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RECONSTRUCTION OF SUBSURFACE SCATTERING OBJECTS

BY THE TIME REVERSAL MIRROR

G. RESHETOVA, A. GALAKTIONOVA

Recovery and spatial localization of small scale inhomogeneities in geo-
logical media are of fundamental importance to increase the resolution
of the geophysical data processing and improve reliability of the results
obtained. This paper proposes a method for reconstruction of random
subseismic inhomogeneities embedded in a smooth elastic medium using
the Time Reversal Mirror approach. The method is based on the time
reversibility principle of wave processes in media without attenuation.
The interaction of a wave�eld with subseismic inhomogeneities is consid-
ered as the process of the appearance of "secondary sources" generated
by small-scale inclusions. These sources indicate the presence of the geo-
logical inhomogeneities in a medium and can be spatially localized using
the Time Reversal Mirror method based on the recordings of the data by
the acquisition system. Veri�cation of the method proposed was carried
out on synthetic data computed by the �nite di�erence method.

Keywords: random media, wave propagation, secondary radiation sour-
ces, numerical solutions, Time Reversal Mirror, �nite di�erence schemes.

1. Introduction

The main goal of the exploration geophysics is to search for the structure of
hydrocarbon and mineral deposits. One of the principal areas of geophysical re-
search is seismic exploration on the based of the excitation and recording of elastic
waves. Di�erent geological media have di�erent elastic properties which gives rise
of re�ected/scattered waves at the interfaces of the layers. These waves bring infor-
mation about geological structures. They can be recorded by seismic receivers and
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subjected to special processing to restore the Earth's internal structure. For exam-
ple, using the methods of re�ected or refracted waves, the geometry of boundaries
in layered media is restored with su�cient reliability. However, the identi�cation
of clusters of small-scale irregularities can cause serious di�culties. The character-
istic sizes of these objects are much smaller than the dominant length of seismic
waves and therefore cause an extremely weak response. However, the presence of
small-scale inhomogeneities in the medium leads to the appearance of a �eld of
scattered waves, which can be considered as indicator to the inhomogeneity of the
geological medium. Therefore, if we localize the origin of a scattered wave, we
thereby determine the position of the scatterer that has generated it. Thus, the
problem of determining the location of small-scale inhomogeneities within a geo-
logical medium can be reduced to the problem of �nding the position of sources of
scattered waves generated by these inhomogeneities. Among the numerical meth-
ods and approaches for the localization of acoustic/seismic wave sources [1,10], we
have chosen the approach known as the Time Reversal Mirror (TRM) method.

The TRM method is based on the time reversibility property of the wave prop-
agation in media without attenuation. Both the method and the term TRM were
�rst introduced in [2]. In the last decade, this approach was very successfully
used in solving problems of the virtual sources generation, sound focusing, non-
destructive testing of materials and engineering structures, and in a number of
other areas [3�6,12].

One of the most important consequences of the time reversibility principle is the
possibility of using inverted in time data recorded in receivers signal as source func-
tions. With such an operation, the wave�eld, by virtue of the principle formulated
above, should be focused into the source both in space and in time and, thereby,
generate the increase of the amplitude at the source point at the moment of its
excitation.

However, in a number of practically signi�cant cases, the moment of switching
on the source is unknown; therefore, with the Time Reversal, the wave after the
moment of focusing will inevitably to diverge and to lose the spatial localization.
If there is a small number of sources (for example, less than ten), then such wave
ampli�cation can be visually followed, but if there are hundreds or more sources
(in particular, during the destruction of the medium and the formation of a family
of cracks), then visual tracking is no longer possible.

To overcome this problem we propose an original method for imaging the spatial
localization of small-scale inhomogeneities based on the computation of the total
energy of the time-reversal wave�eld.

Below, we describe a scheme for solving the problem of localizing small-scale
inhomogeneities within a smooth geological medium using a combination of the
TRM for wave�eld records on the free surface and the method for calculating the
full elastic energy.

2. Model formulation and governing equations

Let the half-plane z ≥ 0 be �lled with an elastic medium containing clusters of
small-scale inhomogeneities. The propagation of elastic waves in such a medium
satis�es the following system of the dynamic elasticity theory in the velocity-stress
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formulation [11]:
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In (1) the (vx, vz) are the displacement velocities, while (τxx, τxz, τzz) correspond
to stresses. The elastic parameters are the Lam�e moduli λ, µ and the density
ρ. There are the following connections of these parameters with P- ans S-waves
propagtion velocities:

(2) λ = ρ
(
V 2
p − 2V 2

s

)
, µ = ρV 2

s .

The functions Fxx, Fzz, Fxz in the right-hand side of equations (1) de�ne the
seismic source. Here we deals with the volumetric source:

(3) Fxx = Fzz = f(t) · δ(x− x0, z − z0), Fxz = 0,

where δ(x − x0, z − z0) is the Dirac delta function centered at the point (x0, z0),
and f(t) de�nes the source function, which chosen in our numerical experiments as
the Ricker wavelet:

(4) f(t) = (1− 2π2 f20 (t− t0)
2
)exp(−π2 f20 (t− t0)

2
),

with dominant frequency f0 and time delay t0.
To avoid arti�cial re�ections from the boundaries of the computational domain,

we apply absorbing boundary conditions in the form of a perfectly matched layer
(PML method). We use an unsplit convolutional PML [7], which has less spurious
re�ections than classical discrete PML.

