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THE VERTEX CONNECTIVITY OF SOME CLASSES OF

DIVISIBLE DESIGN GRAPHS

D.I. PANASENKO

Abstract. A k-regular graph is called a divisible design graph if its
vertex set can be partitioned into m classes of size n, such that two
distinct vertices from the same class have exactly λ1 common neighbours,
and two vertices from di�erent classes have exactly λ2 common neighbours.
In this paper, we �nd the vertex connectivity of some classes of divisible
design graphs, in particular, we present examples of divisible design
graphs, whose vertex connectivity is less than k, where k is the degree
of a vertex. We also show that the vertex connectivity of one series of
divisible design graphs may di�er from k by any power of 2.

Keywords: Deza graph, divisible design graph, strongly regular graph,
vertex connectivity

1. Introduction

Deza graphs were introduced in [7] as a generalisation of strongly regular graphs.
A strongly regular graph (SRG for short) G with parameters (v, k, λ, µ) is a k-regular
graph with v vertices such that any two adjacent vertices have λ common neighbours
and any two non-adjacent vertices have µ common neighbours. A Deza graph Γ with
parameters (v, k, b, a) is a k-regular graph with v vertices for which the number of
common neighbours of two distinct vertices takes just two values, b or a, where
b > a. A Deza graph of diameter 2 that is not a strongly regular graph is called a
strictly Deza graph.

A k-regular graph is called a divisible design graph (DDG for short) if its vertex
set can be partitioned into m classes of size n, such that two distinct vertices from
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the same class have exactly λ1 common neighbours, and two vertices from di�erent
classes have exactly λ2 common neighbours. The de�nition implies that all divisible
design graphs are Deza graphs. Divisible design graphs were �rst studied in master's
thesis by M.A. Meulenberg [14] and then studied in more detail in [6, 11].

The vertex connectivity of a k-regular Cayley graph is at least 2
3 (k+ 1) (see [5]).

The vertex connectivity of a strongly regular graph is equal to its valency, as was
proved by A.E. Brouwer and D.M. Mesner in [4]. In [3] the same result was obtained
in general for distance-regular graphs.

The vertex connectivity of Deza graphs obtained from strongly regular graphs
by dual Seidel switching was studied in [8] by A.L. Gavrilyuk, S. Goryainov and
V.V. Kabanov and in [10] by S. Goryainov and D. Panasenko. As a result of these
studies, an in�nite series of Deza graphs with vertex connectivity k − 1 was found.

In this paper we �nd the vertex connectivity of some classes of divisible design
graphs. We focus on the cases when the vertex connectivity is less than k. In
particular, we present DDGs with vertex connectivity k − 1 and, for any positive
integer t, we present a DDG whose vertex connectivity equals k − 2t (k > 2t).

This paper is organised as follows. In Section 2, we give some de�nitions, notations
and preliminary results on SRGs, DDGs and vertex connectivity. In Section 3, we
present results on vertex connectivity. In Section 4, we discuss the problem of �nding
the vertex connectivity of DDGs in general.

2. Preliminaries

A strongly regular graph G is called primitive if both G and its complement are
connected.

Lemma 1 ([1, Theorem 1.3.1]). Let G be a primitive strongly regular graph with
parameters (v, k, λ, µ). Then the following statements hold.

(1) G has three distinct eigenvalues k, r, s, where k > r > 0 > s. Moreover,
r and s satisfy the quadratic equation x2 + (µ− λ)x+ (µ− k) = 0.

(2) If the eigenvalues r and s have equal multiplicities, then r = (−1 +
√
v)/2

and s = (−1−
√
v)/2. Otherwise, r and s are integers.

(3) The equalities µ = k + rs and λ = µ+ r + s hold.

A strongly regular graph with s = −2 is called a Seidel graph. These graphs were
characterised in [1, Theorem 3.12.4].

An incidence structure with v points and v blocks of constant size k is called a
symmetric 2-(v, k, λ)-design if any pair of points occur together in exactly λ blocks
and any two blocks intersect in exactly λ points.

An incidence structure on v points with constant block size k is a (group) divisible
design whenever the point set can be partitioned into m classes of size n, such that
two points from one class occur together in exactly λ1 blocks, and two points
from di�erent classes occur together in exactly λ2 blocks. A divisible design D is
called symmetric if the dual of D (that is, the design with the transposed incidence
matrix) is again a divisible design with the same parameters as D. Equivalently,
DDGs can be de�ned as graphs whose adjacency matrix is the incidence matrix of a
symmetric divisible design. A DDG withm = 1, n = 1 or λ1 = λ2 is called improper
(these DDGs are (v, k, λ)-graphs), otherwise it is called proper. A (v, k, λ)-graph is
a k-regular graph on v vertices with the property that any two distinct vertices
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have exactly λ common neighbours, that is, a strongly regular graph with λ = µ,
a clique or a coclique.

