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THE RENEWAL EQUATION WITH UNBOUNDED

INHOMOGENEOUS TERM
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Abstract. We consider the renewal equation whose kernel is a probabil-
ity distribution with positive mean. The inhomogeneous term behaves
like a submultiplicative function tending to in�nity. Asymptotic prop-
erties of the solution are established depending on the asymptotics of
the submultiplicative function.
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1. Introduction

Consider the renewal equation

(1) z(x) =

∫
R
z(x− y)F (dy) + g(x), x ∈ R,

where z is the function sought, F is a given probability distribution on R and the
inhomogeneous term g is a known complex function. A probability distribution F
in R is arithmetic if it is concentrated on a set of points of the form 0, ±λ, ±2λ, . . . .
The largest λ with this property is called the span of F (see [1, Chapter V, � 2,
De�nition 3]). A probability distribution G on R is called nonarithmetic if it is
not concentrated on the set of points of the form 0, ±λ, ±2λ, . . . . Let R+ be
the set of all nonnegative numbers and R− := R \ R+ be the set of all negative
numbers. A positive function ϕ(x), x ∈ R(R+), is called submultiplicative if it is
�nite, Borel measurable and satis�es the conditions: ϕ(0) = 1, ϕ(x+y) ≤ ϕ(x)ϕ(y),
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82 M.S. SGIBNEV

x, y ∈ R(R+). The following properties are valid for submultiplicative functions
de�ned on the whole line [2, Theorem 7.6.2]:

(2) −∞ < r−(ϕ) := lim
x→−∞

logϕ(x)

x
= sup

x<0

logϕ(x)

x

≤ inf
x>0

logϕ(x)

x
= lim
x→∞

logϕ(x)

x
=: r+(ϕ) <∞.

Here are some examples of submultiplicative function on R+: (i) ϕ(x) = (x + 1)r,
r > 0; (ii) ϕ(x) = exp(cxβ), where c > 0 and 0 < β < 1; (iii) ϕ(x) = exp(γx),
where γ ∈ R. In (i) and (ii), r+(ϕ) = 0, while in (iii), r+(ϕ) = γ. The product of a
�nite number of submultiplicative function is again a submultiplicative function.

Let ν and κ be �nite measures on the σ-algebra B of Borel sets in R. Their
convolution is the measure

ν ∗ κ(A) :=

∫∫
{x+y∈A}

ν(dx)κ(dy) =

∫
R
ν(A− x)κ(dx), A ∈ B;

here A− x := {y ∈ R : x+ y ∈ A}. De�ne the Laplace transform of a measure κ as

κ̂(s) :=

∫
R

exp(sx)κ(dx).

Let F be a nonarithmetic probability distribution with �nite positive mean µ.
Denote by Fn∗ the n-th convolution power of F :

F 0∗ := δ0, F 1∗ := F, F (n+1)∗ := Fn∗ ∗ F, n ≥ 1,

where δ0 is the measure of unit mass concentrated at zero. Let U be the renewal
measure generated by F : U :=

∑∞
n=0 F

n∗. It is well known that if g ∈ L1(R) then
z(x) = U ∗ g(x) :=

∫
R g(x− y)U(dy), x ∈ R, is the solution to equation (1) which

coincides with the solution obtained by successive approximations. If g is directly
Riemann integrable and z(x) = U ∗ g(x), then

z(x)→ 1

µ

∫
R
g(y) dy as x→∞

and z(x) → 0 as x → −∞ [3, Theorem 2.5.3]; see also [1, Section XI.1, Theorem
2 and Section XI.9, Theorem 1]. Suppose additionally that Fn∗ has an absolutely
continuous component for some n and g ∈ L1(R) ∩ L∞(R). Then z(x) satis�es
the same relations as above [3, Theorem 2.6.4]. For F on the whole line, the case
g 6∈ L1(R) does not seem to have been considered in the literature so far.

For c ∈ C, we assume that c/∞ is equal to zero. The relation a(x) ∼ cb(x) as
x→∞ means that a(x)/b(x)→ c as x→∞; if c = 0, then a(x) = o(b(x)).

