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ON THE COLLECTION PROCESS

FOR POSITIVE WORDS

V.M. LEONTIEV

Abstract. We present an approach to studying the divisibility of the
exponents of the commutators that arise in collection formulas obtained
for positive words of a free group. It deals with logical formulas that
establish a connection between the exponents of the commutators and the
structure of the positive word to which the collection process is applied.
Using our approach, we obtain several generalizations of known collection
formulas with some divisibility properties of the exponents.
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1. Introduction

In [3], P. Hall introduced the concept of a collection process, which can be briefly
described as follows. Let W be a positive word on the generators a1, . . . , an, n > 2,
of the free group F = F (a1, . . . , an), i.e. the word W does not contain inverses of
the generators. By rearranging step by step consecutive occurrences of elements
in W with use of commutators: QR = RQ[Q,R], Q,R ∈ F , the collection process
transforms W into the following form:

(1) W = qe11 . . . q
ej
j Tj , j > 1,

where q1, . . . , qj are commutators in a1, . . . , an arranged in order of increasing
weights, Tj consists of commutators of weights not less than w(qj) (the weight
of qj), the exponents e1, . . . , ej are positive integers.
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P. Hall applied the collection process to the word (a1a2)m, m > 1, and obtained
the following collection formula in [3, Theorems 3.1 and 3.2]:

(2) (a1a2)m = qe11 . . . q
ej(s)
j(s) (mod Γs(F )), s > 2,

where q1, . . . , qj(s) are commutators in a1, a2 of weights less than s and Γs(F ) is the
s-th term of the lower central series of F , which is defined as follows: Γ1(F ) = F ,
Γk(F ) = [Γk−1(F ), F ], k > 2. It was proved that the exponents of the commutators
can be expressed as integer-valued polynomials in m vanishing for m = 0:

(3) ei(m) =

w(qi)∑
k=1

ck

(
m

k

)
,

where non-negative integers ck do not depend on m. This result is significant for
the theory of p-groups, since the expression ei(p

α) is divisible by the prime power
pα if w(qi) < p.

Research has been carried out in different directions. On the one hand, an
explicit form for some series of the exponents ei(m) has been found [5], [8], [4]. On
the other hand, collection formulas for different words of the free group with the
same divisibility property of exponents have been obtained.

In [2, Theorem 12.3.1], M. Hall applied the collection process to the word
(a1 . . . an)m, n > 1, and using P. Hall’s approach, obtained exactly the same result
for the exponents.

In [7, Theorems 5.13A and 5.13B], an arbitrary word W (not necessarily positive)
of the group F was considered. By making use of Lie algebras, it was proved that
Wm, m > 1, can be expressed as follows:

(4) Wm = qe11 . . . q
ej(s)
j(s) (mod Γs(F )), s > 2,

where q1, . . . , qj(s) are commutators in a1, . . . , an of weights less than s and ei is
divisible by m if m is a prime power number pα and w(qi) < p.

R. R. Struik dealt with the word am1
1 am2

2 , where m1,m2 > 1, in [9, Lemma
4]. Using a modification of P. Hall’s approach, she proved the following collection
formula:

(5) am1
1 am2

2 = qe11 q
e2
2 q

e3
3 . . . q

ej(s)
j(s) (mod Γs(F )), s > 2,

where q1 = a2, q2 = a1 and

ei =

wa1
(qi)∑

k=1

wa2
(qi)∑

t=1

ck,t

(
m1

k

)(
m2

t

)
, ck,t ∈ N0.

Here wal(qi) is the weight of qi in al, l = 1, 2. If ml, l = 1, 2, is a prime power
number pα and 1 6 wal(qi) < p, then ei is divisible by ml.

H. W. Waldinger obtained formula (5) in [10] by methods of [7] for m1 = 1,
m2 = p, s = p + 2, where p is prime. A. M. Gaglione proved (5) by means of the
Magnus Algebra [7] for m1 = 1, m2 = pα, α > 1, s = p2 + 1 in [1].

In this paper we present an approach to studying the divisibility of the exponents
of the commutators that arise in collection formulas obtained for positive words of
a free group. Our approach is based on P. Hall’s idea that he used in the proof of
formula (2). Let us very briefly describe three basic steps of that proof.
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Labeling process. All occurrences of a1 and a2 in (a1a2)m are assigned labels as
follows: a1(1)a2(1)a1(2)a2(2) . . . a1(m)a2(m). During the collection process, new
occurrences of commutators are assigned labels by the following rule:

Q(λ1, . . . , λi)R(µ1, . . . , µj)

= R(µ1, . . . , µj)Q(λ1, . . . , λi)[Q,R](λ1, . . . , λi, µ1, . . . , µj).

Thus, the exponent ej is equal to the number of sequences (λ1, . . . , λw(qj)) ∈
{1, . . . ,m}w(qj) that are labels of qj ’s occurrences.

Existence and precedence conditions. Let Eqj be a condition that is satisfied by

the sequence (λ1, . . . , λw(qj)) ∈ {1, . . . ,m}w(qj) iff the occurrence qj(λ1, . . . , λw(qj))
has arisen during the collection process. Then Eqj can be obtained by disjunction
and conjunction of such conditions as λi = λj , λi < λj .

Combinatorial result. Suppose C is an arbitrary condition obtained by disjunc-
tion and conjunction of such conditions as λi = λj , λi < λj . Then the number of
elements (λ1, . . . , λr) ∈ {1, . . . ,m}r, r,m ∈ N, that satisfy the condition C can be
expressed as c1

(
m
1

)
+ · · ·+ cr

(
m
r

)
, where non-negative integers ck do not depend on

m.
We will generalize this idea to obtain an approach applicable to various positive

words of the free group.
In Section 2 we introduce in a formal manner basic notation of the collection pro-

cess and give some necessary properties. Note that we define the collection process
without restrictions on the arranging of the commutators. So, the commutators
can be collected not only in order of increasing weights.

In Section 3 existence and precedence conditions are defined. Using a combina-
torial interpretation of the collection process in terms of binary representations of
integers (Theorems 4.1, 4.4), we provide a system of recurrence relations for the
existence and precedence conditions (Theorem 4.6) in Section 4. That system es-
tablishes a connection between the exponent of a commutator and the structure of
the initial positive word.

In Section 5 we give a generalization of the P. Hall’s combinatorial result, which
makes it possible to deal with numerous positive words of the free group.

Finally, in Section 6 we discuss the details of our approach and use it to obtain
several series of collection formulas with some divisibility properties of the expo-
nents. Theorem 6.9 extends R.R. Struik’s result to the product of several letters.
Theorems 6.1 and 6.6 deal with the words as in the M. Hall’s formula and in the
formula from [7] (when W is a positive word), respectively, where some occurrences
of the letters may be deleted. Moreover, the commutators can be collected in an
arbitrary oreder as we have mentioned above.

The author thanks professor S.G. Kolesnikov for his support in preparing this
work. Also the author is grateful to the reviewer for suggestions and remarks that
have improved the paper.
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2. Basic notation

Definition 2.1. For the letters a1, . . . , an, n > 2, we define the set of formal
commutators Γ(a1, . . . , an) and the weight w by induction:

(1) {a1, . . . , an} ⊂ Γ(a1, . . . , an), w(a1) = · · · = w(an) = 1;
(2) If c1, c2 ∈ Γ(a1, . . . , an), then [c1, c2] ∈ Γ(a1, . . . , an) and w([c1, c2]) =

w(c1) + w(c2).

We will usually suppress the adjective ‘formal’ and so call a formal commutator
simply a commutator.

Definition 2.2. A finite sequence of commutators from Γ(a1, . . . , an) is called a
commutator word. We say that two commutator words c1 . . . cm and d1 . . . dk are
equal and write c1 . . . cm ≡ d1 . . . dk iff they have the same length m = k and ci = di,
for i ∈ 1,m.

Example 2.3. The commutator words of length 1,2, and 3, respectively:

[a1, a2], a3[a1, a2], [a3, [a1, a2]]a3[a1, a2].

