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ON THE MODELING OF STATIONARY SEQUENCES USING

THE INVERSE DISTRIBUTION FUNCTION

N.S. ARKASHOV

Abstract.We study a method for modeling stationary sequences, which
is implemented generally speaking by a nonlinear transformation of Gaus-
sian noise. The paper establishes limit theorems in the metric space
D[0, 1] for normalized processes of partial sums of sequences obtained
as a result of the mentioned Gaussian noise transformation. Application
of this method for simulating function words in �ction is investigated.

Keywords: modeling of stationary processes, long-range dependence,
limit theorems, function words in �ction.

1. Introduction.

Under broad assumptions, a stationary sequence can be represented by a moving
average formed on the basis of a non-random square-summable sequence and white
noise, which provides a method for modeling such sequences. More precisely, let
{Xj , j ∈ Z} be a stationary sequence of random variables that has a spectral
density; then, the representation

(1) Xj =

∞∑
k=−∞

aj−kξk,

holds, in which {ξk, k ∈ Z} is a sequence of uncorrelated random variables with
zero mean and unit variance (white noise) and {ak, k ∈ Z} is a non-random square-
summable sequence of real numbers. Note that representation (1) provides a method
for modeling stationary sequences.
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However, if a sample implementing a stationary time series is known, we have
the problem of modeling a stationary sequence that inherits the properties of the
original time series. A method for solving this problem is the method of inverse
distribution function, which makes it possible to model such sequences while preser-
ving the covariance function and the marginal distribution of the original series. The
basic properties and a theoretical justi�cation of this method were given in [1, 2].
This paper continues these studies. In particular, the application of this method
for modeling stationary sequences with strong dependence is studied. At the same
time, for the covariance sequence of the original time series, the case of divergence
in absolute value and the case of absolute convergence are distinguished. In the
former case (if the covariance function has a regular behavior at in�nity), the
C-convergence to the fractional Brownian motion is proved (see Theorem 2). In
the latter case, a one-dimensional limit theorem for the corresponding normalized
processes of the partial sums of the sequence modeling the original stationary
sequence is obtained (see Theorem 3). Note that the proven convergence statements
are based on the limit theorems from [3, 4].

To illustrate the results obtained in this paper, we examine the stationarity of the
time series consisting of indicators of function words in Dostoevsky's novel Crime
and Punishment [5] and construct a model of this series using the method of inverse
distribution function (see Section 4).

Throughout the paper, the indices j, k can range over all integer values. By a
sequence, say {aj}, we mean the set {aj , j ∈ Z}, where any letter can be used
instead of a.

2. Transformation of Gaussian Noise.

2.1. Preliminaries. Let {Xk} be a stationary (in a broad sense) sequence of
identically distributed random variables with the covariance function γ(k). Denote
by F the cumulative distribution function (cdf) of the random variable X1 (further
we use the convention that F is left-continuous). We assume that F speci�es a
non-degenerate distribution with a �nite second moment and zero mean.

Let {zk} be a stationary sequence of standard normal random variables (Gaussian
noise) with the covariance function ρ = ρ(k). Along with {Xk}, we consider the
sequence

(2) Yk := F−1(Φ0,1(zk)),

where Φ0,1 is the cdf of the standard normal law and F−1 is the quantile transform
of the function F de�ned by F−1(t) = inf{x : F (x) ≥ t}.

Below, we will need the following de�nition. A sequence of real numbers {β(j)}
is said to be positive de�nite if β(j) = β(−j) for all j = 0, 1, . . . and, for each
n = 1, 2, . . . , the matrix An = (aij)n×n, where aij = β(i − j), is positive de�nite
(e.g., see [6]).

We will say that {Xk} is modeled by the method of inverse distribution function
if there exists a Gaussian sequence {zk} such that

(3) E(Y0Yk) = γ(k)

for all k ∈ Z (recall that γ(k) = E(X0Xk)).
The existence of {zk} can be analyzed using the following algorithm:

1) equation (3) is solved for ρ(k);
2) the positive de�niteness of {ρ(k)} is checked;
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3) if the check at the preceding step is successful, then {zk} is reconstructed given
the matrices An = (aij)n×n, where aij = ρ(i− j) (e.g., see [7, Chapter, �13]).

2.2. Investigation of the algorithm of the inverse distribution function

method. De�ne the random variables Z1 and Z2 as follows:

(4) Z1 := F−1(Φ0,1(z)), Z2 := F−1(Φ0,1(w)),

where (z, w) is a Gaussian vector with standard normal components and correlation
coe�cient r. Consider the function

(5) R(r) := E(Z1Z2).

