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Abstract. In the routing open shop problem a �eet of mobile machines
has to traverse the given transportation network, to process immovable
jobs located at its nodes and to return back to the initial location in
the shortest time possible. The problem is known to be NP-hard even
for the simplest case with two machines and two nodes. We consider a
special proportionate case of this problem, in which processing time for
any job does not depend on a machine. We prove that the problem in
this simpli�ed setting is still NP-hard for the same simplest case. To
that end, we introduce the new problem we call 2-Summing and reduce it
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algorithm for the two-machine proportionate problem with at most three
nodes.
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1. Introduction

The object of investigation of this paper is a special proportionate case of so-
called routing open shop problem, which is a natural combination of the classical
open shop scheduling problem and the metric traveling salesman problem (TSP).

The open shop problem was introduced in [8] and can be described as follows.
The set of jobs J = {J1, . . . , Jn} is given. Each machineMi from the given setM =
{M1, . . . ,Mm} has to perform an operation on every job Jj , which takes prede�ned
processing time pji. Operations can be performed in any sequence, providing that
operations of the same machine or of the same job do not overlap. The goal is to
construct a feasible schedule minimizing so-called makespan, which is de�ned as the
completion time of the last operation. Following the traditional three-�eld notation
for scheduling problems (see e.g. [13]) the open shop problem with m machines
is denoted as Om||Cmax. Notation O||Cmax is used for the case with unbounded
number of machines.

The O2||Cmax problem can be solved to the optimum in linear time [8]. The
complete review of all �ve known algorithms for this problem can be found in
[9]. The analysis of any of these algorithm shows the important property of any
instance of the O2||Cmax problem: optimal makespan always coincides with the
standard lower bound C̄ = max

i,j
{`i, dj}, where `i =

∑
j

pji is the load of the machine

Mi, and dj =
∑
i

pji is the duration of the job Jj . Following [11] we refer to this

property as normality: a feasible schedule is called normal if its makespan equals
the standard lower bound, and an instance is normal if it admits constructing a
normal schedule.

The O3||Cmax problem is NP-hard [8], however its exact complexity is still
unknown. On the other hand, the problem O||Cmax is strongly NP-hard even in
the case when integer processing times do not exceed 2 [19]. For m > 3 normality
cannot be guaranteed: the optimal makespan for O3||Cmax can be as high as 4

3 C̄
[18]. The NP-hardness of the Om||Cmax problem justi�es the research of its special
cases. One of such relaxations is so-called proportionate open shop, in which the
processing times are machine-independent, i.e. pji = pj for all i. This problem is
usually denoted as Om|prpt|Cmax. However it is suggested in [17] to use clearer
notation j-prpt to distinguish this problem from another special case with job-
independent processing times, for which the name proportionate is also used in
some papers (e.g. [15, 16]). In this paper we will follow the notation j-prpt.

The O3|j-prpt|Cmax problem is also NP-hard. This can be easily shown by
the reduction from a well-known Partition problem [7]; the formal proof of this
fact was �rst published in [14]. Approximation algorithms for Om|j-prpt|Cmax are
suggested in [12, 17]. The latter paper [17] provides a pseudopolynomial algorithm
for the O3|j-prpt|Cmax problem, which gives a partial answer to the open question
on exact computational complexity of O3||Cmax.

The routing open shop problem [1, 2] generalizes the open shop problem in the
following manner. In addition to the open shop instance, a transportation network
G = 〈V ;E〉 is given. Immovable jobs are distributed among the nodes of network.
One of the nodes v0 ∈ V , called the depot, is the initial location of mobile machines.
A weight of edge e ∈ E represents the travel time which takes any machine to
traverse this edge. In order to perform an operation on some job, machine has to
reach the correspondent node �rst. The restrictions inherited from the open shop are
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in order: intervals of performing operations of the same job (same machine) cannot
have common inner points. However machines can travel without any restrictions:
any number of machines can traverse the same edge simultaneously in any direction
and can visit any node multiple times, even without processing some job from that
node. Therefore we assume, that machines take the shortest route while traveling
between nodes u, v ∈ V , and the correspondent travel time is denoted as dist(u, v).
After performing all operations, machine has to come back to the depot. The goal is
to minimize the makespan Rmax, which is the completion time of the last machine's
activity (i.e. traveling to the depot or processing some job located at the depot).
We denote the m-machine routing open shop problem as ROm||Rmax. Notation
ROm|G = X|Rmax is used when we want to specify the structure of the network
G. In this case X is substituted with some common notation from graph theory
(e.g. tree or Kp).