When we work with collection process, it is convenient to deal with commutator
words (sequences of formal symbols) instead of products of group elements. After
the collection process is finished, we consider commutator words as elements of the
free group F (a1, . . . , an) by putting [y, x] = y−1x−1yx for any x, y ∈ F (a1, . . . , an),
i.e. we go from formal commutators to group-theoretical ones.

If a commutator word contains several occurrences of the same commutator, then
we should clearly distinguish these occurrences from each other. For this purpose,
it would be natural to use the following tool.

Definition 2.4. Suppose that a commutator word X of length m > 1 contains an
occurrence of a commutator R. A certain finite sequence of integers assigned to
that occurrence is called the label of the occurrence of R. If any two occurrences of
the same commutator in X have pairwise different labels of the same length, then
the map that takes i ∈ 1,m to the label of the occurrence of a commutator at the
i-th position is called the labeling of X.

If an occurrence of a commutator R has the label Λ and we need to point out
this fact, then we denote that occurrence by R(Λ). Obviously, any commutator
word t1 . . . tm can be labeled, for example: t1(1) . . . tm(m).

Further on, we use multiplicative notation for the operation of concatenation of
finite integer sequences. For example, if Λ1 = (1, 1, 2), Λ2 = (1, 2), then Λ1Λ2 =
(1, 1, 2, 1, 2).

Definition 2.5. Suppose X ≡ t1(Λ1) . . . tm(Λm) is a commutator word with some
labeling, and there exist e > 1 occurrences of the commutator q in X. A stage
of the collection process applied to X is a transformation of X to the commutator
word Y by the following algorithm. Let ti1(Λi1), . . . , tie(Λie) be all occurrences of q
in X, and 1 6 i1 < · · · < ie 6 n. We move ti1(Λi1) to the beginning of the word
rearranging step by step consecutive occurrences of commutators by the rule

y(Λu)x(Λv) = x(Λv)y(Λu)[y, x](ΛuΛv).
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Then we move ti2(Λi2) immediately to the right of ti1(Λi1) by the same way. Con-
tinuing this line of reasoning, we get the commutator word

Y ≡ ti1(Λi1) . . . tie(Λie)

m′∏
i=1

t′i ≡ qeT,

where T consists of all commutators that have occurrences in X except q, as well
as of commutators arising from the collection of occurrences of q. All occurrences
of commutators in T are labeled.

Definition 2.6. Let W0 be a labeled commutator word consisting only of commu-
tators of weight 1. The collection process applied to W0 is a construction of the
sequence of commutator words

(6)
{
Wj ≡ qe11 . . . q

ej
j Tj

}
j>0

by the following rule. The word Wj, j > 1, obtained by the j-th stage of the
collection process applied to the commutator word Tj−1. At that stage an arbitrary
commutator qj in Tj−1 has been collected. The words qe11 . . . q

ej
j and Tj are called,

respectively, collected part and uncollected part of Wj. The initial word W0 ≡ T0

with empty collected part is considered as the result of zero stage of the collection
process.

We will use the following notation for commutators:

[y, 0x] = y; [y, ix] = [[y, i−1x], x], i > 1; [y, x, z] = [[y, x], z].

Example 2.7. Let us consider the commutator word W0 ≡ a1(1)a2(1)a1(2)a2(2).
Here is a possible variant of the collection process applied to W0 (for clarity, the
uncollected parts of the words are separated by a dot):

W0 ≡ a1(1)a2(1)a1(2)a2(2),

W1 ≡ a1(1)a1(2) · a2(1)[a2, a1](1, 2)a2(2),

W2 ≡ a1(1)a1(2)a2(1)a2(2) · [a2, a1](1, 2)[a2, a1, a2](1, 2, 2),

W3 ≡ a1(1)a1(2)a2(1)a2(2)[a2, a1](1, 2) · [a2, a1, a2](1, 2, 2),

W4 ≡ a1(1)a1(2)a2(1)a2(2)[a2, a1](1, 2)[a2, a1, a2](1, 2, 2).

By collecting the commutators in the following order: a1, a2, [a2, a1], [a2, a1, a2],
we get the commutator word W4 ≡ a2

1a
2
2[a2, a1][a2, a1, a2] with empty uncollected

part.

Note that the sequence (6) can be finite in two cases: we decided to stop the
collection process at some stage, or the collection process terminated at some word
Wj , j > 1, the uncollected part of which turned out to be empty (see the previous
example).

Any commutator from Γ(a1, . . . , an) can be written in various ways, for example,[[
[a2, a1], a1

]
, a1

]
= [a2, 3a1] =

[
[a2, a1], 2a1

]
=
[
[a2, 3a1], 0a3

]
.

From now on we will use the following important rule.

Remark 2.8. For any commutators Q,R ∈ Γ(a1, . . . , an), we can write [Q, uR]
only with maximum possible parameter u, i.e. for any S ∈ Γ(a1, . . . , an) we have
[Q, uR] 6= [S, u+1R].
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Let us note some obvious facts about the collection process.

Proposition 2.9. Consider an arbitrary word Wj, j > 1, from the sequence (6).
The following statements hold:

(1) In the free group F (a1, . . . , an) we have the equality W0 = Wj. In other
words, the collection process does not change the element W0 ∈ F (a1, . . . , an).

(2) If the uncollected part Tj is non-empty, then any commutator in Tj has the
form [R, pqj ] for some R ∈ Γ(a1, . . . , an) and p > 0.

(3) Any two occurrences of the same commutator in Tj have different labels of
the same length. In other words, the labels in Tj form the labeling of Tj.
Moreover, labels do not change during the collection process.

(4) If the occurrence R(Λu) precedes (is to the left of) Q(Λv) in Tj−1 and
R 6= qj, Q 6= qj, then R(Λu) precedes Q(Λv) in Tj. In other words, the
j-th stage of the collection process preserves the relative arrangement of
occurrences of commutators different from qj in Tj−1.

Since the initial word W0 contains only the commutators a1, . . . , an, the following
statement holds.

Proposition 2.10. For any commutator word Wj, j > 1, from the sequence (6),
the uncollected part Tj does not contain occurrences of the commutators q1, . . . , qj.
As a consequence, the commutators q1, . . . , qj are pairwise different.

Proof. We prove the statement by induction on the number of the stage of the
collection process (on the number of the word in the sequence). At the first stage the
occurrences of q1 were collected and only occurrences of the commutators [R, pqj ],
p > 1, arose. Therefore, the word W1 contains occurrences of q1 only in its collected
part.

Assume that the statement is true for all words in the sequence up to Wj =
qe11 . . . q

ej
j Tj , j > 1, and the uncollected part Tj is nonempty. Let us prove the

statement for the word

Wj+1 = qe11 . . . qeKk . . . q
ej
j q

ej+1

j+1 Tj+1

Suppose qk has an occurrence in Tj+1 for some k ∈ 1, j + 1. Note that k 6= j + 1
since at the stage j + 1 all occurrences of the commutator qj+1 in the word Tj
were collected. Further, at the stage k all occurrences of qk were collected. By the
inductive assumption, new occurrences of qk could arise only at the stage j + 1.
Therefore, qk = [R, qj+1] for some commutator R. Recall that the initial word
W0 contains only the elements a1, . . . , an, so the commutator qk = [R, qj+1] arose
during the collection process at some stage h, where h < k < j+ 1, i.e. qk = [Q, qh]
for some Q. From the equality [R, qj+1] = [Q, qh] of formal commutators it follows
that qh = qj+1. This contradicts the inductive assumption: qh has occurrences
both in the collected part q1 . . . qj and in the uncollected part Tj . �



ON THE COLLECTION PROCESS FOR POSITIVE WORDS 445

3. Existence and precedence conditions

Suppose W0 is a labeled commutator word consisting only of commutators of
weight 1: a1, . . . , an, n ∈ N. Consider an arbitrary variant of the collection process

(7)
{
Wj ≡ qe11 . . . q

ej
j Tj

}
j>0

.