In the present paper we investigate the asymptotic behavior of the solution z(x)
to equation (1) when the inhomogeneous term g is asymptotically equivalent (up
to a constant factor) to an unbounded nondecreasing submultiplicative function ϕ:
g(x) ∼ cϕ(x) as x→∞. In the main theorems (Theorems 1 and 2), ϕ(x), x ∈ R+,

is a nondecreasing submultiplicative function such that there exists lim
x→∞

ϕ(x+ y)

ϕ(x)
for each y ∈ R. It can be proved that if such a limit exists, then it is equal
to exp(r+(ϕ)y). The value r+(ϕ) is well de�ned since the function ϕ(x) can be
extended to the whole line preserving the submultiplicativity property, e.g., ϕ(x) ≡
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1, x ∈ R−. The asymptotic behavior of the solution depends on whether r+(ϕ) = 0
or r+(ϕ) > 0.

Theorem 1. Let F be a nonarithmetic probability distribution with �nite positive
mean µ and let ϕ(x), x ∈ R+, be a nondecreasing continuous submultiplicative
function tending to in�nity as x → ∞ such that r+(ϕ) = 0 and limx→∞ ϕ(x +
y)/ϕ(x) = 1 for each y ∈ R. Suppose that the inhomogeneous term g(x) is bounded
on �nite intervals, the function 1R−g is directly Riemann integrable and g(x) ∼
cϕ(x) as x→∞, where c ∈ C. Assume that

(3) IF :=

∫ 0

−∞
|x|ϕ(|x|)F ((−∞, x]) dx <∞.

Then the solution z(x), x ∈ R, to equation (1) satis�es the asymptotic relation

z(x) ∼ c

µ

∫ x

0

ϕ(y) dy as x→∞.

Theorem 2. Let F be a nonarithmetic probability distribution with µ ∈ (0,+∞]
and let ϕ(x), x ∈ R+, be a submultiplicative function such that r+(ϕ) > 0,

lim
x→∞

ϕ(x+ y)

ϕ(x)
= exp(r+(ϕ)y), y ∈ R,

and ϕ(x)/ exp(r+(ϕ)x) is nondecreasing on R+. Suppose that the inhomogeneous
term g(x) is bounded on �nite intervals, the function 1R−g is directly Riemann

integrable and g(x) ∼ cϕ(x) as x → ∞. Assume that F̂ (−r+(ϕ)) < 1. Then the
solution z(x) to equation (1) satis�es the asymptotic relation

z(x) ∼ c

1− F̂ (−r+(ϕ))
ϕ(x) as x→∞.

The proofs of Theorems 1 and 2 are given in Section 4.

2. Preliminaries

Consider the collection S(ϕ) of all complex-valued measures κ such that

‖κ‖ϕ :=

∫
R
ϕ(x) |κ|(dx) <∞;

here |κ| stands for the total variation of κ. The collection S(ϕ) is a Banach algebra
with norm ‖ · ‖ϕ by the usual operations of addition and scalar multiplication
of measures, the product of two elements ν and κ of S(ϕ) is de�ned as their
convolution ν ∗ κ [2, Section 4.16]. The unit element of S(ϕ) is the measure δ0. It
follows from (2) that the Laplace transform of any κ ∈ S(ϕ) converges absolutely
with respect to |κ| for all s ∈ C such that r−(ϕ) ≤ <s ≤ r+(ϕ).

Denote by 1R− the indicator of the subset R− in R: 1R−(x) = 1 for x ∈ R−
and 1R−(x) = 0 for x ∈ R+. A similar meaning has the notation 1R+

. Let ν be a
measure de�ned on B, and a(x), x ∈ R, a function. De�ne the convolution ν ∗ a(x)
as the function

∫
R a(x− y) ν(dy), x ∈ R.

Let ν be a �nite complex-valued measure. Denote by Tν the σ-�nite measure with
density ν((x,∞)) for x ≥ 0 and −ν((−∞, x]) for x < 0. If

∫
R |x| |ν|(dx) <∞, then

Tν is a �nite measure whose Laplace transform is given by T̂ ν(s) = (ν̂(s)− ν̂(0))/s,

<s = 0, the value T̂ ν(0) being de�ned by continuity as
∫
R x ν(dx) ∈ C.
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3. Lemmas

Lemma 1. Let F be a nonarithmetic probability distribution with �nite positive
mean µ =

∫
R xF (dx) and let ϕ(x), x ∈ R+, be a nondecreasing continuous submulti-

plicative function such that r+(ϕ) = 0. Assume that condition (3) is ful�lled. Then∫ 0

−∞
ϕ(|x|)U(dx) <∞.

Proof. Extend the function ϕ onto the whole line by setting ϕ(x) := ϕ(|x|), x ∈
R−. The extended function retains the submultiplicative property. Consider the
auxiliary submultiplicative function

ψ(x) =

{
(1 + |x|)ϕ(x) for x < 0,

1 for x ≥ 0.

