), f

∗(x) = 0 on B′,

f∗(x) = f(x) outside B.
Let {Bk}∞k=1 be an arbitrary smooth exhaustion of the manifold Mg, that is, a

sequence of precompact open non-empty subsets of Bk ⊂Mg, such that Bk ⊂ Bk+1,

Mg =
⋃∞
k=1Bk, ∂Bk are the smooth boundaries and B ⊂ Bk for every k.

We will construct a sequence of functions φk, solution of the problem

∆φk = f, in Bk φk|∂Bk
= u0|∂Bk

and a sequence of functions ψk = φk − U . For these functions, we have:

∆ψk = f − f∗ in Bk, ψk|∂Bk
= 0.

On every set Bk, there exists a Green's function, that is, a function Gk(x, y)
such that

∆xGk(x, y) = −δy(x), Gk|x∈∂Bk
= 0

for every y ∈ Bk, where δy(x) is a Dirac δ-function. Therefore, by Green's formula
in Bk, we have

ψk(x) = −
∫
Bk

Gk(x, y)(f(y)− f∗(y))dy.

From the condition on convergence of the integral hm1
(r0), the manifold Mg is

non-parabolic. As a non-trivial capacity potential of the precompact B we can use

the function υ(r) = q(r)
q(r0)

. Non-parabolicity of the manifold Mg yields the existance

of the �nite Green's function G(x, y) = lim
k→∞

Gk(x, y) on all Mg.
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The existence of Green's functions yields the existence of the limit of the sequence
{ψk}∞k=1. Let ψ = lim

k→∞
ψk, then ∆ψ = f − f∗ on Mg (see also [9]). We will show

that ψ satis�es the asymptotic inequality

|ψ(r, θ)| ≤ C3hm1
(r)

for all (r, θ) given r > r0, where the constant C3 > 0 does not depend on (r, θ).
Due to the fact that the function ψ(x) is continuous, there exists

U = max
∂B
|ψ(x)|.

Obviously, the inequalities

−(U + 1) ≤ ψ|∂B ≤ U + 1 and − (U + 1) ≤ ψk|∂B ≤ U + 1

hold for every su�ciently large k.
Consider the functions u = −(U + 1) · υ and u = (U + 1) · υ on Mg\B, where

υ = q(r)
q(r0)

is a capacity potential of a precompact set B, moreover, υ(r) ≤ C0hm1
(r)

holds for all r > r0, where C0 > 0 is some constant. The functions u and u are the
solutions of the equation ∆u = 0 on D and satisfy the conditions

u|∂B = −(U + 1), −(U + 1) ≤ u ≤ 0, |u| ≤ C1hm1(r),

u|∂B = (U + 1), 0 ≤ u ≤ (U + 1), |u| ≤ C2hm1(r).

Then u ≤ u on M\B and, by the comparison principle for harmonic functions,
we have

u ≤ ψk ≤ u
on Bk\B for every k. Turning to the limit for k →∞, we obtain u ≤ ψ ≤ u. Taking
into account that the asymptotic inequalities hold for the functions u and u, we
obtain |ψ| ≤ C3hm1(r).

From the existence of the function ψ = lim
k→∞

ψk follows the existence of the limit

function

u = lim
k→∞

φk = lim
k→∞

(ψk + U) = ψ + U.

Moreover, ∆u = ∆ψ + ∆U = f − f∗ + f∗ = f on Mg, and on D the asymptotic
inequality

|u(r, θ)− Φ(θ)| = |ψ + U − Φ| = |ψ + u0 − Φ| ≤ |ψ|+ |u0 − Φ| ≤

≤ C3hm1
(r) + C∗hm1

(r) = Chm1
(r)

holds for all (r, θ), given r > r0, where C > 0 is some constant that does not depend
on (r, θ). The theorem is proved. �
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