For a positive integer t, denote by It, Ot and Jt the identity matrix, the zero
matrix and the all-ones matrix of size t × t, respectively. For positive integers m
and n, denote by K(m,n) the matrix Im⊗Jn. Note that K(m,n) = diag(Jn, . . . , Jn).
A graph Γ is a DDG with parameters (v, k, λ1, λ2,m, n) if and only if its adjacency
matrix A satis�es

A2 = kIv + λ1(K(m,n) − Iv) + λ2(Jv −K(m,n)).

The formula for A2 also gives strong information about the eigenvalues of A and
their multiplicities (see the following two lemmas).

Lemma 2 ([11, Lemma 2.1]). A has at most �ve distinct eigenvalues k,
√
k − λ1,

−
√
k − λ1,

√
k2 − λ2v and −

√
k2 − λ2v with corresponding multiplicities 1, f1, f2, g1

and g2, where f1 + f2 = m(n− 1) and g1 + g2 = m− 1.

Lemma 3 ([11, Theorem 2.2]). Consider a proper DDG with parameters (v, k, λ1, λ2,
m, n) and eigenvalue multiplicities f1, f2, g1, g2. Then:

(1) k − λ1 or k2 − λ2v is a nonzero square;
(2) if k − λ1 is not a square, then f1 = f2 = m(n− 1)/2;
(3) if k2 − λ2v is not a square, then g1 = g2 = (m− 1)/2.

Let V1 ∪ . . . ∪ Vt be a partition of the vertex set of a graph Γ with the property
that, for any i, j ∈ {1, . . . , t}, every vertex of Vi has exactly rij neighbours in Vj for
some constant rij (depending on i and j). Then V1∪ . . .∪Vt is called an equitable t-
partition of Γ. The matrix R = (rij)t×t is called the quotient matrix of the equitable
partition.

The vertex partition from the de�nition of a DDG is called the canonical partition.

Lemma 4 ([11, Theorem 3.1]). The canonical partition of the vertex set of a DDG
is equitable, and the quotient matrix R satis�es

R2 = RRT = (k2 − λ2v)Im + λ2nJm.

Moreover, the eigenvalues of R are k,
√
k2 − λ2v and −

√
k2 − λ2v with corresponding

multiplicities 1, g1 and g2, where g1 and g2 are given by Lemmas 2 and 3.

A graph is called walk-regular, whenever for every l > 2 the number of closed
walks of length l at a vertex x is independent of the choice of x.

Lemma 5 ([6, Theorem 4.3]). A proper DDG is walk-regular if and only if the
quotient matrix R has constant diagonal.

2.1. Constructions of DDGs. The incidence graph of a design with incidence

matrix N is the bipartite graph with adjacency matrix

[
O N
N> O

]
.

Construction 1 ([11, Construction 4.1]). The incidence graph of a symmetric 2-
(n, k, λ1)-design with 1 < k 6 n is a proper DDG with parameters (2n, k, λ1, λ2, 2, n),
where λ2 = 0.

Proposition 1 ([11, Proposition 4.3]). For a proper connected DDG Γ with parame-
ters (v, k, λ1, λ2,m, n), the following statements are equivalent.

(1) λ2 = 0.
(2) Γ comes from Construction 1.
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Construction 2 ([11, Construction 4.4]). Let A′ be the adjacency matrix of a
connected (m, k′, λ′)-graph with 1 < k′ < m. Then, for any positive integer n,
n > 1, the matrix A′⊗Jn is the adjacency matrix of a proper DDG with parameters
(mn, k, λ1, λ2,m, n), where k = λ1 = nk′ and λ2 = nλ′.

Proposition 2 ([11, Proposition 4.5]). For a proper connected DDG Γ with parame-
ters (v, k, λ1, λ2,m, n), the following statements are equivalent.

(1) λ1 = k.
(2) Γ comes from Construction 2.

Construction 3 ([11, Construction 4.6]). Let A1, . . . , Am (m > 2) be the adjacency
matrices of not necessary connected (n, k′, λ′)-graphs (possibly non-isomorphic, but
having the same parameters) with 0 6 k′ 6 n− 2. Then the matrix Jv −K(m,n) +
diag(A1, . . . , Am) is the adjacency matrix of a proper DDG with parameters (mn, k,
λ1, λ2,m, n), where k = k′ + n(m− 1), λ1 = λ′ + n(m− 1) and λ2 = 2k − v.

Proposition 3 ([11, Proposition 4.7]). For a proper DDG Γ with parameters
(v, k, λ1, λ2,m, n), the following statements are equivalent.

(1) λ2 = 2k − v.
(2) Γ comes from Construction 3.

The lexicographic product or graph composition G[H] of graphs G and H is the
graph with vertex set V (G)× V (H) and adjacency de�ned by

(u1, v1) ∼ (u2, v2) if and only if u1 ∼ u2, or u1 = u2 and v1 ∼ v2.

Construction 4 ([11, Construction 4.10]). Let G be a strongly regular graph with
parameters (v′, k′, λ, λ + 1). Then G[K2] is a DDG with parameters (2v′, 2k′ + 1,
2k′, 2λ+ 2, v′, 2).