It is well known that the random variables ν1 = Φ0,1(z) and ν2 = Φ0,1(w)
are uniformly distributed on [0, 1], so the variables F−1(ν1) and F−1(ν2) have the
common cdf F , and therefore have the same distribution as X1. These facts imply,
in particular, the following relations

(6) R(1) =

∫ +∞

−∞
(F−1(Φ0,1(x))2ϕ0,1(x) dx < +∞

and

(7) R(−1) =

∫ +∞

−∞
F−1(Φ0,1(x))F−1(1− Φ0,1(x))ϕ0,1(x) dx,

where ϕ0,1(x) = e−
x2

2√
2π

. These equalities immediately imply that

R(1) =

∫ 1

0

(F−1(u))2 du

and R(−1) =
∫ 1

0
F−1(u)F−1(1− u) du.

Theorem 1. Let the cdf F specify a distribution with zero mean and unit variance.
Then, the function R have the following properties:
1) R is continuous on [−1, 1] and analytic on (−1, 1).
2) R is strictly increasing on [−1, 1].
3) It holds that c :=

∫∞
−∞ xF−1(Φ0,1(x))ϕ0,1(x) dx > 0 and R(r) ∼ c2r as r → 0.

4) For all r ∈ [−1, 1], the inequality |R(r)| ≤ |r| holds. Moreover, if the distribution
speci�ed by F di�ers from the standard normal distribution, then for all r ∈ (−1, 0)∪
(0, 1) satisfy |R(r)| < |r|.

The monograph [1] considers the situation when the function R is formed by
two, generally speaking, di�erent distribution functions, in this paper we consider
the case of one distribution function (see (4) and (5)). In this case items 1 and 2 of
Theorem 1 improve items 2�4 of Lemma 3.3 from [1]. In particular, we establish the
strict monotonicity of the function R (in item 4 of Lemma 3.3 of [1], the non-strict
monotonicity of R is proved) and remove the restriction on the continuity of F .

In [1, Section 3.2], the following inequality is presented without proof: |R(r)| ≤ |r|
for all r ∈ [−1, 1], which corresponds to the �rst part of item 4 of Theorem 1.
We note that the second part of item 4 is of primary value for the present work;
nevertheless, the �rst part of this item, for the sake of completeness, is proved in
Section 5.2.

The properties of R formulated in Theorem 1 will play a central role in what
follows.

The next remark shows the solvability of the equation (3).
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Remark 1. The monotonicity of R implies that the following inequalities hold for
all r ∈ [−1, 1] ∫ 1

0

F−1(u)F−1(1− u) du ≤ R(r) ≤ 1.

Now let T1 and T2 be arbitrary identically distributed random variables given on
the same probability space, with T1 ∼ F . It holds that (e.g., see [8, Theorem 2.5],
[1, Lemma 3.1]) ∫ 1

0

F−1(u)F−1(1− u) du ≤ E(T1T2) ≤ 1.

This immediately implies that the quantity R−1(t0), where t0 = E(T1T2), is de�ned.

Remark 2. Let t0 satisfy the relations:
∫ 1

0
F−1(u)F−1(1 − u) du ≤ t0 ≤ 1. Then

from items 2 and 4 of Theorem 1 one can obtain the following inequalities: if t0 ≥ 0,
then t0 ≤ R−1(t0) ≤ 1; if t0 < 0, then −1 ≤ R−1(t0) ≤ t0. These inequalities can
be used for the numerical search for R−1(t0).

In the next proposition, in particular, we obtain an explicit representation of
the function R in the case when the distribution of the stationary time series
to be modeled is discrete. Note that, if the distribution of the sample realizing
the stationary time series is not known, then a discrete approximation of this
distribution may be used for the modeling by the method of inverse distribution
function and the obtained representation may also be used (e.g., see [9]).

Proposition 1. Let the cdf F be such that there exist �nite a and b satisfying F (b)−
F (a) = 1 (recall that F has zero mean). Then, the function R can be represented
in the form

R(r) =

∫ +∞

−∞

∫ +∞

−∞
Φr(x, y) dF−1(Φ0,1(x)) dF−1(Φ0,1(y))− (F−1(1))2,

where Φr(x, y) is the joint cdf of the two-dimensional Gaussian vector with standard
normal components and the correlation coe�cient r. In particular, if F speci�es a
discrete distribution with atoms at points a1 < a2 < · · · < an, n ≥ 2. Then, it holds
that

R(r) = 2
∑

1≤i<j≤n−1

(ai+1 − ai)(aj+1 − aj)fij(r) +

n−1∑
i=1

fii(r)(ai+1 − ai)2 − a2
n,

where q1 := F (a1 + 0), . . . , qn−1 := F (an−1 + 0), fij(r) := Φr(Φ
−1
0,1(qi),Φ

−1
0,1(qj)).

Remark 3. Note that the function R is especially simple for the two-point distribu-
tion in which q1 = 1/2 because in this case we have f11(r) = 1

4 + 1
2π arcsin(r) (e.g.,

see [10]). Therefore, the function R can be represented as R(r) =
2a21
π arcsin(r).

3. Limit Theorems.

3.1. Preliminaries. Denote by BH(t) the fractional Brownian motion, i.e., the
centered Gaussian process with the covariance function (see [11])

R(t, s) =
1

2

(
t2H + s2H − |t− s|2H

)
,

where H ∈ (0, 1) (the case H = 1/2 corresponds to the ordinary Brownian motion).
In particular, note that the equality EB2

H(t) = t2H holds. If H < 1/2 (H > 1/2),
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then in this case we will speak about subdi�usion (superdi�usion) transport regime.
Accordingly, in the case of H = 1/2, we will speak about a di�usion transport
regime.