Denote by D(ak), k ∈ 1, n, an arbitrary fixed set of integer sequences of the same
length that contains all labels of the occurrences of ak in W0.

Assume that the uncollected part Tm, m > 0 contains some commutator R and
the parenthesis-free notation of R is (ai1 , . . . , aiw(R)

).

Example 3.1. The parenthesis-free notation of
[[
a2, [a1, a2]

]
, a4

]
is (a2, a1, a2, a4).

From Definition 2.5 it follows that any occurrence of R in Tm has a label of the
form

Λ1 . . .Λw(R), where Λ1 ∈ D(ai1), . . . , Λw(R) ∈ D(aiw(R)
).

Since different occurrences of R have different labels, the number of all occurrences
of R in Tm is equal to the number of elements from the Cartesian product D(ai1)×
· · · ×D(aiw(R)

) that are the labels of occurrences of R. We denote that Cartesian

product by D(R).

Definition 3.2. Suppose that some uncollected part in (7) contains an occurrence
of the commutator R. The existence condition of the commutator R is the predicate
EΛ
R, Λ ∈ D(R), that is equal to 1 iff there exists a commutator word in (7) such

that its uncollected part contains the occurrence R(Λ).

Definition 3.3. Suppose that some uncollected part in (7) contains occurrences of
the commutators R and Q. The precedence condition for the commutators R and
Q is the predicate PΛ1Λ2

Q,R , Λ1Λ2 ∈ D(Q) ×D(R), that is equal to 1 iff there exists

a commutator word in (7) such that, in its uncollected part, Q(Λ1) precedes (is to
the left of) R(Λ2).

Note that we can determine all values of the predicate ER by considering an
arbitrary uncollected part Tm that contains occurrences of R. In other words,
any uncollected part either does not contain occurrences of R, or it contains all
occurrences of R that have ever arisen during the collection process. Indeed, the
occurrences of R arose at some stage m1 6 m. From statement 3 of Proposition
2.9 it follows that the labels of the occurrences do not change at the next stages of
the collection process. By Proposition 2.10, new occurrences of R will never arise
in uncollected parts. Finally, the occurrences can “disappear” only at some stage
m2 > m > m1, when all of them, without exception, will be collected.

From the discussion above and statement 4 of Proposition 2.9 it follows that
all values of the predicate PQ,R can be determined by considering an arbitrary
uncollected part containing occurrences of R and Q.

Proposition 3.4. For the sequence (7) we have

ej = |{Λ ∈ D(qj) | EΛ
qj = 1}|.

This statement establishes the connection between the exponent ej of the com-
mutator and its existence condition Eqj . So, by investigating the properties of the
predicate Eqj , we get information about ej .
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Definition 3.5. Let R1, R2 be formal commutators. The predicate R1 ≺ R2 is equal
to 1 iff there exist commutators qi, qj in (7) such that qi = R1, qj = R2, i < j,
i.e., the occurrences of R1 were collected at an earlier stage than the occurrences of
R2 in the variant of the collection process (7).

Example 3.6. Let us consider the variant of the collection process from Example
2.7. We have the following relations:

D(a1) = D(a2) = {1, 2};
D([a2, a1]) = D(a2)×D(a1) = {(1, 1), (1, 2), (2, 1), (2, 2)};
D([a2, a1, a2]) = D(a2)×D(a1)×D(a2) = {1, 2}3;

Eλ1
a1 = Eλ2

a2 = 1,

P (λ1,λ2)
a1,a2 = (λ1 < λ2) ∨ (λ1 = λ2), where λ1 ∈ D(a1), λ2 ∈ D(a2);

a1 ≺ a2; [a2, a1] ≺ [a2, a1, a2];

e3 =
∣∣∣{(λ1, λ2) ∈ D([a2, a1]) | E(λ1,λ2)

[a2,a1] = 1
}∣∣∣ = |{(1, 2)}| = 1.

4. Recurrence relations for the existence and precedence conditions

Theorem 4.1. Let G be a group, m ∈ N, and y, x1, x2, . . . , xm ∈ G. Then the
following identity holds:

(8) [y, x1x2 . . . xm] =

2m−1∏
i=1

[y, i1x1, i2x2, . . . , imxm],

where i1i2 . . . im is the m-bit binary representation of the index i.

Proof. We prove the equivalent identity by induction on m:

(9) yx1x2 . . . xm = x1x2 . . . xmy

2m−1∏
i=1

[y, i1x1, i2x2, . . . , imxm].

For m = 1 the identity has the form yx1 = x1y[y, x1]. Consider the product
yx1x2 . . . xmxm+1. By the inductive assumption, we get

(yx1 . . . xm)xm+1 = x1 . . . xmy

(
2m−1∏
i=1

[y, i1x1, . . . , imxm]

)
xm+1

= x1 . . . xm+1

2m−1∏
i=0

[y, i1x1, . . . , imxm, 0xm+1][y, i1x1, . . . , imxm, 1xm+1],

where i1 . . . im0 and i1 . . . im1 are the binary representations of the numbers 2i and
2i+ 1, respectively. Thus, we have the equality

(yx1 . . . xm)xm+1 = x1 . . . xm+1

2m+1−1∏
i=0

[y, i1x1, . . . , imxm, im+1
xm+1],

where i1 . . . im+1 is the binary representation of the index i. �

Example 4.2. For m = 2 identity (8) transforms into the well-known formula:

[y, x1x2] = [y, 0x1, 1x2][y, 1x1, 0x2][y, 1x1, 1x2] = [y, x2][y, x1][y, x1, x2].
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Using the theorem, we can express the fact of precedence for two occurrences of
commutators in terms of precedence for two binary numbers.

We denote by ∨ and ∧ the disjunction and conjunction of two propositions,
respectively. The sign ∧ will be usually omitted to save space. For example, we
write AB ∨ C instead of (A ∧B) ∨ C.

Denote by ω(i) the number of units in the binary representation of the non-
negative integer i.

Proposition 4.3. Let N,M ∈ 1, 2m − 1 and ω(N) = u, ω(M) = v, where
u, v,m > 1. Suppose (j1, . . . , ju) and (k1, . . . , kv) are two tuples such that js,
s ∈ 1, u, and kl, l ∈ 1, v are the positions of the s-th unit and the l-th unit in
the binary representations of N and M , respectively (we count units and digit po-
sitions from left to right starting from one). Then

N < M ⇔ (u < v)

u∧
t=1

(jt = kt) ∨
min{u,v}∨
t=1

(kt < jt)

t−1∧
h=1

(jh = kh).

Theorem 4.4. Suppose F (Q,R) is a free group, and the commutator word

(10) W0 ≡ Q(Λ0)R(Λ1) . . . R(Λm), m ∈ N,

has an arbitrary labeling with some sets D(Q) and D(R). If we collect all occur-
rences of R at the first stage of the collection process, then we get the commutator
word

(11) W1 ≡ R(Λ1) . . . R(Λm) ·Q(Λ0)

2m−1∏
i=1

[Q, ω(i)R](φ(i)),

where φ(i) = Λ0Λj1 . . .Λjω(i)
and js, s ∈ 1, ω(i), is the position of the s-th unit in

the binary representation of the index i (we count units and digit positions from
left to right starting from one). Moreover, for any u, v ∈ N, we have the following
equalities:

E
Λ1

0Λ1
1...Λ

1
u

[Q,uR] = E
Λ1

0

Q

u−1∧
k=1

P
Λ1

kΛ1
k+1

R,R ,

P
Λ1

0...Λ
1
uΛ2

0...Λ
2
v

[Q,uR],[Q,vR]

= E
Λ1

0...Λ
1
u

[Q,uR] E
Λ2

0...Λ
2
v

[Q,vR]

(u < v)

u∧
k=1

(Λ2
k = Λ1

k) ∨
min{u,v}∨
k=1

P
Λ2

kΛ1
k

R,R

k−1∧
h=1

(Λ2
h = Λ1

h)

 ,

where Λ1
0,Λ

2
0 ∈ D(Q), Λ1

1, . . . ,Λ
1
u,Λ

2
1, . . . ,Λ

2
v ∈ D(R).