We have r−(ψ) = r+(ψ) = 0. Condition (3) together with �nite µ implies TF ∈
S(ψ). Suppose �rst that F has a nonzero absolutely continuous component. Let L
be the restriction of Lebesgue measure to R+. By [4, Theorem 3.1], U = U1 + U2,
where U2 ∈ S(ψ) and U1 = L/µ+ rTU2 for some r > 0. Hence

U
∣∣
R−

= U2

∣∣
R−

+ rTU2

∣∣
R−
.

Obviously, U2

∣∣
R−
∈ S(ψ). Therefore,

∥∥U2

∣∣
R−

∥∥
ψ

=

∫ 0

−∞
(1 + |x|)ϕ(x) |U2|(dx) <∞.

By [5, Theorem 3], ∫ 0

−∞
ϕ(x) |TU2|(dx) <∞,

i.e., TU2

∣∣
R−
∈ S(ϕ), and hence U

∣∣
R−
∈ S(ϕ). This proves the lemma under the

additional assumption that F has a nonzero absolutely continuous component.
Consider now the general case. Denote by U the uniform distribution in the interval
[−h, 0), h > 0. Let X and Y be independent random variables with distributions F
and U . Denote by G the distribution of the random variable X + Y . Let F(x) be
the distribution function of X: F(x) := P(X ≤ x) = F ((−∞, x]), and, similarly, set
G(x) := P(X + Y ≤ x) = G((−∞, x]). Then F(x) ≤ G(x). Choosing h su�ciently
small, we can achieve that

µG := E(X + Y ) = µ− h/2 > 0.

Let UG be the renewal measure corresponding to the distribution G. By induction,
Fn∗(x) ≤ Gn∗(x) for all n ≥ 1 and hence

U(x) := U((−∞, x]) ≤ UG((−∞, x]) =

∞∑
n=0

Gn∗(x) =: UG(x).

The distribution G satis�es the hypotheses of the lemma. Indeed,

IG =

∫ 0

−∞
|x|ϕ(x)G(x) dx ≤

∫ 0

−∞
|x|ϕ(x)F(x+h) dx =

∫ h

−∞
|u−h|ϕ(u−h)F(u) du.
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Performing simple calculations, we get IG ≤ (1 + h)IF + hϕ2(h) + hϕ(h) < ∞.
Moreover, the distribution G is absolutely continuous. Since the function ϕ(x) is
nonincreasing on R−, we have

∞ >

∫ 0

−∞
ϕ(x)UG(dx) = ϕ(x)UG(x)

∣∣0
−∞ −

∫ 0

−∞
UG(x) dϕ(x)

= UG(0)−
∫ 0

−∞
UG(x) dϕ(x) ≥ U(0)−

∫ 0

−∞
U(x) dϕ(x) =

∫ 0

−∞
ϕ(x)U(dx).

The proof of the lemma is complete. �

Lemma 2. Under the hypotheses of Lemma 1,

U(x) ∼ x

µ
as x→∞.

Proof. We have U(x) = U1(x) +U2(x). Since U2 ∈ S(ϕ), U2 is a �nite measure and
U2(x) → U2(R) ∈ R as x → ∞. Obviously, U1(x) = x/µ + rTU2((−∞, x]), x > 0.
It remains to show that TU2((−∞, x]) = o(x) as x→∞. By the de�nition of T ,

|TU2([0, x])| ≤
∫ x

0

|U2|((y,∞)) dy = o(x) as x→∞.

since |U2|((y,∞)) ↓ 0 as y ↑ ∞. By Lemma 1, rTU2(R−) = U(R−) − U2(R−) is
�nite. The proof of the lemma is complete. �

Lemma 3. Let a(x), x ∈ R+, be a monotone nondecreasing positive function such
that limx→∞ a(x+ y)/a(x) = 1 for each y ∈ R. Then

a(x) = o

(∫ x

0

a(y) dy

)
as x→∞.

Proof. Let M > 0 be arbitrary. We have∫ x

0

a(y)

a(x)
dy ≥

∫ x

x−M

a(y)

a(x)
dy ≥

∫ x

x−M

a(x−M)

a(x)
dy = M

a(x−M)

a(x)
.

It follows that lim infx→∞
∫ x

0
a(y) dy/a(x) =∞. The proof of the lemma is complete.