3. Linear approximation and total elastic energy of TRM

This section has two objectives. First, we justify that clusters of small-scale
inhomogeneities can be considered as objects that generate secondary sources of
scattered waves. Second, we outline an algorithm for localizing the accumulation
of these inhomogeneities using the Time Reversal Mirror approach.

Since the inhomogeneities are assumed to be small compared to the wavelength,
we can linearize equations (1). Let us represent the Lam�e parameters of the medium
in the form

(5)
λ(x, z) = λ0(x, z) + λ1(x, z), λ1(x, z)� λ0(x, z),
µ(x, z) = µ0(x, z) + µ1(x, z), µ1(x, z)� µ0(x, z),
ρ(x, z) = ρ0(x, z) + ρ1(x, z), ρ1(x, z)� ρ0(x, z),

where λ0, µ0, ρ0 are parameters corresponding to smooth background, and the terms
λ1, µ1, ρ1 are sharp perturbations of the medium. Thus we represent the elastic pa-
rameters of the medium as the superposition of the two components - a smoothly
varying macroscopic model (with index 0) and its small-scale perturbations (with
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index 1). On the base of (5) we can also introduce the decomposition of the wave-
�eld:

(6)

~u(x, z; t) = ~u0(x, z; t) + ~u1(x, z; t),
τxx(x, z; t) = τ0xx(x, z; t) + τ1xx(x, z; t),
τzz(x, z; t) = τ0zz(x, z; t) + τ1zz(x, z; t),
τxz(x, z; t) = τ0xz(x, z; t) + τ1xz(x, z; t).

Formal linearization of the system (1) with respect to the parameters of the
medium containing terms of the �rst order of smallness and using expansions (5)
and (6) lead to the following initial-boundary value problem for describing the wave
process:

• for de�ning the wave�eld in the background medium (~u0, ~τ0) with the
smoothly changing parameters λ0, µ0, ρ0

(7)
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• for de�ning the scattered wave�eld (~u1, ~τ1) using the already found values
(~u0, ~τ0) as the right-hand sides of equations

(8)
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In equations (8), �secondary sources� in right-hand have their supports in the

places where perturbations λ1, µ1, ρ1 are not equal to zero. Moreover, their ampli-
tudes are proportional to perturbations of the medium. Excitation of these sources
coincides with arrival of the incident wave. Thus, clusters of small scale irregu-
larities are secondary sources emitting scattered waves. For clarity, we present in
Fig. 1 the wave�eld for three scatters located in a smooth medium.

As was mentioned above, we reformulate the problem of localization of small-
scale inhomogeneities within a geological medium for the problem of �nding the
position of secondary sources of scattered waves generated by these inhomogeneities.
To do this we use the TRM taking into account only the scattered component of
the recorded wave�eld.

The TRM algorithm consists of two steps. Suppose �rst that we have a wave
�eld registered by a group of receivers on the free surface, emitted by some seismic
source inside the medium. Then we use the time-reversed seismograms as a set
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Figure 1. Snapshots of the wave�eld component ux for a homo-
geneous medium with three scatterers (red squares). (a) The wave
from the source reaches scatterers (upper �gure). PP and PS scat-
tered waves generated by the local inhomogeneities (lower �gure).

of sources (at the same locations as the receivers) to generate waves propagating
in reverse time. Those waves should theoretically be focused synchronously into
source position.

To improve the resolution of small-scale inhomogeneities, we use special tech-
niques. The TRM procedure is sequentially applied for a set of sources uniformly
distributed over a horizontal line on the free surface, followed by summing up the
results obtained for each source. In addition, to eliminate the local extrema of
the wave �elds and to enhance the coherent component of the total wave �eld, we
stack the elastic energy density on each time step [10]. This means that at each
computational moment of time tk for all points of computational domain, the total
energy density E for all previous time steps tm is calculated:

(9) Esum(xi, zj , t
k) =

∑
tm≤tk

E(xi, zj , t
m)

where elastic energy density at the time tm computed by the following relations:

E(xi, zj , t
m) = τxx(xi, zj , t

m)εxx(xi, zj , t
m)+

+τ zz(xi, zj , t
m)εzz(xi, zj , t

m)+2τxz(xi, zj , t
m)εxz(xi, zj , t
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Here τ and ε are the stress and the strain components, respectively.
In the next section we present the results of numerical experiments to demon-

strate how TRM works for scatterers localization.
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4. Numerical simulations