Proof. The first statement of the theorem immediately follows from identity (9).
Consider the product over i in (11). Any m-bit binary number is uniquely

determined by the positions of units in its binary representation. Therefore, φ is a
bijection map of {1, . . . , 2m − 1} to

{Λ0Λj1 . . .Λjs | s > 1, 1 6 j1 < · · · < js 6 m}.

Any two integer-valued sequences

Λ0Λj1 . . .Λju ∈ D([Q, uR]) = D(Q)×D(R)u,

Λ0Λk1 . . .Λkv ∈ D([Q, vR]) = D(Q)×D(R)v,
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are labels of some occurrences of [Q, uR] and [Q, vR] in (11), respectively, iff
Λ0Λj1 . . .Λju = φ(i1) and Λ0Λk1 . . .Λkv = φ(i2) for some i1, i2. In other words,
the following conditions must be satisfied:

u−1∧
t=1

(jt < jt+1),

v−1∧
t=1

(kt < kt+1).

If in addition the occurrence of [Q,uR] must precede the occurrence of [Q,vR], then
we get the condition i1 < i2. By Proposition 4.3, it is equivalent to

u−1∧
t=1

(jt < jt+1)

v−1∧
t=1

(kt < kt+1)

∧

(u < v)

u∧
t=1

(jt = kt) ∨
min{u,v}∨
t=1

(kt < jt)

t−1∧
h=1

(jh = kh)

 .

Note that

jt < jt+1 ⇔ P
ΛjtΛjt+1

R,R , kt < kt+1 ⇔ P
ΛktΛkt+1

R,R ,

jt = kt ⇔ Λjt = Λkt , kt < jt ⇔ P
ΛktΛjt

R,R .

Thus, the existence and precedence conditions for commutators in the product over
i with variables Λ1

0,Λ
2
0 ∈ D(Q), Λ1

1, . . . ,Λ
1
u,Λ

2
1, . . . ,Λ

2
v ∈ D(R) can be written as

follows:

E
Λ1

0Λ1
1...Λ

1
u

[Q,uR] = E
Λ1

0

Q

u∧
k=1

E
Λ1

k

R

u−1∧
k=1

P
Λ1

kΛ1
k+1

R,R = E
Λ1

0

Q

u−1∧
k=1

P
Λ1

kΛ1
k+1

R,R ,

P
Λ1

0...Λ
1
uΛ2

0...Λ
2
v

[Q,uR],[Q,vR]

= E
Λ1

0...Λ
1
u

[Q,uR] E
Λ2

0...Λ
2
v

[Q,vR]

(u < v)

u∧
k=1

(Λ2
k = Λ1

k) ∨
min{u,v}∨
k=1

P
Λ2

kΛ1
k

R,R

k−1∧
h=1

(Λ2
h = Λ1

h)

 .

�

Corollary 4.5. Suppose there are e > 1 occurrences of a commutator R in the
following commutator word with arbitrary labeling:

X ≡
m∏
k=1

tk(Λk).

After one stage of the collection process we get the word

Y ≡ Re
m∏
k=1
tk 6=R

tk(Λk)Ωk, where Ωk ≡
2mk−1∏
i=1

[tk, ω(i)R](φk(i)),

mk is the number of occurrences of R that are to the right of tk(Λk) in X, the label
φk(i) is defined according to the previous theorem.

Further we will call Ωk the ω-product with initial element tk(Λk).
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Theorem 4.6. Suppose {Wj ≡ qe11 . . . q
ej
j Tj}j>0 is an arbitrary variant of the

collection process. Then the following recurrence relations hold (if the left-hand
side of a relation is defined for {Wj}j>0):

(12) E
Λ1

0...Λ
1
u

[Q1,uR1] = P
Λ1

0Λ1
1

Q1,R1

u−1∧
k=1

P
Λ1

kΛ1
k+1

R1,R1
, u > 1;

P
Λ1

0...Λ
1
uΛ2

0...Λ
2
v

[Q1,uR1],[Q2,vR2] is equal to

(13a)

(13b)

(13c)

(13d)

E
Λ1

0...Λ
1
u

[Q1,uR1]E
Λ2

0...Λ
2
v

[Q2,vR2]F, if u+ v > 1, R1 = R2, Q1 = Q2;

E
Λ1

0...Λ
1
u

[Q1,uR1]E
Λ2

0...Λ
2
v

[Q2,vR2]P
Λ1

0Λ2
0

Q1,Q2
,

if u+ v > 1, R1 = R2, Q1 6= Q2,
u = 0⇒ w(Q1) = 1, v = 0⇒ w(Q2) = 1;

E
Λ1

0...Λ
1
u

[Q1,uR1]E
Λ2

0...Λ
2
v

[Q2,vR2]P
Λ1

0...Λ
1
uΛ2

0

[Q1,uR1],Q2
, if u, v > 1, R1 ≺ R2;

E
Λ1

0...Λ
1
u

[Q1,uR1]E
Λ2

0...Λ
2
v

[Q2,vR2]P
Λ1

0Λ2
0...Λ

2
v

Q1,[Q2,vR2], if u, v > 1, R2 ≺ R1;

where [Q1, uR1] 6= Q2 for u > 1 and [Q2, vR2] 6= Q1 for v > 1,

Λ1
0 ∈ D(Q1), Λ2

0 ∈ D(Q2), Λ1
1, . . . ,Λ

1
u ∈ D(R1), Λ2

1, . . . ,Λ
2
v ∈ D(R2),

F = P
Λ1

0Λ2
0

Q1,Q2
∨ (Λ1

0 = Λ2
0)

(
(u < v)

u∧
k=1

(Λ2
k = Λ1

k) ∨
min{u,v}∨
k=1

P
Λ2

kΛ1
k

R1,R2

k−1∧
h=1

(Λ2
h = Λ1

h)

)
.

Proof. Relations (12) and (13a). Let u, v > 1. Since the existence condition
E[Q1,uR1] is defined for {Wj}j>0, it follows that there are occurrences of the com-
mutator [Q1, uR1] in some uncollected part Tm. Therefore, they arose during the
l-th stage of the collection process, l ∈ 1,m, when occurrences of the commutator
R1 were being collected. Let us consider a schematic representation of the com-
mutator word Tl−1, where we single out two occurrences of Q1 (at least one such
occurrence exists):

Tl−1 = . . . Q1(Λ1) . . . Q1(Λ2) . . . .

From Corollary 4.5 it follows that Tl has the following form:

Tl = . . . Q1(Λ1)ΩQ1(Λ1) . . . Q1(Λ2)ΩQ1(Λ2) . . . ,

where ΩQ1(Λ1), ΩQ1(Λ2) are ω-products with corresponding initial elements.

Let Λ1
0 ∈ D(Q1), Λ1

1, . . . ,Λ
1
u ∈ D(R1) and P

Λ1
0Λ1

1

Q1,R1
= 1. Then by Theorem 4.4

the occurrence [Q1,uR1](Λ1
0 . . .Λ

1
u) exists in ω-product with initial element Q1(Λ1

0)
iff

E
Λ1

0

Q1

u−1∧
k=1

P
Λ1

kΛ1
k+1

R1,R1
= 1.

Thus, we have

E
Λ1

0...Λ
1
u

[Q1,uR1] = P
Λ1

0Λ1
1

Q1,R1
E

Λ1
0

Q1

u−1∧
k=1

P
Λ1

kΛ1
k+1

R1,R1
= P

Λ1
0Λ1

1

Q1,R1

u−1∧
k=1

P
Λ1

kΛ1
k+1

R1,R1
.