For a real number x, let [x] denote the largest integer not exceeding x.
Without loss of generality, in what follows we will assume that F speci�es a

distribution with zero mean and unit variance.

3.2. The case of absolute divergence of the covariance sequence. If {Xj}
can be modeled using the method of inverse distribution function, then the following
proposition explains the asymptotic properties of the corresponding Gaussian sequ-
ence. Furthermore, this proposition formulates asymptotic properties of {Yj}, see (2).

Theorem 2. Let the covariance function of {Xj} satisfy the relation γ(j) =
L(j)j2H−2 as j → +∞, where L is a slowly varying function on +∞ and H ∈
(1/2, 1). Moreover, let {ρ(j)}, where ρ(j) = R−1(γ(j)), be positive de�nite. Then

i) There exists a Gaussian sequence {zj} with the covariance function ρ = ρ(j)
satisfying the relation:

(8) D(
n∑
j=1

zj) ∼
L(n)

c2
H−1(2H − 1)−1n2H , n→∞,

where c =
∫∞
−∞ xF−1(Φ0,1(x))ϕ0,1(x) dx (see Theorem 1). As n→∞, the processes∑[nt]
j=1 zj√

L(n)c−2H−1(2H−1)−1nH
C-converge in D[0, 1] to BH(t).

ii) The sequence {Yj} satis�es the relation:

(9) D(

n∑
j=1

Yj) ∼ L(n)H−1(2H − 1)−1n2H , n→∞

and, in addition, the processes
∑[nt]
j=1 Yj√

L(n)H−1(2H−1)−1nH
C-converge in D[0, 1] to BH(t)

as n→∞.

Recall that by C-convergence inD[0, 1] we mean the weak convergence of distribu-
tions of measurable (in Skorokhod's topology) functionals onD[0, 1] that are continu-
ous in the uniform topology at the points of the space C[0, 1] (e.g., see [12]).

Remark 4. The sequence {Yj} provides a model of the sequence {Xj}, and
the corresponding normalized processes of its partial sums C-converge to BH in
D[0, 1]. Note that the original sequence {Xj} does not generally have this property.
However, if {Xj} can be represented by a moving average formed on the basis of i.i.d.
random variables and if the covariance function of this sequence tends to 0 and has
regular behavior at in�nity, then the C-convergence mentioned above also holds for
{Xj}. Indeed, let {Xj} can be represented by Xj =

∑∞
k=−∞ aj−kξk, where {ξk} is a

sequence of i.i.d. random variables with zero mean and unit variance, {ak} be a non-
random square-summable sequence of real numbers, and γ(j) ∼ bj2H−2, j → +∞,

where b > 0 and H ∈ (1/2, 1). Then, for n → ∞, the processes
∑[nt]
j=1Xj√

bH−1(2H−1)−1nH

C-converge to BH(t) in D[0, 1] (see [13, Corollary 1]).

Theorem 2 illustrates the stability property of noise with the superdi�usion
transport regime (H > 1/2) under the transform F−1 ◦ Φ0,1; i.e., the Gaussian
noise {zj} with the superdi�usion transport regime is transformed into a generally
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speaking non-Gaussian sequence {Yj} with the same transport regime. Below, we
show that the subdi�usion noise (H < 1/2) does not possess such a property (see
Proposition 2).

3.3. The case of absolute summability of a covariance sequence. Next, we
consider a sequence {Xj} the covariance function of which satis�es the condition∑+∞
j=−∞ |γ(j)| < +∞. Note that in this case the spectral density f(λ) satis�es

f(λ) = 1
2π

∑+∞
j=−∞ e−iλjγ(j); therefore it holds that

∑+∞
j=−∞ γ(j) ≥ 0.

Theorem 3 gives asymptotic properties of the sequence {Yj}, which provides a
model of the original sequence {Xj}.

Theorem 3. Let {ρ(j)}, where ρ(j) = R−1(γ(j)), be positive de�nite. Then, the
convergence in distribution∑n

i=1 Yi√
n

d→ √gN (0, 1), where g :=
∑+∞
j=−∞ γ(j), holds.

In addition,
i) if g > 0, then D(

∑n
j=1 Yj) ∼ gn, n→∞;

ii) if g = 0 and γ(j) ∼ aj2H−2, j → +∞ for certain a < 0 and H ∈ (0, 1/2), then
D(
∑n
j=1 Yj) ∼ aH−1(2H − 1)−1n2H , n→∞.