An automorphism of order 2 of a graph is called a Seidel automorphism if it
interchanges only non-adjacent vertices. Permuting the rows (and not the columns)
of the adjacency matrix of a graph according to Seidel automorphism is called dual
Seidel switching (DSS for short).

Construction 5 ([9, Construction 2]). Let Γ be a DDG obtained with Construction 4.
Let A be the adjacency matrix of Γ, and P be a non-identity permutation matrix
of the same size. If P represents a Seidel automorphism, then PA is the adjacency
matrix of a DDG with the same parameters as Γ.

Proposition 4 ([9, Theorem 2]). For a proper DDG Γ with parameters (v, k, λ1, λ2,
m, n), where λ2 6∈ {0, 2k − v}, the following statements are equivalent.

(1) λ1 = k − 1.
(2) Γ comes from Construction 4 or 5.

An m × m matrix H is a Hadamard matrix if every entry is 1 or −1 and
HH> = mIm. A Hadamard matrix H is called graphical if H is symmetric with
constant diagonal, and regular if all row and column sums are equal.

Construction 6 ([11, Construction 4.9]). Consider a regular graphical Hadamard
matrix H of order l2 > 4 with diagonal entries −1 and row sum l. The graph with
adjacency matrix

A =

M N O
N O M
O M N

 , where
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M =
1

2

[
Jl2 +H Jl2 +H
Jl2 +H Jl2 +H

]
, N =

1

2

[
Jl2 +H Jl2 −H
Jl2 −H Jl2 +H

]
, and O = O2l2

is a DDG with parameters (6l2, 2l2 + l, l2 + l, (l2 + l)/2, 3, 2l2).

2.2. Vertex connectivity. The vertex connectivity κ(G) of a graph G is the
minimum number of vertices whose deletion from G disconnects it. Note that for a
k-regular graph G the inequality κ(G) 6 k holds. Let x and y be two vertices in a
graph G. Two simple paths connecting x and y are called disjoint if they have no
common vertices di�erent from x and y. A set of vertices S disconnects x and y if
x and y belong to di�erent connected components of the graph obtained from G by
deleting S. A set S of vertices of a graph G is called disconnecting if it disconnects
some two of its vertices. The following lemma is known as Menger's theorem.

Lemma 6 ([12, Theorem 5.9]). The minimum cardinality of a set disconnecting
non-adjacent vertices x and y is equal to the largest number of disjoint paths
connecting these vertices.

Lemma 7 ([16, Theorem 1]). Let G1 and G2 be two graphs. If G1 is non-complete
and connected, then κ(G1[G2]) = κ(G1) · |V (G2)|.

Below we present known results on the vertex connectivity of Deza graphs.

Lemma 8 ([8, Theorem]). Let Γ be a Deza graph obtained from a strongly regular
graph G with non-principal eigenvalues r and s by dual Seidel switching. Then one
of the following three cases holds.

(1) If r > 2 and s < −2, then the vertex connectivity of Γ is equal to its valency,
and a disconnecting set of minimum cardinality is the neighbourhood of some vertex.

(2) s = −2 and the vertex connectivity of Γ is equal to its valency except for the
case when G is a 3× 3-lattice graph and the vertex connectivity of Γ is 3.

(3) r ≤ 2.

Lemma 9 ([10, Theorems 1-2]). Let Γ be a k-regular Deza graph obtained from
a strongly regular graph G with r = 1 by dual Seidel switching. Then the vertex
connectivity of Γ is equal to its valency except for the case when G is the complement
of n× n-lattice graph (in this case the vertex connectivity of Γ equals k − 1).

3. The vertex connectivity of special classes of DDGs

3.1. DDGs with λ1 ∈ {k − 1, k} or λ2 ∈ {0, 2k − v}.

Proposition 5. The vertex connectivity of a connected DDG Γ with parameters
(v, k, λ1, λ2, m, n), where λ2 = 0, equals k.

Proof. By Proposition 1, Γ is the incidence graph of a symmetric 2-(n, k, λ1)-design.
Such graphs are distance-regular graphs with diameter 3 (see [1, Theorem 1.6.1]),
except for the case when n = k (in this case, Γ is the complete bipartite graph
Kn,n and κ(Γ) = n = k). Since the vertex connectivity of distance-regular graphs
equals k (see [3]), the statement of the proposition is true. �

Proposition 6. The vertex connectivity of a connected DDG Γ with parameters
(v, k, λ1, λ2, m, n), where λ1 = k, equals k.

Proof. By Proposition 2, Γ can only be obtained by Construction 2. Note that
Construction 2 can be described as the lexicographic product of a connected (m, k′, λ′)-
graph and a coclique of size n. Since (m, k′, λ′)-graphs with 1 < k′ < m are
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strongly regular, their vertex connectivity equals k′ (see [4]). So, by Lemma 7,
κ(Γ) = k′n = k. �

Proposition 7. Let Γ be a DDG with parameters (v, k, λ1, λ2, m, n), where λ2 =
2k − v. Then the following statements hold.