Further, commutators of the form [Q1, tR1], t > 1, have occurrences only in the
ω-products. Moreover, the label of any occurrence in an ω-product begins with the
sequence Λ1 if the initial element is equal to Q1(Λ1), with Λ2 if the initial element
is equal to Q1(Λ2), and so on.
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Hence, for arbitrary occurrences [Q1, uR1](Λ1
0 . . .Λ

1
u) and [Q1, vR1](Λ2

0 . . .Λ
2
v),

there are two alternatives: they are in the same ω-product (i.e. Λ1
0 = Λ2

0), or

in different ones. In the second case the precedence condition P
Λ1

0...Λ
1
uΛ2

0...Λ
2
v

[Q1,uR1],[Q1,vR1]

is equivalent to precedence of corresponding ω-products, i.e. of initial elements
Q1(Λ1

0) and Q1(Λ2
0). In the first case we use the recurrence relation from Theorem

4.4. Thus, we get

P
Λ1

0...Λ
1
uΛ2

0...Λ
2
v

[Q1,uR1],[Q1,vR1] = E
Λ1

0...Λ
1
u

[Q1,uR1]E
Λ2

0...Λ
2
v

[Q1,vR1]F.

It is easy to prove that the obtained relation is true when either u = 0 or v = 0.
Indeed, since there are no occurrences of Q1 in ω-products, for arbitrary occurrences
[Q1, uR1](Λ1

0 . . .Λ
1
u) and [Q1, vR1](Λ2

0 . . .Λ
2
v) we have

P
Λ1

0...Λ
1
uΛ2

0...Λ
2
v

[Q1,uR1],[Q1,vR1] ⇔

P
Λ1

0Λ2
0

Q1,Q1
∨ (Λ1

0 = Λ2
0), if u = 0, v 6= 0;

P
Λ1

0Λ2
0

Q1,Q1
, if u 6= 0, v = 0.

Relation (13b). Let u, v > 1. As in the previous case the occurrences of the
commutators [Q1, uR1] and [Q2, vR1] arose during the same stage of the collection
process. However, the occurrences of [Q1, uR1] are in the ω-product with initial
element Q1(Λ), Λ ∈ D(Q1), and the occurrences of [Q2, vR1] are in the ω-product
with initial element Q2(Λ), Λ ∈ D(Q2). As we mentioned above precedence of
ω-products is equivalent to precedence of corresponding initial elements. Thus, we
get

P
Λ1

0...Λ
1
uΛ2

0...Λ
2
v

[Q1,uR1],[Q2,vR1] = E
Λ1

0...Λ
1
u

[Q1,uR1]E
Λ2

0...Λ
2
v

[Q2,vR1]P
Λ1

0Λ2
0

Q1,Q2
.

Now let u = 0 and w(Q1) = 1. The commutator Q1 has occurrences in the
initial commutator word W0 ≡ T0. Therefore Q1 and Q2 have occurrences in the
same uncollected part at the stage when occurrences of R1 were being collected
and occurrences of the commutator [Q2, vR1] arose. Here we deal with precedence
of an initial element and an ω-product, which is also equivalent to precedence of
corresponding initial elements. Since Q1 6= Q2, we have

P
Λ1

0Λ2
0...Λ

2
v

Q1,[Q2,vR1] = E
Λ1

0

Q1
E

Λ2
0...Λ

2
v

[Q2,vR1]P
Λ1

0Λ2
0

Q1,Q2
.

For the case v = 0, w(Q2) = 1 the reasoning is analogous.
Relations (13c) and (13d). Assume that occurrences of R1 were collected earlier

than occurrences of R2. Since there must be an uncollected part containing both
occurrences of [Q1, uR1] and [Q2, vR2], at the stage when occurrences of R2 are
collected the corresponding uncollected part contains both occurrences of [Q1,uR1]
and Q2. Since [Q1, uR1] 6= Q2, we use the same argument as above to get the
relation

P
Λ1

0...Λ
1
uΛ2

0...Λ
2
v

[Q1,uR1],[Q2,vR2] = E
Λ1

0...Λ
1
u

[Q1,uR1]E
Λ2

0...Λ
2
v

[Q2,vR2]P
Λ1

0...Λ
1
uΛ2

0

[Q1,uR1],Q2
.

If occurrences of R2 were collected earlier than occurrences of R1, the reasoning
is analogous. �

Example 4.7. Let us consider the variant of the collection process from Example
2.7 and express the existence condition

E
(λ1,λ2,λ3)
[[a2,a1],a2], (λ1, λ2) ∈ D([a2, a1]) = D(a2)×D(a1), λ3 ∈ D(a2),
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in terms of Ea1 , Ea2 , Pa1,a2 , Pa2,a1 , Pa1,a1 , Pa2,a2 .

E
(λ1,λ2,λ3)
[[a2,a1],a2] = P

(λ1,λ2,λ3)
[a2,a1],a2

use (12) for u = 1,
Q1 = [a2, a1], R1 = a2

= E
(λ1,λ2)
[a2,a1] E

(λ3)
a2 P (λ1λ3)

a2,a2
use (13a) for u = 1, v = 0,
Q1 = Q2 = a2, R1 = a1

= P (λ1,λ2)
a2,a1 E(λ3)

a2 P (λ1λ3)
a2,a2

use (12) for u = 1,
Q1 = a2, R1 = a1

.

Using the information from Example 3.6, we get

E
(λ1,λ2,λ3)
[[a2,a1],a2] = (λ1 < λ2)(λ1 < λ3), (λ1, λ2, λ3) ∈ {1, 2}3.

The only case when E
(λ1,λ2,λ3)
[[a2,a1],a2] = 1 is (λ1, λ2, λ3) = (1, 2, 2).

Corollary 4.8. Suppose a commutator R ∈ Γ(a1, . . . , an) arose in some variant
of the collection process {Wj}j>0. Then the existence condition ER is expressed by
a formula containing at most the operations ∨ and ∧, the predicates Eai , Pai,aj ,

i, j ∈ 1, n, and the equality relation = on Z.

Proof. First of all, we show that for any predicates

EQ, w(Q) > 2; PQ,R, w(Q) + w(R) > 3;

there are appropriate recurrence relations from the previous theorem. Any formal
commutator Q, w(Q) > 2, can be expressed as [Q1, uR1], u > 1. Therefore, we use
relation (12) for the existence condition EQ.

Consider the precedence condition PQ,R. Assume that w(R) = 1 and write Q as
[Q1, uR1], u > 1. If Q1 6= R, then we use relation (13b). If Q1 = R, then we write
[Q1, uR1], R as [Q1, uR1], [Q1, 0R1], respectively, and use relation (13a). For the
case w(Q) = 1 the reasoning is analogous.

Let w(Q), w(R) > 2. Then Q and R can be written as [Q1, uR1], u > 1, and
[Q2, vR2], v > 1, respectively. If Q1 6= [Q2, vR2] and Q2 6= [Q1,uR1], then we apply
one of the relations (13) to PQ,R. If Q1 = [Q2, vR2], then we represent [Q1, uR1]
and [Q2, vR2] in the form [Q1, uR1] and [Q1, 0R1], respectively, and use relation
(13a). The reasoning is the same if Q2 = [Q1, uR1].

Thus, using the recurrence relations from the previous theorem a finite number
of times, we express ER by a formula containing at most the operations ∨ and ∧,
the predicates Eai , Pai,aj , i, j ∈ 1, n, and the equality relation Λu = Λv. It remains
to note that for any integer-valued sequences of the same length Λu = (λi1 , . . . , λis),
Λv = (λj1 , . . . , λjs) the relation Λu = Λv can be written in terms of the equality
relation on Z:

s∧
k=1

(λik = λjk).

�
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5. L-conditions

In [6], the concept of an L-condition was introduced.