Remark 5. Let {Xj} satisfy the condition of Theorem 3, as well as its item ii).
Consider the degenerate case when this sequence is Gaussian (in this case, {Xj}
coincides with {Yj}). First, note that {Xj} has a spectral density; therefore, this
sequence can be obtained using moving average (e.g., see [14]). Whence, there exist
a square-summable sequence {aj} and a sequence {εj} that is a white noise such

that Xj =
∑+∞
k=−∞ aj−kεk. Moreover, since {Xj} is a Gaussian sequence, then

{εj} may be assumed to be a sequence of independent standard normal random

variables. Then, [15, Proposition 1] implies that the processes
∑[nt]
j=1Xj√

aH−1(2H−1)−1nH

C-converge to BH(t) in D[0, 1] as n→∞.

The centered Gaussian sequence is called a fractional noise with the parameter
H ∈ (0, 1) and variance δ2 (e.g., see [16]) if its covariance function ρ = ρ(j) has the
form

(10) ρ(j) =
δ2

2
(|j + 1|2H + |j − 1|2H − 2|j|2H).

Consider properties of {Yj} formed from the fractional noise with the parameter
H < 1/2.

Proposition 2. Let {zj} be a fractional noise with the parameter H < 1/2,
unit variance, and the covariance function ρ(j). Let, in addition, the distribution
speci�ed by F be di�erent from the standard normal one. Then, the covariance
function R(ρ(j)) of the sequence {Yj} is absolutely summable and

+∞∑
j=−∞

R(ρ(j)) > 0.

Thus, if {Yj} is formed from the fractional noise with the parameter H < 1/2,
then Theorem 3 implies that the noise with the subdi�usion transport regime (H <
1/2) deforms (with respect to F−1 ◦ Φ0,1) into a noise with the di�usion regime
(H = 1/2).
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4. Estimate of Stationarity and Simulation Example.

Let {Xj} be a stationary sequence of identically distributed random variables
such that X1 has the Bernoulli distribution with the parameter p. As a numerical
implementation of such a sequence, we consider the time series of indicators of
function words in Dostoevsky's novel Crime and Punishment�the value 1 is chosen
for function words, and 0 is chosen otherwise. Let us explain such a choice of
numerical implementation. Function words are words that have little lexical meaning
and express grammatical relationships among other words within a sentence or parts
of a sentence. It is noted in [17] that the frequency of occurrence of function words
in the works by a certain author is stable and characterizes the style of this author.
Therefore, we may assume that the occurrence of function words in a text is a
stationary process. Next we give a stationarity test.

Let {X∗j } be an arbitrary stationary sequence of random variables with zero mean

and �nite variance. De�ne Sn :=
∑n
i=1X

∗
j . We assume thatDSn ∼ σ2n2H , n→∞.

Under broad assumptions, �nite-dimensional distributions of the processes
S[nt]

σnH
, t ∈

[0, 1] converge to the corresponding �nite-dimensional distributions BH(t), t ∈ [0, 1]
as n → ∞ (see [13]). Next, we propose a test for verifying the main hypothesis of
stationarity and power-like behavior of variance based on the closeness of the joint

distribution ( Sτ
στH

, S2τ−Sτ
στH

, . . . ,
Skτ−S(k−1)τ

στH
) to the joint distribution (BH(1), BH(2)−

BH(1), . . . , BH(k)−BH(k − 1)) as τ →∞.
Consider a �nite sample (X∗j , j = 1, . . . , n) realizing {X∗j }. Form the sample

(X
(τ)
j , j = 1, . . . , [n/τ ]), where X

(τ)
j =

∑jτ
i=(j−1)τ+1X

∗
i . Note that the value

of τ must be su�ciently large (τ >> 1) to �gather normality�. We will test the
hypothesis that this sample is a fractional noise with variance σ2τ2H . Estimates for
the parameters σ and H can be obtained using known methods, e.g., the method
of variances (see [18]).

Let R be the covariance matrix of the fractional noise. There exists an orthogonal
matrix C and a diagonal matrix D such that CTRC = D. De�ne B =

√
D. Note

that the product (B−1CT )(X
(τ)
j )T gives the sample that can be tested for standard

normality (e.g., see [7]); for this purpose, it is natural to use the parametric χ2 test.
To ensure the validity of using the χ2 test, [n/τ ] must be su�ciently large, i.e.,
τ << n. The actually achieved signi�cance level of this test gives an estimate of

the closeness of the sample (X
(τ)
j ) to the fractional noise and shows the signi�cance

level at which the main hypothesis may be accepted.
Now, we give more detailed descriptions of the computational procedures mentio-

ned above.

Method:
1. Given the sample (Xj , j = 1, . . . , n), �nd the estimates σn and Hn of the
parameters σ and H, respectively (the method of variances may be used).
2. Using an = 1

n

∑n
i=1Xi, center the sample (Xk, k = 1, . . . , n) to obtain X∗k =

Xk − an, k = 1, . . . , n.

3. Form the sample X
(τ)
j =

∑jτ
i=(j−1)τ+1X

∗
i , j = 1, . . . , [n/τ ].

4. De�ne the covariance matrix R of the fractional noise (see (10)), where δn =
σnτ

Hn .
5. Using the matrix R, �nd the matrices B and C. Multiply B−1CT by the vector
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(X
(τ)
j , j = 1, . . . , [n/τ ])T to obtain the sample (ηi, i = 1, . . . , [n/τ ]).