(1) If λ1 6= k − 1, then the vertex connectivity of Γ equals k.
(2) If λ1 = k − 1, then the vertex connectivity of Γ equals k − 1.

Proof. By Proposition 3, Γ can only be obtained by Construction 3. Recall that
the adjacency matrix of Γ is Jv − K(m,n) + diag(A1, . . . , Am), where A1, . . . , Am

are the adjacency matrices of not necessary connected (n, k′, λ′)-graphs Γ1, . . . ,Γm

(possibly non-isomorphic, but having the same parameters).
Consider two non-adjacent vertices u1 and u2 in Γ. It follows from Construction 3

that u1 and u2 are two non-adjacent vertices in Γi for some i ∈ {1, . . . ,m}. Vertices
u1 and u2 have κ(Γi) disjoint paths connecting them in Γi and (m − 1)n disjoint
paths connecting them in the rest of Γ. In total u1 and u2 have κ(Γi) + (m− 1)n
disjoint paths connecting them in Γ. So, by Lemma 6, the vertex connectivity of Γ
equals min(κ(Γ1), . . . ,κ(Γm)) + (m− 1)n.

An (n, k′, λ′)-graph is disconnected if and only if k′ = 0 or k′ = 1.
If k′ = 0, then such an (n, k′, λ′)-graph is the coclique of size n, so Γ is the

complete m-partite graph with parts of size n and κ(Γ) = 0 + (m− 1)n = k.
If k′ = 1, then such an (n, k′, λ′)-graph is the union of n/2 edges, so Γ is the

complete m-partite graph with parts of size n extended with a perfect matching of
the complement (see [11, Section 4.1]) and κ(Γ) = 0 + (m−1)n = λ1 = k−1. Note
that k′ = 1 is the only case when λ1 = k − 1.

If 1 < k′ ≤ n − 2, then such an (n, k′, λ′)-graph is a connected strongly regular
graph and its vertex connectivity equals k′. Thus, κ(Γ) = k′ + (m− 1)n = k. �

Proposition 8. The vertex connectivity of a DDG Γ with parameters (v, k, λ1, λ2,
m, n), where λ1 = k − 1 and λ2 6∈ {0, 2k − v}, equals k − 1.

Proof. By Proposition 4, for such a DDG we have the following two cases.

Case 1: Γ is obtained with Construction 4, therefore Γ is G[K2], where G is a
strongly regular graph with parameters (v′, k′, λ, λ+ 1). The vertex connectivity of
G equals k′, so, by Lemma 7, κ(Γ) = 2k′ = k − 1.

Case 2: Γ is obtained with Construction 5. Γ can be viewed as follows (see [9,
Construction 2]). Consider G′[K2], where G′ is a Deza graph obtained from a
strongly regular graph G with parameters (v′, k′, λ, λ+ 1) by dual Seidel switching
with respect to Seidel automorphism ϕ. By the de�nition, the vertices of G′[K2]
can be viewed as pairs {(u, v) : u ∈ V (G′), v ∈ V (K2)}. Modify G′[K2] as follows:
for any transposition (u1 u2) of ϕ, take the corresponding two pairs of vertices
(u1, v1), (u1, v2) and (u2, v1), (u2, v2) in Γ′, delete the edges {(u1, v1), (u1, v2)} and
{(u2, v1), (u2, v2)}, and insert the edges {(u1, v1), (u2, v2)} and {(u1, v2), (u2, v1)}.
The resulting graph is isomorphic to Γ.

Let r and s be the non-principal eigenvalues of G. Consider the cases according
to Lemma 8.

(1) If r > 2 and s < −2, then by Lemma 8(1) the vertex connectivity of G′

equals k.
Note that Γ can be viewed as two copies of G′ connected by additional edges.

Also note that since n = 2, each entry on the main diagonal of the quotient matrix
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of Γ can only be 0 (if two vertices forming this part are non-adjacent) or 1 (if two
vertices forming this part are adjacent).

Consider two vertices of Γ that form a part of the canonical partition. These
vertices can be written as (u1, v1) and (u1, v2), where v1 6= v2. The vertices (u1, v1)
and (u1, v2) are adjacent in Γ if and only if u1 is �xed by ϕ. Γ is not walk-regular
(see [9, Section 5]), so, by Lemma 5, the main diagonal of the quotient matrix is
not constant, so it contains both 0 and 1. Thus, there exists a part of the canonical
partition of Γ consisting of two adjacent vertices. Consider such two vertices. They
have 2k′ common neighbours. If we remove all 2k′ their common neighbours, we
separate the edge formed by these vertices from the rest. So, κ(Γ) 6 2k′.