Definition 5.1. Let C be a formula containing only the following logical operations:
disjunction, conjunction, negation and the predicate symbols: [λi < λj ], [λi = λj ],
where i, j ∈ N. The formula C is called an L-condition of rank r, r ∈ N, if
C contains at least one of the following predicate symbols: [λi < λr], [λr < λi],
[λi = λr], [λr = λi], i ∈ N, and does not contain the predicate symbols [λi < λj ]
and [λi = λj ], where i > r or j > r. Logical constants 0 are 1 are called L-conditions
of rank zero.

Suppose M is a nonempty totally ordered set. Any L-condition of rank at most
r can be interpreted as an r-place predicate C(λ1, . . . , λr) on an arbitrary subset
N of Mr = M × · · · ×M if we consider (λ1, . . . , λr) as a tuple of variables from N
and put [λi = λj ] = 1 iff λi is equal to λj in M , and [λi < λj ] = 1 iff λi is less than
λj in M .

We say that a tuple of elements (λ∗1, . . . λ
∗
r) ∈ N satisfies an L-condition C of

rank at most r if C(λ∗1, . . . λ
∗
r) is equal to 1 as a predicate on N .

Example 5.2. Consider the following L-conditions of ranks 1, 2, and 3, respec-
tively:

C1 = [λ1 < λ1], C2 = [λ1 < λ2] ∨ [λ1 = λ2], C3 = [λ2 = λ3][λ3 = λ2].

Let M = Z, N = {(0, 0, 0), (1, 1, 2), (1, 2, 2)}. Then there are 0, 3, 2 elements from
N that satisfy C1, C2, C3, respectively.

From Corollary 4.8, we get immediately the following lemma.

Lemma 5.3. Suppose a commutator R ∈ Γ(a1, . . . , an) arose in some variant of the
collection process {Wj}j>0. If the existence and precedence conditions Eai , Pai,aj
in the formula from Corollary 4.8 are expressed by L-conditions on the sets D(ai),
D(ai)×D(aj), respectively, then ER is expressed by some L-condition on D(R).

The following statement was proved in [6, Theorem 2]. Suppose M1, . . . ,Mr are
nonempty finite subsets of any totally ordered set, C is an L-condition of rank at
most r. If the following conditions hold:

M = M1 ∩ · · · ∩Mr 6= ∅; [minM,maxM ] ∩ (Mi\M) = ∅, i ∈ 1, r;

then the number of elements from the Cartesian product

M1 × · · · ×Mr = {(λ1, . . . , λr) | λi ∈Mi, i ∈ 1, r}

that satisfy C are expressed as follows:

r∑
t=1

at

(
|M |
t

)
+

r−1∑
t=0

bt

(
|M |
t

)
, as, bs ∈ N0,

where bs depend on M1, . . . ,Mr and C, as depend only on C. Moreover, if M ∈
{Mi}ri=1, then b0 = 0; if M1 = · · · = Mr, then all bs are equal to zero.

Using this statement, we obtain the following lemma.

Lemma 5.4. Suppose finite sets M1, . . . ,Mr ⊂ Z satisfy the following conditions:

M = M1 ∩ · · · ∩Mr ∈ {Mj}rj=1; [minM,maxM ] ∩ (Mi\M) = ∅, i ∈ 1, r.
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Then the number of elements from M1 × · · · ×Mr that satisfy an L-condition C of
rank at most r is expressed as follows:

(14)

r∑
t=1

ct

(
|M |
t

)
, ct ∈ N0,

where ct do not depend on M1, . . . ,Mr if M1 = · · · = Mr.

We do not require here the sets M1, . . . ,Mr to be nonempty. Indeed, if some
Mj = ∅, then M1 × · · · ×Mr = ∅, M = ∅, and all terms in sum (14) are equal to
zero.

If M1 = . . . = Mr = [1, n], then we get the P. Hall’s combinatorial result (see
Introduction).

Example 5.5. Any family of intervals of integers with fixed left or right endpoint
satisfies the conditions of Lemma 5.4. For example,

M1 = {1, 2, 3}, M2 = {1, 2, 3, 4, 5}, M3 = {1, 2, 3, 4, 5, 6, 7}.

6. Collection formulas

Suppose W is a positive word of the free group F (a1, . . . , an), n ∈ N. According
to our approach, if we want to apply the collection process to W and study the
divisibility of the exponent of some commutator R with parenthesis-free notation
(ai1 , . . . , aiw(R)

), then our main purpose is to find an appropriate labeling for the

word W . ‘Appropriate labeling’ means that 1) the existence and precedence condi-

tions Eaij , Paij ,aik for all j, k ∈ 1, w(R) are expressed by L-conditions on the sets

D(aij ), D(aij ) × D(aik), respectively, and 2) the sets D(aij ), j ∈ 1, w(R), satisfy
the conditions of Lemma 5.4. We will follow this “standard” way in Theorem 6.1.

However, in Theorem 6.6 we will consider restrictions of the predicate ER by
fixing special variables to get more powerful divisibility property than we could get
by following the “standard” way. Finally, in Theorem 6.9 we use labeling for which
the sets D(aij ) even do not satisfy the conditions of Lemma 5.4 until we use the
same trick as in the previous case.

Theorem 6.1. Suppose {Wj ≡ qe11 . . . q
ej
j Tj}j>0 is an arbitrary variant of the

collection process in the free group F (a1, . . . , an), n ∈ N, with the initial word

W0 ≡
N∏
i=1

(
a
ρ(i,1)
1 . . . a

ρ(i,n)
n

)
, N ∈ N, ρ(i, k) : {1, . . . , N} × {1, . . . , n} → {0, 1}.

Suppose Mk = {i | ρ(i, k) = 1}, k ∈ 1, n, and (ak1 , . . . , akw(qj)) is the parenthesis-
free notation of qj. If the set M = Mk1 ∩ · · · ∩ Mkw(qj)

satisfies the following

conditions:

M ∈ {Mks}
w(qj)
s=1 ; [minM,maxM ] ∩ (Mks\M) = ∅, s ∈ 1, w(qj);

then

ej =

w(qj)∑
t=1

ct

(
|M |
t

)
, ct ∈ N0.
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Proof. Consider the positive word W ≡ (a1 . . . an)N with the following labeling:

W ≡
N∏
i=1

(a1(i) . . . an(i)); D(ak) = {1, . . . , N}, k ∈ 1, n.

We see that for any λ1 ∈ D(ak1), λ2 ∈ D(ak2), k1, k2 ∈ 1, n, the following equalities
hold:

E(λ1)
ak1

= 1, P (λ1,λ2)
ak1

,ak2
=


[λ1 < λ2], if k1 = k2;

[λ1 < λ2] ∨ [λ1 = λ2], if k1 < k2;

[λ1 < λ2], if k1 > k2.

Now for each k ∈ 1, n we delete all occurrences of the letter ak in the word
W whose labels belong to the set D(ak)\Mk. Thus, we get the labeled word W0

for which D(ak) = Mk, k ∈ 1, n. Moreover, the equalities for the existence and
precedence conditions mentioned above remain true for W0. Indeed, since D(ak)

contains only the labels of occurrences of ak from W0, we have E
(λ1)
ak = 1 for any

λ1 ∈ D(ak). Further, deleting occurrences of letters in the word W does not change
the relative arrangement of the remaining letters. In other words, an occurrence
ak1(λ1) precedes an occurrence ak2(λ2) in W0 iff ak1(λ1) precedes ak2(λ2) in W .

Thus, the equality for P
(λ1,λ2)
ak1

,ak2
stays the same as we go from W to W0.

Suppose (ai1 , . . . , aiw(qj)) is the parenthesis-free notation of the commutator qj .

From Lemma 5.3 it follows that the existence condition EΛ
qj is expressed by an

L-condition on the set D(qj) = D(ak1)× · · · ×D(akw(qj)
) = Mk1 × · · · ×Mkw(qj)

. If

the set M = Mk1 ∩ · · · ∩Mkw(qj)
satisfies the following conditions:

M ∈ {Mks}
w(qj)
s=1 ; [minM,maxM ] ∩ (Mks\M) = ∅, s ∈ 1, w(qj),

then by Proposition 3.4 and Lemma 5.4 we have

ej = |{Λ ∈ D(qj) | EΛ
qj = 1}| =

w(qj)∑
t=1

ct

(
|M |
t

)
, ct ∈ N0.