�

Lemma 4. Let F be a nonarithmetic probability distribution with µ ∈ (0,∞] and let
ϕ(x), x ∈ R+, be a nondecreasing submultiplicative function such that r+(ϕ) > 0,
limx→∞ ϕ(x + y)/ϕ(x) = exp(r+(ϕ)y) for each y ∈ R and ϕ(x)/ exp(r+(ϕ)x) is

nondecreasing on R+. Suppose that
∫ 0

−∞ ϕ(|x|)F (dx) < ∞ and F̂ (−r+(ϕ)) < 1.
Then ∫ 0

−∞
ϕ(x)U(dx) <∞.

Proof. Put ϕ(x) := ϕ(|x|) for x ∈ R−. Consider the auxiliary submultiplicative
function

ψ(x) =

{
ϕ(x) for x < 0,

exp(−r+(ϕ)x) for x ≥ 0.

We have r±(ψ) = −r+(ϕ). It su�ces to show that U ∈ S(ψ). Obviously, F ∈ S(ψ).
Prove that the element ν := δ0−F is invertible in S(ψ). Let ν = νc +νd +νs be the
decomposition of ν into absolutely continuous, discrete and singular components.
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Denote Π := {s ∈ C : <s = −r+(ϕ)}. By [6, Theorem 1], the element ν ∈ S(ψ) has
an inverse if ν̂(s) 6= 0 for all s ∈ Π and if

(4) inf
s∈Π

∣∣ν̂d(s)
∣∣ > |̂νs|(−r+(ϕ)).

Let F = F c+F d+F s be the decomposition of F ∈ S(ψ) into absolutely continuous,
discrete and singular components. Then νd = δ0 − F d and νs = −F s. We have

inf
s∈Π

∣∣ν̂d(s)
∣∣ ≥ 1− sup

s∈Π

∣∣F̂ d(s)
∣∣ = 1− F̂ d(−r+(ϕ)).

On the other hand, |̂νs|(−r+(ϕ)) = F̂ s(−r+(ϕ)). By assumption, F̂ (−r+(ϕ)) < 1.
Hence

1− F̂ d(−r+(ϕ))− F̂ s(−r+(ϕ)) ≥ 1− F̂ (−r+(ϕ)) > 0,

and (4) follows. Therefore, by Theorem 1 in [6], the measure δ0 −F is invertible in
the Banach algebra S(ψ) and U = (δ0 − F )−1 ∈ S(ψ). The proof of the lemma is
complete. �

4. Proofs

Proof of Theorem 1. Extend the function ϕ(x) onto the whole line R by setting
ϕ(x) = ϕ(|x|) for x ∈ R−. The extended function retains the submultiplicative
property and r±(ϕ) = 0. First, let us prove the theorem in the speci�c case when
g(x) = ϕ(x) for x ∈ R+. Denote the corresponding solution to (1) by zϕ. Let
x ∈ R+. We have

zϕ(x) =

∫ 0

−∞
ϕ(x− y)U(dy) +

∫ x

0

ϕ(x− y)U(dy) +

∫ ∞
x

g(x− y)U(dy)

=: I1(x) + I2(x) + I3(x).

Put M(x) =
∫ x

0
ϕ(y) dy. By Lemma 1 and Lemma 3 with a(x) = ϕ(x),

(5) I1(x) ≤ ϕ(x)

∫ 0

−∞
ϕ(y)U(dy) = o(M(x)) as x→∞.

Next, let us establish that

(6) I2(x) ∼ 1

µ
M(x) as x→∞.

Integrating by parts (see [7, Chapter 6, Theorem 6.30]), we get

I2(x) = U(x)− ϕ(x)U(0)−
∫ x

0

U(y) dyϕ(x− y).

The following three estimates hold:

(7) ϕ(x), x, U(x) = o(M(x)) as x→∞.

The �rst estimate follows from Lemma 3. The second one follows from the assump-
tion ϕ(y)→∞ as y →∞. The third estimate is a consequence of Lemma 2. Show
that

(8) −
∫ x

0

U(y) dyϕ(x− y) ∼ − 1

µ

∫ x

0

y dyϕ(x− y) ∼ 1

µ
M(x) as x→∞.
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The last equivalence follows from the second estimate in (7) and the equality

−
∫ x

0

y dyϕ(x− y) = −yϕ(x− y)
∣∣x
y=0

+

∫ x

0

ϕ(x− y) dy = −xϕ(0) +M(x).

Let ε > 0 be arbitrary. Use Lemma 2 and choose y0 = y0(ε) such that

(1− ε) y
µ
≤ U(y) ≤ (1 + ε)

y

µ
, y ≥ y0.