Next, we show that, for any pair of non-adjacent vertices in Γ, there are 2k′

disjoint paths connecting them.
There are two types of non-adjacent vertices in Γ:
(1.1) Vertices (u1, v1) and (u2, v2), where u1 and u2 are two non-adjacent vertices

from G′ such that the transposition (u1 u2) is not in ϕ (v1 can be equal to v2).
Consider two non-adjacent vertices (u1, v1) and (u2, v1) from the same copy ofG′,

where u1 and u2 are two non-adjacent vertices fromG′. Since the vertex connectivity
of G′ equals k′, (u1, v1) and (u2, v1) have k′ disjoint paths connecting them in their
copy of G′. Also the vertices (u1, v2) and (u2, v2) have k′ disjoint paths connecting
them in their copy (v1 6= v2). Since the vertices (u1, v1) and (u1, v2) (as well as
(u2, v1) and (u2, v2)) form a part of the canonical partition, they have exactly k′

common neighbours in one copy of G′ and exactly k′ common neighbours in the
other copy. Therefore, each of k′ disjoint paths connecting (u1, v1) and (u2, v1) in
their copy of G′ also connects (u1, v1) and (u2, v2), (u1, v2) and (u2, v1), and (u1, v2)
and (u2, v2). A similar argument applies to each of k′ disjoint paths connecting
(u1, v2) and (u2, v2) in their copy of G′.

So, any two non-adjacent vertices from the case (1.1) have k′ disjoint paths in
each copy of G′ connecting them, which in total gives 2k′ disjoint paths connecting
them.

(1.2) Vertices (u1, v1) and (u1, v2), where u1 is moved by ϕ, v1 6= v2. These
vertices form a part of the canonical partition, so they have 2k′ common neighbours,
so they have 2k′ disjoint paths connecting them.

Any pair of non-adjacent vertices in Γ has 2k′ disjoint paths connecting them,
therefore, by Lemma 6, the vertex connectivity of Γ is equal to 2k′.

(2) If r 6 2 and r is not an integer, then G has at most 25 vertices (see [8,
Conclusion]). The only strongly regular graphs satisfying this condition are Paley
graphs with parameters (13, 6, 2, 3) and (17, 8, 3, 4). By computer calculations using
SageMath, these graphs do not have Seidel automorphisms.

(3) If r = 1 (or, equivalently, s = −2 by Lemma 1(1)), then G is a Seidel graphs.
There are three Seidel graphs with λ = µ− 1: 3× 3-lattice graph with parameters
(9, 4, 1, 2), Petersen graph with parameters (10, 3, 0, 1) and triangular graph T (5)
with parameters (10, 6, 3, 4). By computer calculations using SageMath, T (5) does
not have Seidel automorphisms, one graph can be obtained by DSS from 3 × 3-
lattice graph and one graph can be obtained by DSS from Petersen graph. The
vertex connectivity of DDGs obtained from these two graphs equals k − 1.

(4) If r = 2 (or, equivalently, s = −3 by Lemma 1(1)), then there exist 26 SRGs
with λ = µ − 1 (see [13]): 15 graphs with parameters (25, 12, 5, 6), 10 graphs with
parameters (26, 10, 3, 4) and one graph with parameters (50, 7, 0, 1). By computer
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calculations using SageMath, the vertex connectivity of DDGs obtained from these
graphs equals k − 1.

Thus, all DDGs obtained by Construction 5 have vertex connectivity equal
to k − 1. �

3.2. DDGs obtained with Construction 6. Let Γ be a DDG with parameters
(6l2, 2l2 + l, l2 + l, (l2 + l)/2, 3, 2l2) obtained with Construction 6 with positive l.
Consider the subgraph induced by the �rst 2l2 vertices of Γ (in terms of Constructi-
on 6 this subgraph has adjacency matrix M) and the subgraph induced by the last
2l2 vertices of Γ (in terms of Construction 6 this subgraph has adjacency matrix
N). Denote by Γ1 and Γ2 the �rst and the second subgraph, respectively.

Lemma 10. Γ1 is an (l2 + l)-regular graph and Γ2 is an l2-regular graph.

Proof. Consider notations from Construction 6.
Let x and y be the numbers of 1s and −1s in each row of H, respectively (since

H is a regular graphical Hadamard matrix, x and y do not depend on the choice of
a row). Then x− y = l and x+ y = l2.

Note that the number of 1s in each row of 1
2 (J +H) is x, and the number of 1s

in each row of 1
2 (J −H) is y. Thus the number of 1s in each row of M is 2x, which

equals l2 + l, and the number of 1s in each row of N is x + y, which equals l2. So
Γ1 is an (l2 + l)-regular graph and Γ2 is an l2-regular graph. �

Lemma 11. The vertex connectivity of Γ is at most 2l2.

Proof. Consider notations from Construction 6.

Denote by A′ the matrix

[
M O
O N

]
, which can be obtained by removing 2l2

rows and columns from the middle of A. The matrix A′, considered as an adjacency
matrix, de�nes a disconnected graph with two components: the (l2+l)-regular graph
Γ1 and the l2-regular graph Γ2. Thus, vertex connectivity of Γ is at most 2l2. �

Lemma 12. If κ(Γ1) ≥ l2,κ(Γ2) ≥ l2− l and κ(Γ1)+κ(Γ2) ≥ 2l2, then the vertex
connectivity of Γ equals 2l2.