6. On the sample realization (ηi, i = 1, . . . , [n/τ ]), �nd the actually achieved
signi�cance level of the χ2 test under the basic hypothesis that the sample has
the standard normal distribution.
6.1. Let m = [n/τ ]. Divide the number line into k = [

√
m] + 1 non-overlapping

intervals ∆1,∆2, ...,∆k so thatmΦ0,1(∆1) = mΦ0,1(∆2) = ... = mΦ0,1(∆k) = m/k.
On the sample realization (ηi, i = 1, . . . , [n/τ ]), �nd the value of the test statistic

X2 =
∑k
i=1(νi−m/km/k )2, where νi is the number of sample elements (ηi) in ∆i,

i = 1, . . . , k.
6.2. Keeping in mind the three parameters a, σ, and H to be estimated, �nd the
actually achieved signi�cance level of the χ2 test, namely, ε(τ) = 1− χ2

k−4(X2).

The disadvantages of this test are as follows: 1) stationarity is checked for the

smoothed sample (X
(τ)
j , j = 1, . . . , [n/τ ]), which reduces the power of the test; 2)

there is the problem of ambiguity of choosing the parameter τ .
Thus, we have the sample of indicators of function words (Xj , j = 1, . . . , n) of

size n = 172586. The estimates of the parameters σ, H, and a (a coincides with p)
are, respectively, σn = 0.32, Hn = 0.60, and pn = 0.25. We have already mentioned
that τ must satisfy the relations 1 << τ << n. Taking into account these relations,
we consider two variants for the values of τ : 1) τ1 = [

√
n]; 2) τ2 = 2[

√
n] (τ1 = 415,

τ2 = 830). The actually achieved level of signi�cance of the stationarity test in
the �rst case is ε(τ1) = 0.002 and, accordingly, in the second case is ε(τ2) = 0.16.
Therefore, we obtain fairly high levels of agreement between the main hypothesis
of stationarity, as well as the power-like behavior of the variance, and real data.

For the further simulation using the method of inverse distribution function, we
center and normalize the sample (Xj , j = 1, . . . , n) using pn and

√
pn(1− pn).

Then we obtain (X∗j , j = 1, . . . , n) (where X∗j = (Xj − pn)/
√
pn(1− pn)). Next,

we calculate the estimate of the covariance function λn(l) = 1
n−l

∑n−l
k=1X

∗
kX
∗
k+l,

where l = 0, . . . ,m. In this paper, m = 3000 was used.
At the next step, the sequence γn(l) = R−1(λn(l)), l = 0, . . . ,m, is numerically

found, for which purpose the representation of the functionR obtained in Proposition
1 is used (where, as the function F , we apply the empirical distribution function
Fn of the sample (X∗j , j = 1, . . . , n)). Next, positive de�niteness of this sequence
is veri�ed (the matrix Gn = (γn(|i − j|))i,j=1,...,m+1 is considered). Note that in
this case the sequence is strictly positive de�nite, which allows us to simulate the
Gaussian sequence gn = (gn(k), k = 1, . . . ,m + 1) for which Gn is the covariance

matrix. At the �nal step, we obtain Yk =
√
pn(1− pn)F−1

n (Φ0,1(gn(k))) + pn,
k = 1, . . . ,m+ 1 (for details see [9, Method 3]).

5. Proofs.

5.1. Preliminaries on Chebyshev-Hermite polynomials. The Chebyshev-Her-

mit polynomial of degree k is de�ned by Hk(x) = (−1)k

ϕ0,1(x)
dkϕ0,1(x)
dxk

. The space of

functions G such that

(11)

∫ +∞

−∞
G2(x)ϕ0,1(x) dx < +∞
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is a Hilbert space with the scalar product (G,H) =
∫ +∞
−∞ G(x)H(x)ϕ0,1(x) dx. The

Chebyshev-Hermit polynomials form an orthogonal basis in this space.
Note that (e.g., see [19, Theorem 3.1])

(12) EHk(z)Hl(w) = δklr
kk!,

where δkl is the Kronecker symbol, z and w are jointly Gaussian random variables
such that z, w ∼ N (0, 1),E(zw) = r. In particular,EHk(z)Hl(z) = δklk!. Therefore,
according to (11), we have the expansion

(13) G(x) =

+∞∑
k=0

ckHk(x),

and the relation
∑+∞
k=0 k!c2k < +∞ holds. Due to (6), the function F−1(Φ0,1(·))

satis�es (13).
Note that m := min{k : ck 6= 0} is called the Hermitian rank of the function G.

5.2. Proof of Theorem 1. 1) Relations (12) and (13) imply that, for all r ∈
[−1, 1], the function R can be represented by the power series

(14) R(r) =

+∞∑
k=0

k!c2kr
k,

where ck =
(−1)k

∫ +∞
−∞ F−1(Φ0,1(x))ϕ

(k)
0,1(x) dx

k! . This expansion in the power series and
its convergence for r = 1 imply the continuity of R(r) on the entire interval [−1, 1]
and, in addition, the analyticity on (−1, 1).