Write the left-hand side of (8) in the form

−
(∫ y0

0

+

∫ x

y0

)
U(y) dyϕ(x− y) =: K1(x) +K2(x).

Put N(x) := −
∫ x
y0
y dyϕ(x− y)

/
µ. Obviously,

(9) (1− ε)N(x) ≤ K2(x) ≤ (1 + ε)N(x).

Integrating by parts, we obtain

N(x) = −x
µ

+
y0

µ
ϕ(x− y0) +

1

µ

∫ x−y0

0

ϕ(y) dy.

It follows from (7) that∫ x

x−y0
ϕ(y) dy ≤ ϕ(x)ϕ(y0)y0 = o(M(x)) as x→∞.

Hence N(x) ∼ M(x)/µ as x → ∞. Divide all parts of (9) by N(x) and let x tend
to ∞. We obtain

1− ε ≤ lim inf
x→∞

K2(x)

N(x)
≤ lim sup

x→∞

K2(x)

N(x)
≤ 1 + ε.

It follows that K2(x) ∼M(x)/µ as x→∞. Relation (8) is proven since

K1(x) ≤ −U([0, y0])

∫ y0

0

dyϕ(x− y) ≤ U([0, y0])ϕ(x) = o(M(x)) as x→∞.

In view of (7), relation (6) has been established. By the key renewal theorem for
directly Riemann integrable functions (see, e.g., [3, Theorem 2.5.3].),

(10) I3(x)→ 1

µ

∫ 0

−∞
g(y) dy = o(M(x)) as x→∞.

Relations (5), (6) and (10) prove the theorem for zϕ.
Let g satisfy the hypotheses of the theorem. If, for some C > 0, |g(x)| ≤ Cϕ(x),

x ∈ R+, then

lim sup
x→∞

|z(x)|
M(x)

≤ C

µ
.

If c = 0, then z(x) = o(zϕ(x)) as x → ∞. To see this, choose a small ε > 0 and
a number n ∈ R+ such that |g(x)| ≤ εϕ(x), x ≥ n. Denote by 1[0,n] the indicator
of [0, n]. By hypothesis, there exists a constant C > 0 such that |g(x)| ≤ C for
x ∈ [0, n]. Write

g = 1[0,n]g + (g − 1[0,n]g) =: g1 + g2.

Let z1 and z2 be the solutions of (1) corresponding to g1 and g2, respectively. Then
z = z1 + z2 and |g2(x)| ≤ εϕ(x), x ∈ R+. We have

z1(x) = U ∗ (1[0,n]g)(x) =

∫ x

x−n
g(x− y)U(dy).
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By [1, Section XI.9, Theorem 1],

|z1(x)| ≤ CU([x− n, x]) ∼ Cn/µ = o(M(x)) as x→∞.

Therefore,

lim sup
x→∞

|z(x)|
M(x)

≤ ε

µ
.

Since ε > 0 is arbitrary, the assertion of the theorem is true for c = 0. Let c 6= 0.
Write g in the form g = c1R+ϕ + g1. Then g1(x) = o(ϕ(x)) and z1(x) = o(M(x))
as x → ∞, whence z(x) ∼ cM(x)/µ as 1 x → ∞. The proof of Theorem 1 is
complete. �

Proof of Theorem 2. We begin with the solution zϕ corresponding to the case
g(x) = ϕ(x) on R+ and prove that

(11)
zϕ(x)

ϕ(x)
→
∫
R

exp(−r+(ϕ)y)U(dy) =
1

1− F̂ (−r+(ϕ))
as x→∞.

We use the notation of the preceding proof. By Lebesgue's bounded convergence
theorem [8, � 26, Theorem D],

(12)
I1(x)

ϕ(x)
=

∫ 0

−∞

ϕ(x− y)

ϕ(x)
U(dy)→

∫ 0

−∞
e−r+(ϕ)y U(dy) as x→∞

since the integrand tends to e−r+(ϕ)y as x → ∞ by assumption and, according to
Lemma 1, it is majorized by the U -integrable function ϕ(y), y ∈ R−. As before,
I3(x) tends to a �nite limit and, therefore,

(13) I3(x) = o(ϕ(x)) as x→∞.

Let us prove that

(14)
I2(x)

ϕ(x)
=

∫ ∞
0

1[0.x](y)
ϕ(x− y)

ϕ(x)
U(dy)→

∫ ∞
0

e−r+(ϕ)y U(dy) as x→∞.