Proof. Denote by Γ0 the coclique induced by the 2l2 vertices of Γ that correspond
to the middle rows and columns of A. Note that any vertex from Γ1 has exactly
l2 neighbours in Γ0 and any vertex from Γ2 has exactly l2 + l neighbours in Γ0.

Let t1, t2 and t0 be non-negative integers, such that t1+t2+t0 < 2l2. If t1 ≥ κ(Γ1)
and t2 ≥ κ(Γ2), then t1+t2 ≥ 2l2, which contradicts to the inequality above. Denote

by Γ̂1, Γ̂2 and Γ̂0 the graphs obtained by deletion of t1, t2 and t0 vertices from Γ1,Γ2

and Γ0, respectively (also denote by Γ̂ the graph obtained by deletion of t1 + t2 + t0
vertices from Γ).

Consider three possible cases:

Case 1: t1 < κ(Γ1) and t2 < κ(Γ2). Then Γ̂1 and Γ̂2 are connected. Thus, if

there is at least one vertex in Γ̂0 that has neighbours in both Γ̂1 and Γ̂2, then Γ̂ is
connected. Let us show that such a vertex exists.

Since Γ2 is an l
2-regular graph, we have the inequality κ(Γ2) ≤ l2 and, consequ-

ently, t2 < l2. Since l2 is less than l2 + l, which is the number of neighbours in Γ0

for any vertex from Γ2, we conclude that any vertex from Γ0 is adjacent to at least
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one vertex from Γ̂2. This means that any vertex from Γ̂0 is adjacent to at least one
vertex from Γ̂2.

Consider two subcases: t1 < l2 and t1 ≥ l2.
If t1 < l2, an argument similar to the argument above implies that any vertex

from Γ̂0 is adjacent to at least one vertex from Γ̂1. So there exists a vertex from Γ̂0

that has neighbours in both Γ̂1 and Γ̂2.
If t1 ≥ l2, then the inequalities t1 + t2 + t0 < 2l2 and t2 ≥ 0 imply that t0 is less

than l2, which is the number of neighbours in Γ0 for any vertex from Γ1. Therefore
any vertex from Γ̂1 is adjacent to at least one vertex from Γ̂0. So there exists a
vertex from Γ̂0 that has neighbours in both Γ̂1 and Γ̂2.

Case 2: t1 ≥ κ(Γ1) and t2 < κ(Γ2). Then Γ̂1 is disconnected and Γ̂2 is connected.

Thus, if, for each connected component of Γ̂1, there is at least one vertex in Γ̂0

having neighbours in both this component and Γ̂2, then Γ̂ is connected. Let us
show that such vertices exist.

Since t2 < κ(Γ2) ≤ l2, any vertex from Γ̂0 is adjacent to at least one vertex from

Γ̂2 (see Case 1).
Since t1 ≥ κ(Γ1) ≥ l2 and t2 ≥ 0, the inequality t0 < l2 holds. So any vertex

from Γ̂1 is adjacent to at least one vertex from Γ̂0 (see Case 1). So, for each

connected component of Γ̂1, there is a vertex from Γ̂0 having neighbours in both
this component and Γ̂2.

Case 3: t1 < κ(Γ1) and t2 ≥ κ(Γ2). This case is similar to Case 2.

So, the vertex connectivity of Γ equals 2l2. �

3.3. DDGs with parameters (6 · 4t, 2 · 4t + 2t, 4t + 2t, 2 · 4t−1 + 2t−1, 3, 2 · 4t).
If H1 and H2 are Hadamard matrices, then so is the Kronecker product H1 ⊗H2.
Moreover, if H1 and H2 are regular with row sums l1 and l2, respectively, then
H1 ⊗ H2 is regular with row sum l1l2. Similarly, the Kronecker product of two
graphical Hadamard matrices is graphical again.

Consider regular graphical Hadamard matrices H and H ′, where

H =


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

 and H ′ =


1 1 1 −1
1 1 −1 1
1 −1 1 1
−1 1 1 1

 .
Denote by H1 the matrix H. For any integer t such that t > 1, denote by Ht the
Kronecker product Ht−1 ⊗ H ′. The matrix Ht is a regular graphical Hadamard
matrices of order 4t with diagonal entries −1 and row sum 2t (see [2, Section
10.5.1]).

Applying Construction 6 toHt, we obtain a DDG with parameters (6·4t, 2·4t+2t,
4t + 2t, 2 · 4t−1 + 2t−1, 3, 2 · 4t). The smallest example is a DDG with parameters
(24, 10, 6, 3, 3, 8) and adjacency matrix

D D D I O O
D D I D O O
D I O O D D
I D O O D D
O O D D D I
O O D D I D

 ,
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where D = J − I, J = J4, I = I4 and O = O4.