2) Relation (14) implies

(15) c1 =

∫ +∞

−∞
xF−1(Φ0,1(x))ϕ0,1(x) dx.

Let us show that c1 > 0. It is clear that c1 = EzF−1(Φ0,1(z)), where z ∼ N (0, 1).
Denote by µ the median of the distribution speci�ed by F (this means that F (µ+
0) ≥ 1/2 and F (µ) ≤ 1/2). Note that the distribution speci�ed by F0(x) := F (x+
µ), has a zero median, and it holds that F−1(Φ0,1(z)) = µ + F−1

0 (Φ0,1(z)) almost

surely (a.s.); therefore, EzF−1(Φ0,1(z)) = EzF−1
0 (Φ0,1(z)).

Let z ≥ 0, then Φ0,1(z) ≥ 1/2 and, therefore, due to the fact that 0 is the median

for F0, we obtain the inequality F−1
0 (Φ0,1(z)) ≥ 0. If now z < 0, then Φ0,1(z) < 1/2,

which immediately implies that F−1
0 (Φ0,1(z)) ≤ 0. Combining these two cases, we

conclude that zF−1
0 (Φ0,1(z)) ≥ 0 a.s. Assume that EzF−1

0 (Φ0,1(z)) = 0; then,

taking into account the preceding inequality, we obtain that zF−1
0 (Φ0,1(z)) = 0

a.s.; however, this implies that F−1
0 (Φ0,1(z)) = 0 a.s., which contradicts the non-

degeneracy of the distribution de�ned by F . Finally, we conclude that c1 > 0, which
implies that R′(r) =

∑+∞
k=1 k!c2kkr

k−1 ≥ c21 > 0 on the interval [0, 1).
Continue R′ to the set of complex numbers C by de�ning

R′(r) =

+∞∑
k=1

k!c2kkr
k−1, r ∈ C.

Note that the complex function R′(r) is analytic on D = {r ∈ C : |r| < 1}.
Furthermore, R′(r) is not identically equal to zero in this domain (see above);
therefore, the zeros of this function are isolated points (e.g., see [20, Theorem 3.2.8]).
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It was proved in [1, Lemma 3.3] that R is a not strictly increasing function on the
interval [−1, 1]. Assume that there exists an interval [a, b] ⊂ (−1, 1) on which R is
constant. Then, R′(r) = 0 on [a, b], which contradicts the fact that the zeros of R′

are isolated. Finally, we conclude that R is strictly increasing on [−1, 1].
3) Since c0 = 0, (14) immediately implies that R(r) ∼ c21r, r → 0. Above, we

have proved that c1 > 0; therefore, it remains to set c := c1.

4) Let us prove the �rst part of this item. Consider the function τ(r) := R(r)
r

on [0, 1] (the value of τ(·) at zero is set to c2). From (14) we get that τ ′(r) is non-
negative on (0, 1). This implies that the function τ is increasing on [0, 1]. Note that
τ(1) = 1, so R(r) ≤ r for all r ∈ [0, 1]. Obviously, for all r ∈ [−1, 1], the inequality
|R(r)| ≤ R(|r|) is satis�ed, so |R(r)| ≤ |r| for all r ∈ [−1, 1].

Now let the distribution speci�ed by F di�er from the standard normal one. Let
us show that there is a k ≥ 2 in expansion (14) such that ck 6= 0. Assume that this
is not the case. Then, R(r) = c21r. Therefore, taking into account that R(1) = 1
and c1 > 0, we conclude that c1 = 1. Hence, c1 = EzF−1(Φ0,1(z)) = 1, where

z ∼ N (0, 1). On the other hand, we have the obvious inequality
z2+(F−1(Φ0,1(z)))2

2 −
zF−1Φ0,1(z) ≥ 0 a.s. However, since E(

z2+(F−1(Φ0,1(z)))2

2 − zF−1(Φ0,1(z))) = 0, we

have z = F−1(Φ0,1(z)) a.s. Therefore, the distribution speci�ed by F coincides with
the standard normal distribution. This is a contradiction; therefore, there exists a
k ≥ 2 such that ck 6= 0.

The fact that ck 6= 0 for a certain k ≥ 2 implies that τ ′(r) > 0 on the interval
(0, 1), i.e., the function τ strictly increases on [0, 1]. Note that τ(1) = 1; therefore,
for all r ∈ (0, 1), it holds that R(r) < r. Since |R(r)| ≤ R(|r|), we immediately
obtain that |R(r)| < |r| for all r ∈ (−1, 0). �

In what follows, to prove Theorem 2 and 3, we will need the following corollary
of Theorem 1.

Corollary 1. The Hermitian rank of the function F−1(Φ0,1(·)) is equal to 1.