�

The theorem actually shows that for any family of sets that satisfies the con-
ditions of Lemma 5.4 we can construct the corresponding initial word W0. This
provides numerous examples of collection formulas with nontrivial divisibility prop-
erties of the exponents of commutators. We consider only a few examples.

Example 6.2 (The M. Hall’s formula (see Introduction)). Let Mk = {1, . . . ,m},
k ∈ 1, n, where m ∈ N. Then we have the initial word W0 ≡ (a1 . . . an)m in
the variant of the collection process {Wj ≡ qe11 . . . q

ej
j Tj}j>0. If we collect the

commutators in order of increasing weights, then the following collection formula
holds in the free group F = F (a1, . . . , an):

(a1 . . . an)m = qe11 . . . q
ej(s)
j(s) (mod Γs(F )), s ∈ N.

For any commutator qj we have M = {1, . . . ,m}, |M | = m. Therefore, ej is
divisible by m if m is a prime power number pα and w(qj) < p.

Example 6.3. Let Mk = {1, . . . ,m} for k 6= s, and Ms = {1, . . . ,m + r}, where
s ∈ 1, n, m, r ∈ N. Then we have the initial word W0 ≡ (a1 . . . an)mars in the variant
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of the collection process {Wj ≡ qe11 . . . q
ej
j Tj}j>0. Thus, the following collection

formula holds in the free group F (a1, . . . , an):

(a1 . . . an)mars = qe11 . . . q
ej
j Tj .

Assume that w(qj) > 2. Then the parenthesis-free notation of qj contains a letter
different from as. Therefore, M = {1, . . . ,m}, |M | = m, and ej is divisible by m
if m is a prime power number pα and 1 < w(qj) < p.

Definition 6.4. For the elements of Γ(a1, . . . , an) we define the weights wai , i ∈
1, n by induction:

(1) wai(ak) = 0 for k 6= i, w(ai) = 1;
(2) If [c1, c2] ∈ Γ(a1, . . . , an), then wai([c1, c2]) = wai(c1) + wai(c2).

If (ai1 , . . . , aiw(R)
) is the parenthesis-free notation of R ∈ Γ(a1, . . . , an), then

wai(R) is equal to the number of occurrences of ai in the sequence (ai1 , . . . , aiw(R)
).

Example 6.5. Let M1,M2,M3 be as in Example 5.5. Then we get the word W0 ≡
(a1a2a3)3(a2a3)2a2

3. If wa1(qj) > 1 and 3 > w(qj) > 1, then ej is divisible by 3. If
wa1(qj) = 0, wa2(qj) > 1, and 5 > w(qj) > 1, then ej is divisible by 5.

Theorem 6.6. Suppose
{
Wj ≡ qe11 . . . q

ej
j Tj

}
j>0

is an arbitrary variant of the col-

lection process in the free group F (a1, . . . , an), n ∈ N, with the initial word

W0 ≡ am1
1 . . . amn

n , m1, . . . ,mn ∈ N.
If was1 (qj) > 1, . . . , wasr (qj) > 1, then the exponent ej is expressed as

ej =

was1
(qj)∑

t1=1

· · ·
wasr

(qj)∑
tr=1

c(t1, . . . , tr)

(
ms1

t1

)
· · ·
(
msr

tr

)
,

where integers c(t1, . . . , tr) do not depend on ms1 , . . . ,msr .

Proof. Consider the positive word W0 with the following labeling:

W0 ≡
n∏
i=1

ai(1) . . . ai(mi); D(ai) = {1, . . . ,mi}, i ∈ 1, n.

We see that for any λ1 ∈ D(ai1), λ2 ∈ D(ai2), i1, i2 ∈ 1, n, the following equalities
hold:

E(λ1)
ai1

= 1, P (λ1,λ2)
ai1 ,ai2

=


[λ1 < λ2], i1 = i2;

1, i1 < i2;

0, i2 < i1.

Suppose (ai1 , . . . , aiw(qj)) is the parenthesis-free notation of the commutator qj .

From Lemma 5.3 it follows that the existence condition EΛ
qj , Λ = (λ1, . . . , λw(qj)),

is expressed by an L-condition on the set D(qj) = D(ai1)× · · · ×D(aiw(qj)
).

Let was1 (qj) > 1. We arbitrarily fix those variables λ1, . . . , λw(qj) in EΛ
qj that

correspond to labels of the letters ak, k 6= s1. The obtained predicate we denote

by ẼMqj where M is the tuple of the remaining was1 (qj) variables.

Note that the predicate ẼMqj on the Cartesian power D(as1)was1
(qj) is still an

L-condition. Indeed, from the equalities for Eai and Pai,aj above it follows that for

any predicate [λu < λv] in the L-condition EΛ
qj the variables λu and λv correspond

to labels of the same letter. This is also true for predicates [λu = λv], which follows
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from the recurrence relations in Theorem 4.6. Therefore, ẼMqj contains at most the

logical constants 0, 1 and predicates of the form [λu < λv], [λu = λv], where λu, λv
are variables.

Thus, from Lemma 5.4 it follows that

|{M ∈ D(as)
was1

(qj) | ẼMqj = 1}| =
was1

(qj)∑
t=1

bt

(
ms1

t

)
,

where non-negative integers bt do not depend on ms1 .
Considering all possible values of the variables in EΛ

qj that correspond to labels
of the letters ak, k 6= s1, and summing obtained expressions we finally get

ej = |{Λ ∈ D(qj) | EΛ
qj = 1}| =

was1
(qj)∑

t=1

ct

(
ms1

t

)
, ct ∈ N0,

where the coefficients ct do not depend on ms1 but may depend on ms2 , . . . ,msr .
Further proof is by induction on r. Let was1 (qj) > 1, . . . , wasr−1

(qj) > 1 for

r > 2. Assume that

ej =

was1
(qj)∑

t1=1

· · ·
wasr−1

(qj)∑
tr−1=1

c(t1, . . . , tr−1)

(
ms1

t1

)
· · ·
(
msr−1

tr−1

)
,

where the integers c(t1, . . . , tr−1) do not depend on ms1 , · · ·msr−1 . If wasr (qj) > 1,
then

ej =

wasr
(qj)∑

t=1

at

(
msr

t

)
=

was1
(qj)∑

t1=1

· · ·
wasr−1

(qj)∑
tr−1=1

c(t1, . . . , tr−1)

(
ms1

t1

)
· · ·
(
msr−1

tr−1

)
,

where at do not depend on msr . Therefore, at depend on ms1 , . . . ,msr−1
, and

c(t1, . . . , tr−1) depend on msr . If msr = 1, then we get

a1 =

was1
(qj)∑

t1=1

· · ·
wasr−1

(qj)∑
tr−1=1

c(t1, . . . , tr−1; 1)

(
ms1

t1

)
· · ·
(
msr−1

tr−1

)
,

Further, if msr = 2, then

2a1 + a2 =

was1
(qj)∑

t1=1

· · ·
wasr−1

(qj)∑
tr−1=1

c(t1, . . . , tr−1; 2)

(
ms1

t1

)
· · ·
(
msr−1

tr−1

)
,

a2 =

was1
(qj)∑

t1=1

· · ·
wasr−1

(qj)∑
tr−1=1

(c(t1, . . . , tr−1; 2)− 2c(t1, . . . , tr−1; 1))

(
ms1

t1

)
· · ·
(
msr−1

tr−1

)
.