By replacing

D →


D D D I
D D I D
D I D D
I D D D

 , I →

I I I D
I I D I
I D I I
D I I I

 , O →

O O O O
O O O O
O O O O
O O O O

 ,
we get a recursive construction for a DDG with parameters (6 ·4t, 2 ·4t +2t, 4t +2t,
2 · 4t−1 + 2t−1, 3, 2 · 4t). Denote by Γt this DDG.

Consider the subgraph formed by the �rst 2 · 4t vertices of Γt (in terms of
Construction 6 this subgraph has adjacency matrixM) and the subgraph formed by
the last 2 ·4t vertices of Γt (in terms of Construction 6 this subgraph has adjacency
matrix N). Let Γt

1 denote the �rst subgraph and Γt
2 denote the second subgraph.

In the following two lemmas, we present a structural description of Γt
1 and Γt

2,
respectively.

Lemma 13. The graph Γt
1 is a DDG with parameters (2 · 4t, 4t + 2t, 4t + 2t,

2 · (4t−1 + 2t−1), 4t, 2).

Proof. The adjacency matrix of Γt
1 isM , where the notation is from Construction 6.

Set l := 2t, J := Jl2 and I := Il2 . Then, by HJ = JH = lJ and H2 = l2I,

M2 =
1

4

[
J +H J +H
J +H J +H

]2
=

1

4

[
2(J +H)2 2(J +H)2

2(J +H)2 2(J +H)2

]
=

1

4

[
2(J2 +HJ + JH +H2) 2(J2 +HJ + JH +H2)
2(J2 +HJ + JH +H2) 2(J2 +HJ + JH +H2)

]
=

1

2

[
(l2 + 2l)J + l2I (l2 + 2l)J + l2I
(l2 + 2l)J + l2I (l2 + 2l)J + l2I,

]
which is permutation-equivalent to l2

2 Il2 ⊗ J2 + l2+2l
2 J2l2 .

Thus, Γt
1 is a DDG with parameters (2 ·4t, 4t +2t, 4t +2t, 2 · (4t−1 +2t−1), 4t, 2).

In particular, any pair of vertices corresponding to equal rows of the adjacency
matrix (that is, rows with the same entries) forms a block of size 2 of the canonical
partition. �

Lemma 14. The graph Γt
2 is a DDG with parameters (2 · 4t, 4t, 0, 2 · 4t−1, 4t, 2).

Proof. The adjacency matrix of Γt
2 is N , where the notation is from Construction 6.

Set l := 2t, J := Jl2 and I := Il2 . Then, by HJ = JH = lJ and H2 = l2I,

N2 =
1

4

[
J +H J −H
J −H J +H

]2
=

1

2

[
(J +H)2 + (J −H)2 (J +H)(J −H) + (J −H)(J +H)

(J +H)(J −H) + (J −H)(J +H) (J +H)2 + (J −H)2,

]
=

1

2

[
l2(J + I) l2(J − I)
l2(J − I) l2(J + I),

]
which is permutation-equivalent to l2

2 I2l2 − Il2 ⊗ (J2 − I2) + l2

2 J2l2 .
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Thus, Γt
2 is a DDG with parameters (2 · 4t, 4t, 0, 2 · 4t−1, 4t, 2). In particular,

any pair of vertices corresponding to opposite rows (that is, rows with the opposite
entries) of the adjacency matrix forms a block of size 2 of the canonical partition.
Note, that since these two vertices correspond to opposite rows, they are adjacent.
Thus, Γt

2 has diameter 2. �

There are two known DDGs of diameter 2 with λ1 = 0 (more generally, there
are two known strictly Deza graphs with a = 0), one on 8 vertices and one on
32 vertices. The series Γt

2 covers both cases and gives an in�nite series of DDGs of
diameter 2 with λ1 = 0 (more generally, strictly Deza graphs with a = 0).

Lemma 15. Let Γ be a connected Deza graph with parameters (v, k, b, a) with the
second largest eigenvalue q. If Γ has a disconnecting set of minimum cardinality,
that is not the neighbourhood of some vertex, then the following inequality holds:
k − 2q ≤ b.

Proof. In this proof we reinterpret the main idea of the proof of [8, Proposition 5].
Let S be a disconnecting set of minimum cardinality in Γ, |S| = κ(Γ) ≤ k. Let A
and B be the connected components that remain after removing S from Γ. Assume
that |A| > 1 and |B| > 1, so S is not the neighbourhood of some vertex. Since
the spectrum of a disconnected graph is the union of the spectra of connected
components, the spectrum θ1 ≥ θ2 ≥ . . . ≥ θv−|S| of the graph A ∪ B is the union
of the spectra σ1 ≥ σ2 ≥ . . . ≥ σ|A| and ω1 ≥ ω2 ≥ . . . ≥ ω|B| of the graphs A and
B, respectively.