Proof. First of all, note that c0 = 0 since EZ1 = 0 (see (4)), which implies that
the Hermitian rank of the function F−1(Φ0,1(·)) at least 1. Since the �rst Hermite
polynomial has the form H1(x) = x, therefore, it is su�cient to establish that∫ +∞
−∞ xF−1(Φ0,1(x))ϕ0,1(x) dx 6= 0. But above in item 3 of Theorem 1 it was found

that the mentioned integral is greater than 0 (see (15)). �

5.3. Proof of Proposition 1. In what follows, we will need the following equality
due to Hoe�ding (see [21]; see, e.g., also [22, Lemma 2]).

Lemma 1 (Hoe�ding). Let the random vector (A,B) have the joint cdf H with
marginals J and G. Then

EAB −EAEB =

∫ +∞

−∞

∫ +∞

−∞
(H(a, b)− J(a)G(b)) da db

provided the expectations on the left hand side exist.

Let us prove the �rst part of the proposition. Using Lemma 1, we �nd that the
function R(r) can be represented as

(16) R(r) =

∫ +∞

−∞

∫ +∞

−∞
(H(a, b)− F (a)F (b)) da db,
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where H is the joint cdf for (F−1(Φ0,1(z)), F−1(Φ0,1(w))) (recall that z and w
are jointly Gaussian random variables such that z, w ∼ N (0, 1) and E(zw) = r).
Making the substitutions: a = F−1(Φ0,1(x)) and b = F−1(Φ0,1(y)) in (16), we
deduce

R(r) =

∫ +∞

−∞

∫ +∞

−∞
(Φr(x, y)− Φ0,1(x)Φ0,1(y)) dF−1(Φ0,1(x)) dF−1(Φ0,1(y)).

From where we immediately get
(17)

R(r) =

∫ +∞

−∞

∫ +∞

−∞
Φr(x, y) dF−1(Φ0,1(x)) dF−1(Φ0,1(y))−

(∫ 1

0

x dF−1(x)

)2

.

Next, it is obvious that∫ 1

0

x dF−1(x) = F−1(1)−
∫ 1

0

F−1(x) dx.

Substituting this equality into (17) (taking into account that
∫ 1

0
F−1(x) dx = 0),

we at once obtain the assertion of the �rst part of the proposition.
We turn to the proof of the second part. It is clear that∫ +∞

−∞

∫ +∞

−∞
Φr(x, y) dF−1(Φ0,1(x)) dF−1(Φ0,1(y))

= 2
∑

1≤i<j≤n−1

(ai+1 − ai)(aj+1 − aj)fij(r) +

n−1∑
i=1

fii(r)(ai+1 − ai)2.

In addition, we have F−1(1) = an. These two relations immediately imply the
assertion of the proposition. �

5.4. Proof of Theorem 2. The next lemma plays the key role in the proof of
Theorem 2. This lemma is a consequence of Theorems 3.1 and 5.1 from [3].

Lemma 2. Let {zj} be a stationary sequence of standard normal random variables
the covariance function of which satis�es the relations
ρ(j)→ 0, j →∞,∑n
i=1

∑n
j=1 ρ(i− j) ∼ L(n)n2H , n→∞,∑n

i=1

∑n
j=1 |ρ(i− j)| = O(L(n)n2H), n→∞,

where L is a slowly varying function at +∞ and H ∈ (1/2, 1). Let, in addition,
the function G satisfy the conditions: EG(z1) = 0, EG2(z1) < +∞, and let the
Hermitian rank of this function be 1. Then

(i) D(
∑n
i=1G(zi)) ∼ J2(1)n2HL(n) as n→∞, where J(1) = Ez1G(z1);

(ii) the processes

Zn(t) =

∑[nt]
i=1G(zi)√
L(n)nH

C-converge in D[0, 1] to J(1)BH(t) as n→∞.

Proof of Theorem 2. i) For each γ(j), j ∈ Z, there exists a preimage R−1(γ(j))
(see Remark 1), which is denoted by ρ(j). In addition, item 3 of Theorem 1 implies
that

R−1(γ(j)) ∼ 1

c2
γ(j), j →∞.
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Therefore,

(18) ρ(j) ∼ L(j)

c2
j2H−2, j →∞.

Next, (18) and Lemma 3.1 from [3] entail

(19)

n∑
i=1

n∑
j=1

ρ(i− j) ∼ L(n)

c2
H−1(2H − 1)−1n2H , n→∞

and

(20)

n∑
i=1

n∑
j=1

|ρ(i− j)| = O(L(n)n2H), n→∞.