The integrand 1[0.x](y)ϕ(x − y)/ϕ(x) tends to e−r+(ϕ)y as x → ∞. Choose a

majorant for the integrand in the form Meβy with β ∈ (−r+(ϕ), 0). Then, by
Lebesgue's theorem, we may pass to the limit under the integral sign in the left-
side integral in (14) as x → ∞ and thus prove relation (14). To this end, put
f(x) = logϕ(x)− r+(ϕ)x. By hypothesis, we have

(15) f(x− y)− f(x) = logϕ(x− y)− logϕ(x) + r+(ϕ)x→ 0 as x→∞

for each y ∈ R. According to Lemma 1.1 in [9], relation (15) is ful�lled uniformly
in y ∈ [0, 1]. Hence

ϕ(x− y) exp(r+(ϕ)y)

ϕ(x)
→ 1 as x→∞

uniformly in y ∈ [0, 1]. Choose a small ε > 0 such that β := log(1 + ε)− r+(ϕ) < 0.
Let N > 0 be an integer such that

ϕ(x− y) exp(r+(ϕ)y)

ϕ(x)
≤ 1 + ε, x ≥ N, y ∈ [0, 1].
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Denote by [x] the integral part of a real number x, i.e., [x] is the maximal integer
not exceeding x: x = [x] + ϑ, ϑ ∈ [0, 1). For y ∈ [l, l + 1], l = 0, . . . , [x]−N − 1, we
have

ϕ(x− y)

ϕ(x)
=
ϕ(x− l − (y − l))

ϕ(x− l)
ϕ(x− l)
ϕ(x)

,

ϕ(x− l − (y − l))
ϕ(x− l)

≤ (1 + ε) exp(−r+(ϕ)(y − l)),

ϕ(x− l)
ϕ(x)

=
ϕ(x− l)

ϕ(x− l + 1)

ϕ(x− l + 1)

ϕ(x− l + 2)
. . .

ϕ(x− 1)

ϕ(x)
≤ (1 + ε)l exp(−lr+(ϕ)).

Hence

ϕ(x− y)

ϕ(x)
≤ (1 + ε)l+1 exp(−r+(ϕ)(y − l)) exp(−lr+(ϕ))

= (1 + ε)l+1 exp(−r+(ϕ)y) ≤ (1 + ε) exp(βy).

Let y ∈ ([x]−N − 1, x]. We have

ϕ(x− y)

ϕ(x)
≤ ϕ(N + 2)

ϕ(x)
≤ ϕ(N + 2)

exp(r+(ϕ)x)
≤ ϕ(N + 2)

exp(r+(ϕ)y)
≤ ϕ(N + 2) exp(βy).

Thus, the U -integrable majorant sought, which does not depend on x, is of the form

max{(1 + ε), ϕ(N + 2)} exp(βy), y ∈ R+,

and this completes the proof of (14). Relation (11) now follows from (12)�(14). The

last equality in (11) is a consequence of F̂ (−r+(ϕ)) < 1.
In the general case it su�ces to repeat the concluding reasoning of the previous

proof using the estimate

lim sup
x→∞

|z(x)|
ϕ(x)

≤ C

1− F̂ (−r+(ϕ))

for |g(x)| ≤ Cϕ(x), x ∈ R+, and, considering the case c = 0, take into account the
relation z1(x) = o(ϕ(x)) as x→∞. The proof of Theorem 2 is complete. �

Remark 1. Under the hypotheses of Theorems 1 and 2, limx→−∞ z(x)/ϕ(x) = 0.
Indeed,

z(x) =

(∫ x

−∞
+

∫ ∞
x

)
g(x− y)U(dy) =: J1(x) + J2(x).

There exists C > 0 with |g(x)| ≤ Cϕ(x), x ∈ R+. By Lemma 1,

|J1(x)| ≤ C
∫ x

−∞
ϕ(x−y)U(dy) ≤ Cϕ(x)

∫ x

−∞
ϕ(y)U(dy) = o(ϕ(x)) as x→ −∞.

Since 1R−g is directly Riemann integrable,

J2(x) = U ∗ (1R−g)(x)→ 0 as x→ −∞;

see, e.g., [3, Theorem 2.5.3].

Remark 2. Theorem 1 remains true even if µ = +∞:

z(x) = o

(∫ x

0

ϕ(y) dy

)
as x→∞.

Remark 3. The case of arithmetic F has been considered in [10].
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