Continuing this line of reasoning, we see that for any t ∈ 1, wasr (qj) there exist
integers ht(t1, . . . , tr−1) such that

at =

was1
(qj)∑

t1=1

· · ·
wasr−1

(qj)∑
tr−1=1

ht(t1, . . . , tr−1)

(
ms1

t1

)
· · ·
(
msr−1

tr−1

)
.
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Therefore,

ej =

wasr
(qj)∑

t=1

was1
(qj)∑

t1=1

· · ·
wasr−1

(qj)∑
tr−1=1

ht(t1, . . . , tr−1)

(
ms1

t1

)
· · ·
(
msr−1

tr−1

)(msr

t

)

=

was1
(qj)∑

t1=1

· · ·
wasr

(qj)∑
tr=1

c(t1, . . . , tr)

(
ms1

t1

)
· · ·
(
msr

tr

)
,

where integers c(t1, . . . , tr) do not depend on ms1 , · · · ,msr �

Example 6.7. Suppose we collect commutators in order of increasing weights, and
the commutators of weight 1 are collected in the following order: as+1, as+2, . . . ,
an, a1, a2, . . . , as for some s ∈ 1, n− 1. Then our variant of the collection process{
Wj ≡ qe11 . . . q

ej
j Tj

}
j>0

leads to the following collection formula in the free group

F = F (a1, . . . , an):

[am1
1 . . . ams

s , a
ms+1

s+1 . . . amn
n ] = q

en+1

n+1 . . . q
ej(k)

j(k) (mod Γk(F )), k > 2,

where qn+1, . . . , qj(k) are commutators of weights less than k, and ej is divisible by
mi if mi is a prime power number pα and 1 6 wai(qj) < p.

Example 6.8 (The R. R. Struik’s formula (see Introduction)). If we put n = 2,
s = 1 in the previous example, then we get formula (5).

Theorem 6.9. Suppose {Wj ≡ qe11 . . . q
ej
j Tj}j>0 is an arbitrary variant of the

collection process in the free group F (a1, . . . , an), n ∈ N, with the initial word

W0 ≡
N∏
i=1

(
a
ρ(i,1)
k1

. . . a
ρ(i,s)
ks

)
, N, s ∈ N, ρ(i, j) : {1, . . . , N} × {1, . . . , s} → {0, 1},

where k1, . . . , ks ∈ 1, n. Suppose

Mk = {(i, j) | kj = k, ρ(i, j) = 1}, Mk(µ) = {i | (i, µ) ∈Mk}, k ∈ 1, n,

and (ai1 , . . . , aiw(qj)) is the parenthesis-free notation of qj. If for any µ1, . . . , µw(qj)

the set M = M(µ1, . . . , µw(qj)) = Mi1(µ1) ∩ · · · ∩Miw(qj)
(µw(qj)) satisfies the fol-

lowing conditions:

M ∈ {Mik(µk)}w(qj)
k=1 ; [minM,maxM ] ∩ (Mik(µk)\M) = ∅, k ∈ 1, w(qj);

then

ej =

w(qj)∑
t=1

∑
µ1,...,µw(qj)

ct(µ1, . . . , µw(qj))

(
|M(µ1, . . . , µw(qj))|

t

)
,

where ct(µ1, . . . , µw(qj)) ∈ N0.

Proof. Consider the positive word W ≡ (ak1 . . . aks)N with the following labeling:

W ≡
N∏
i=1

(ak1(i, 1) . . . aks(i, s));

D(ak) = {(i, j) | 1 6 i 6 N, kj = k} = {1, . . . , N} × {j | kj = k}, k ∈ 1, n.
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We see that for any (λ1, λ2) ∈ D(ai), (λ3, λ4) ∈ D(aj), i, j ∈ 1, n, the following
equalities hold:

E(λ1,λ2)
ai = 1, P (λ1,λ2,λ3,λ4)

ai,aj = [λ1 < λ3] ∨ [λ1 = λ3][λ2 < λ4].

Now for each k = 1, n we delete all occurrences of the letter ak in the word W
whose labels belong to the set D(ak)\Mk. Thus, we get the labeled word W0 for
which D(ak) = Mk, k ∈ 1, n. Using the same argument as in the proof of Theorem

6.1 we claim that the equalities for E
(λ1,λ2)
ai and P

(λ1,λ2,λ3,λ4)
ai,aj stay the same as we

go from W to W0.
Suppose (ai1 , . . . , aiw(qj)) is the parenthesis-free notation of the commutator qj .

From Lemma 5.3 it follows that the existence condition EΛ
qj is expressed by an

L-condition on the set D(qj) = D(ai1) × · · · × D(aiw(qj)
) = Mi1 × · · · ×Miw(qj)

,

where the tuple Λ = (λ1, . . . , λ2w(qj)) is such that

(λ1, λ2) ∈Mi1 , (λ2, λ3) ∈Mi2 , . . . , (λ2w(qj)−1, λ2w(qj)) ∈Miw(qj)
.

Introduce the following notation:

Λ1 = (λ1, λ3 . . . , λ2w(qj)−1), Λ2 = (λ2, λ4 . . . , λ2w(qj)).

Let us arbitrarily fix λ2, λ4, . . . , λ2w(qj) in EΛ
qj . Denote the obtained predicate by

PΛ1

Λ2
, where Λ1 ∈Mi1(λ2)× · · · ×Mi2w(qj)−1

(λ2w(qj)).

From the equalities for Eai and Pai,aj it follows that PΛ1

Λ2
contains at most logical

constants 0, 1 and predicates of the form [λu < λv], [λu = λv], where λu, λv are

variables. In other words, for any fixed Λ2 the predicate PΛ1

Λ2
is expressed by an

L-condition on the set Mi1(λ2)× · · · ×Mi2w(qj)−1
(λ2w(qj)).

Thus, using Proposition 3.4 and Lemma 5.4, we obtain

ej = |{Λ ∈ D(qj) | EΛ
qj = 1}|

=
∑
Λ2

∣∣∣{Λ1 ∈Mi1(λ2)× · · · ×Mi2w(qj)−1
(λ2w(qj)) | PΛ1

Λ2
= 1}

∣∣∣
=
∑
Λ2

w(qj)∑
t=1

ct(Λ2)

(
|M(Λ2)|

t

)
=

w(qj)∑
t=1

∑
Λ2

ct(Λ2)

(
|M(Λ2)|

t

)
.

�

Example 6.10 (The formula from [7] (see Introduction)). Let W0 ≡ (ak1 . . . aks)
m

,
where m ∈ N. Then we put

Mk = {1, . . . ,m} × {j | kj = k}, k ∈ 1, n.

Therefore, for any µ the set Mk(µ) is equal to {1, . . . ,m} or ∅. Then for any
µ1, . . . , µw(qj) the intersection M = M(µ1, . . . , µw(qj)) is equal to {1, . . . ,m} or
∅, so |M | is equal to m or 0. Thus, if we collect commutators in order of in-
creasing weights, then we get the following collection formula in the free group
F = F (a1, . . . , an):

(ak1 . . . aks)
m

= qe11 . . . q
ej(c)
j(c) (mod Γc(F )), c ∈ N,

where ej is divisible by m if m is a prime power number pα and w(qj) < p.
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Example 6.11. Let W0 ≡ arl (ak1 . . . aks)
m

, where l ∈ 1, n, m, r ∈ N. Then we put

Mk = {r + 1, . . . ,m+ r} × {j | kj = k}, k 6= l;

Ml =
(
{1, . . . ,m+ r} × {j′}

)
∪
(
{r + 1, . . . ,m+ r} × {j | kj = l}

)
;

where j′ is such that kj′ = l. Therefore, for any µ the set Mk(µ), k 6= l, is equal
to {r + 1, . . . ,m + r} or ∅. Assume that w(qj) > 2, hence wak(qj) > 1 for some
k 6= l. Then for any µ1, . . . , µw(qj) the intersection M = M(µ1, . . . , µw(qj)) is equal
to {r + 1, . . . ,m + r} or ∅, so |M | is equal to m or 0. Thus, we get the following
collection formula in the free group F (a1, . . . , an):

arl (ak1 . . . aks)
m

= qe11 . . . q
ej
j Tj ,

where ej is divisible by m if m is a prime power number pα and 1 < w(qj) < p.
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