To test the proposed approach let us start with the problem of restoring the
position of random small-scale inclusions in a smooth elastic medium (Fig. 2a). To

do this, we assume that a smooth reference medium (vp = 3000 m/s, vs = vp/
√
3,

ρ = 2000 kg/m3) �lls the square 1500×1500 m and use the �nite di�erence staggered
grid with step of 1 m. Scattering objects are introduced into this model according
to the following rule:

• The entire layer is divided into rectangles of 30 m wide. (Fig. 2b);
• The presence/absence of a small-scale inclusion (scatterer) at the center of
each rectangle is determined by a test of some random variable;

• If the test is successful, a square object of 3×3 m is placed at the center of
the rectangle; the velocity in this object (both, ï¨�ompressional and shear)
vary by 10% (up or down) from the velocity in the homogeneous medium.

a

b

Figure 2. (a) The line R location of sources/receivers (red *) and
random small-scale inclusions (red squares); (b) The scheme of a
random media modeling.

To conduct the experiment, we need seismogram. As we have not any �eld data,
we use synthetic seismic data obtained by numerical simulation by the staggered-
grid �nite di�erence technique with second order of accuracy with respect to space
and time [8,11]. This is a highly e�cient and concise approach to simulate seismic
wave�lds because it directly takes into consideration the structure of the equations
that form a hyperbolic system.

In this study, we do not take into account the presence of a free surface. We
assume that seismograms are recorded in a horizontal line inside the unlimited
space. For this purpose, the entire computational domain is surrounded by the
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a

b

c

Figure 3. Seismogram of component τzz calculated for the �rst
source. (a) The original seismogram; (b) Cutting o� part of the
seismogram from 0 to 0.8 s corresponding to the direct wave from
the source and leaving a scattered wave�ld part from 1 s to 1.2 s;
c) The �nal time-reversed seismogram using as input data for TRM
procedure.

Convolutional Perfectly Matched absorbing boundary Layers (CPML) to suppress
all non-physical re�ections from the boundaries of the computational domain [7].
The solution of system (1) is computed up to the time T = 1.2 s with a time
sampling step of 2 · 10−4 s. To simulate the full range synthetic seismic data we
used 57 sources of volumetric type (see the observation system R in Fig. 2a) located
at a depth of 40 m with 2 m distance from each other. The dominant frequency of
source functions is f0 = 100 Hz.
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a b

Figure 4. (a) A snapshot of the total energy density E calculated
only for the �rst source; (b) A snapshot of the total energy density
E sum calculated for all 57 sources.

For each position of the source, the values of the stress components (τxx, τzz)
at each instant of the time are recorded in a row of receivers R (Fig. 2a) located
on the free surface. The calculated seismograms are used as synthetic data for the
TRM procedure.

As is known, a seismogram contains complete information about the propagation
of a wave�eld, including incident, re�ected, transmitted, refracted, and scattered
waves. The amplitude of the scattered waves is an order of magnitude smaller than
the amplitude of the wave excited by the source. To increase the resolution, we
cut out a part of the seismogram, leaving only the part that carries information
about the scattered component of the wave �eld (Fig. 3). The cut of seismograms
are inverted in time and considered as the initial data for the TRM inversion. In
accordance with the TRM procedure described above, each seismogram acts as a
set of sources generating a wave�eld propagating in the medium backward in time.

The result of computations are presented in Fig. 4, where Fig. 4a shows a snap-
shot of the total energy density E calculated only for the �rst source and Fig. 4b
shows the total energy density E summed at each time step for all 57 sources and
recorded as snapshot at each point of the computational domain. We can observe a
good correlation between the position of the scatterers in Fig. 2a and the expansion
of amplitudes in Fig. 4b. Note that scatterers closer to the center of the domain
recover better than scatterers at the edges. This is due to the observation system
and the lack of information for the reconstruction of scatterers at the edges of the
domain.

For the next test calculation, we chose the same homogeneous background but
another rule for determining random scatterers. The scatterers are replaced by a
random cluttered layer 100 meters thick below 1400 m with correlation length 15 m
and standard deviation 5 % (Fig. 5).

For comparison, Fig. 6a shows the initial velocity distributions of the cluttered
layer, and Fig. 6b shows the result of the TRM image of the total energy density E



RECONSTRUCTION OF SCATTERING OBJECTS 525

Figure 5. Vp velocity model for homogeneous medium with a
cluttered layer.

a b

Figure 6. (a) The initial Vp velocity for the cluttered media;
(b) A snapshot of the total energy density E summed for all
sources.

summed for all sources. In this test, we also see a good match between the velocity
inhomogeneities correspond to the clattered medium in Fig. 6a and the amplitude
expansion in Fig. 6b.
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5. Conclusion

The paper presents a method for reconstructing subsurface scattering objects
based on the combination of the Time Reversal Mirror with imaging of their loca-
tions by the total energy density E.

It is proved that the localization of small-scale inhomogeneities in space can be
replaced by the procedure for restoring the position of the sources of scattered waves
excited in the medium during seismic exploration. Numerical calculations for test
models showed a good spatial reconstruction of scatterers.

Calculations have shown that for lateral resolution it is necessary to take a large
observation aperture.
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