The graph A ∪ B is an induced subgraph of the graph Γ and, by the theorem
on spectrum interlacing [1, Theorem 3.3.1], the second largest eigenvalue θ2 of
the graph A ∪ B does not exceed the second largest eigenvalue q of the graph Γ.
Evidently, θ2 ≥ min(σ1, ω1). Since the largest eigenvalue in any graph is greater
or equal to its mean vertex degree (that is, the arithmetic mean of degrees of its
vertices; see [1, Lemma 3.2.1]), we can assume without loss of generality that the
mean vertex degree in the graph B is at most q.

For a vertex x ∈ B, we set B(x) := B∩Γ(x) and S(x) := S∩Γ(x), where Γ(x) is
the neighbourhood of the vertex x in Γ. Then |B(x)|+ |S(x)| = k. Let us estimate
the mean vertex degree in the subgraphs B and S. Since

∑
x∈B

|B(x)|
|B|

≤ q,

the inequality

∑
x∈B

|S(x)|
|B|

≥ k − q

holds.
Let us estimate the mean number of common neighbours in S for an arbitrary

pair of di�erent vertices x, y ∈ B:
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∑
x∈B

∑
y∈B\{x}

(|S(x)|+ |S(y)|) =
∑
x∈B

((|B| − 1)|S(x)|+
∑

y∈B\{x}

|S(y)|)

= (|B| − 1)
∑
x∈B
|S(x)|+

∑
x∈B

∑
y∈B\{x}

|S(y)|

= (|B| − 1)
∑
x∈B
|S(x)|+ (|B| − 1)

∑
z∈B
|S(z)∑

x∈B

∑
y∈B\{x}

(|S(x)|+ |S(y)|)

|B|(|B| − 1)
=

(
∑
x∈B
|S(x)|)(|B| − 1) · 2

|B|(|B| − 1)
≥ 2(k − q).

Since |B| > 1, the subgraph B contains a pair of vertices x and y with the
property |S(x)|+ |S(y)| ≥ 2(k − q).

Let α, β and γ be integers such that β = |S(x) ∩ S(y)|, α + β = |S(x)| and
β+γ = |S(y)|. Then α+β+γ ≤ |S| ≤ k. Further, α+γ = |S(x)|+ |S(y)|−2β and
|S(x)∩S(y)| = β ≤ k− (α+γ) = k− (|S(x)|+ |S(y)|−2β). Hence |S(x)|+ |S(y)| ≤
β + k and, therefore, β + k ≥ 2(k − q). Thus, |S(x) ∩ S(y)| = β ≥ k − 2q.

On the other hand, |S(x)∩ S(y)| ≤ b, which gives the inequality k− 2q ≤ b. �

Lemma 16. The vertex connectivity of Γt
2 equals 4t.

Proof. Let us calculate the spectrum of Γt
2 as a DDG:

{k,±
√
k − λ1,±

√
k2 − λ2v} = {4t,±

√
4t − 0,±

√
(4t)2 − 2 · 4t−1 · 2 · 4t}

= {4t,±2t, 0}.

The second largest eigenvalue of Γt
2 is 2t. Considering Γt

2 as a Deza graph with
the parameters (v, k, b, a), we get b = 4t−1. So, the inequality from Lemma 15
becomes 4t − 2 · 2t ≤ 4t−1, which holds only for t = 1. Thus, for any t > 1, the
vertex connectivity of Γt

2 equals k, where k = 4t. If t = 1, then Γt
2 is a DDG with

parameters (8, 4, 0, 2, 4, 2). By computer calculations using SageMath, the vertex
connectivity of this graph equals 4. �

Theorem 1. The vertex connectivity of Γt equals 2 · 4t.

Proof. By Proposition 6, the vertex connectivity of Γt
1 equals 4t +2t, By Lemma 16

the vertex connectivity of Γt
2 equals 4t. Thus, by Lemma 12, the vertex connectivity

of Γt equals 2 · 4t, which is 2t less than the degree of a vertex. �

4. Conclusion

Computations in SageMath show that, among connected proper DDGs on at
most 39 vertices found in [15], there are 32 DDGs with vertex connectivity less
than k, where k is the degree of a vertex. For these 32 DDGs, one graph is a DDG
with parameters (24, 10, 6, 3, 3, 8) obtained with Construction 6, and the other 31
graphs are DDGs with λ1 = k − 1 (this case is described in Propositions 7 and 8).

There are more constructions of regular graphical Hadamard matrices with
positive l (see [2, Section 10.5.1]), so in view of Construction 6, there are more DDGs
whose vertex connectivity is less than k, where k is the degree of a vertex. In this
paper we focused on the smallest graph from Construction 6 and its generalisation
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(in the sense of the recursive construction). We are interested if there exist examples
of DDGs, whose vertex connectivity is less than k.

There are some approaches for obtaining more general results about the vertex
connectivity of DDGs. For example, the approach that was used in [4] and [8], or
the approach that was used in [3]. Since the spectrum of a DDG is not completely
determined by its parameters, the �rst approach can only be used in speci�c cases
like Lemma 16. The second approach requires more detailed consideration and
possible development of new tools to apply it to DDGs. We are interested if general
results will be obtained for DDGs, using both known approaches.
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