Since item i) deals with a Gaussian sequence, in this case we consider the identity
transformation G(x) = x of this sequence. It is clear that the Hermitian rank of
such a function G is 1. Relations (19) and (20) satisfy the condition of Lemma 2.
Therefore, equivalence (8) holds (in this case, J(1) equals 1), and the processes∑[nt]

j=1 zj√
L(n)c−2H−1(2H−1)−1nH

C-converge to BH(t).

ii) First, we note that the Hermitian rank of the function F−1(Φ0,1(·)) is 1
(see Corollary 1). Furthermore, (19) and (20) satisfy the condition of Lemma 2.
Therefore, equivalence (9) holds (note that J(1) coincides with the constant c (see
the condition of the theorem)). Again, according to Lemma 2, we conclude that the

processes
∑[nt]
j=1 Yj√

L(n)c−2H−1(2H−1)−1nH
C-converge to cBH(t). �

5.5. Proof of Theorem 3 and Proposition 2. As before, we denote by {zk} the
stationary sequence of standard normal variables. We will consider the function G
such that EG(z1) = 0 and EG2(z1) < +∞. In this case, we have expansion (13):

G(x) =

+∞∑
k=0

ckHk(x).

We formulate a one-dimensional version of Theorem 1 from [4] for functions with
the unit Hermitian rank.

Lemma 3. Let the Hermitian rank of the function G be 1 and the covariance
function ρ = ρ(j) of the sequence {zj} satisfy the condition

+∞∑
j=−∞

|ρ(j)| < +∞.

Then, the limits

(21) lim
n→∞

E(
∑n
i=1Hl(zi))

2

n
= lim
n→∞

n−1l!

n∑
i=1

n∑
j=1

ρl(i− j) = σ2
l l!

exist for all l ≥ 1, and the following sum is �nite:

(22) σ2 =

+∞∑
l=1

c2l σ
2
l l!.



514 N.S. ARKASHOV

Moreover, as n → +∞, we have the convergence in distribution
∑n
i=1G(zi)√

n
to

σN (0, 1).

Lemma 4. Let the conditions of Lemma 3 be satis�ed. Then, for σ2
l , it holds that

σ2
l =

+∞∑
j=−∞

ρl(j).

Proof. It is clear that

(23)

∑n
i=1

∑n
j=1 ρ

l(i− j)
n

=
nρl(0) + 2

∑n−1
j=1

∑j
i=1 ρ

l(i)

n
.

Consider the right-hand side of (23). It follows from [23, Chapter 9, Lemma 9] (it

su�ces to put bk = 1 and xk =
∑k
i=1 ρ

l(i)) that
∑n−1
k=1

∑k
i=1 ρ

l(i)

n →
∑+∞
i=1 ρ

l(i) as
n→∞. This immediately implies the assertion of the lemma. �

Proof of Theorem 3. According to item 3 of Theorem 1, the sequence {ρ(j)} is
absolutely summable. Then, taking into account the Corollary 1, the condition of
the Lemma 3 is satis�ed. Consider (22). Using Lemma 4, we conclude that σ2 =∑+∞
j=−∞

∑+∞
l=1 l!c

2
l ρ
l(j). Recall that R(ρ(j)) =

∑+∞
l=1 l!c

2
l ρ
l(j) (see (14)). Therefore,

it holds that σ2 =
∑+∞
j=−∞R(ρ(j)); hence σ2 = g. This implies the convergence in

distribution of the sequence {
∑n
i=1 Yi√
n
} to √gN (0, 1) as n→∞.

i) Let g > 0. Since {Yn} is a stationary sequence with spectral density, it can be
obtained using moving average (e.g., see [14]). Thus, there exists a square-summable

sequence {aj} and {εj} that is a white noise such that Yn =
∑+∞
j=−∞ an−jεj , n ∈ Z.

Along with {Yn}, consider the Gaussian analog of this sequenceGn =
∑+∞
j=−∞ an−jζj ,

where {ζj} is the sequence of independent standard normal random variables. It
is clear that Dn := D(

∑n
j=1 Yj) = D(

∑n
j=1Gj) for all n ≥ 1. Furthermore,

R(ρ(j)) = E(G0Gj) for all j ∈ Z. Note that { Gn√
g
√
n
} weakly converges to the

standard normal law (see item 2 of Theorem 7.2.11 in [16]). The random variable
Gn/
√
Dn has the standard normal distribution for all n. Hence,Dn ∼ gn as n→∞.

ii) The proof of this assertion is similar to the proof of the preceding assertion.
Next, we note the di�erences. The sequence { Gn√

aH−1(2H−1)−1nH
} weakly converges

to the standard normal law (see item 3 of Theorem 7.2.11 in [16]). In this case, the
random variable Gn/

√
Dn has the standard normal distribution for all n. Finally,

we conclude that Dn ∼ aH−1(2H − 1)−1n2H as n→∞.
�

Proof of Proposition 2. According to Theorem 7.2.10 from [3], we conclude that
{ρ(j)} is absolutely summable, and the corollary to this theorem implies that∑+∞
j=−∞ ρ(j) = 0. Using Theorem 1, we obtain the absolute summability of {R(ρ(j)}.

According to items 2 and 4 of Theorem 1, we obtain the inequalities |R(ρ(j))| <
|ρ(j)| and R(ρ(j)) < 0 for all j 6= 0; also note that ρ(0) = R(ρ(0)) = 1. Therefore,∑+∞
j=−∞R(ρ(j)) >

∑+∞
j=−∞ ρ(j) = 0.

�
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