The following standard lower bound for the routing open shop was introduced
in [1]:

(1) R̄ = max{`max + T ∗,max
v∈V

(dmax(v) + 2dist(v0, v))}.

Here `max = max
i
`i is the maximum machine load, T ∗ is the optimum for the

underlying TSP (i.e. the weight of the shortest Hamiltonian walk in G), dmax(v) is
the maximum duration of job located at node v.

The routing open shop is strongly NP-hard for any number of machines, as
it contains the metric TSP as a special case. In the contrast to O2||Cmax, the
two-machine routing open shop is NP-hard even for the simplest case with two
nodes (G = K2) [2]. On the other hand, this problem RO2|G = K2|Rmax is
not strongly NP-hard as it admits constructing of FPTAS [10]. The best up to
date approximation algorithm for RO2||Rmax is proposed in [4]. It constructs a
feasible schedule with makespan from the interval [R̄, 138 R̄] and therefore is a 13

8 -
approximation. For a special cases with small number of nodes better approximation
algorithms are given in [1] for RO2|G = K2|Rmax and in [5] for RO2|G = K3|Rmax.
Both algorithms construct schedules with makespan not greater than 6

5 R̄, and
this bound is tight: there exists an instance of RO2|G = K2|Rmax for which
optimal makespan is equal to 6

5 R̄. Therefore the interval [R̄, 65 R̄] is the tight optima
localization interval for both RO2|G = K2|Rmax and RO2|G = K3|Rmax. For the
relevant review on optima localization we refer the reader to [6] for routing open
shop and to [17] for proportionate open shop.

In this paper we investigate the two-machine routing proportionate open shop
RO2|j-prpt|Rmax. To the best of our knowledge this special case has not been
studied before. In section 2 we show that the RO2|j-prpt,G = K2|Rmax problem
is NP-hard, therefore generalizing the known result from [2]. The tight optima
localization interval [R̄, 76 R̄] for the case with at most three nodes is established in
section 3. Some concluding remarks and directions of future research are discussed
in 4.

2. The RO2|j-prpt,G = K2|Rmax is NP-hard

The proof of NP-hardness is organized as follows. We introduce a problem
that we call 2-Summing, prove its NP-completeness and then show that it can be
polynomially reduced to the RO2|j-prpt,G = K2|Rmax problem. We believe the
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following problem to be new: although there are some mentions of similar problems,
we could not �nd any proof of its NP-completeness.
Problem 2-Summing. Given a set A = {a1, . . . , aN} of non-negative integers

and a positive integer B such that
N∑
i=1

ai = W > 2B, are there two disjoint (maybe

empty) subsets I1, I2 ⊆ {1, . . . , N} such that

S(I1, I2)
.
=

∑
i∈I1

ai + 2
∑
i∈I2

ai = B?

The name 2-Summing goes back to the well-known NP-complete Subset Sum

problem [7], where the condition W > 2B is not required and no I2 is allowed.
We need the following classic NP-complete problem [7].
Problem 3D Matching. Given three pairwise disjoint sets X,Y, Z each of size

M and a family E of N triples from X × Y × Z, is there a subset E0 ⊆ E of size
M such that

⋃
e∈E0

e = X × Y × Z?

Note that 3D Matching remains NP-complete under the additional requirement
that every element t ∈ X ∪ Y ∪ Z belongs to at least two triples from E. Indeed,
if some t does not belong to any e ∈ E then the answer is NO. If t lies only in one
triple e ∈ E, then e must be in E0, and the instance can be reduced.

Theorem 1. 2-Summing problem is NP-complete.

Proof. Note that the idea of the proof is the same as a classic NP-completeness
proof of Partition problem [7]. Consider an instance of 3D Matching problem,
where each element lies in at least two triples. For all i = 1, . . . ,M denote by xi, yi,
and zi the i-th element of X,Y, and Z, respectively. Put p = dlog(N +1)e+1. Each
number from A corresponds to a triple from E. Namely, if es = (xi, yj , zk) then put

as = 2p(i−1) + 2p(M+j−1) + 2p(2M+k−1);

here s = 1, . . . , N . Also put B =
3M−1∑
j=0

2pj . Since the total length of the constructed

instance input is at most O(NMp), the reduction is polynomial.
If there is a subset E0 of size M such that

⋃
e∈E0

e = X × Y ×Z, then clearly the

sum of the numbers, corresponding to the elements from E0 is equal to B (and we
take I2 = ∅ here).

Assume that S(I1, I2) = B for some disjoint subsets I1 and I2. In this case it
is convenient to present the numbers in binary form. There are 3M groups of p
bits, where each group corresponds to one element from X ∪ Y ∪ Z (the rightmost
group corresponds to x1, the leftmost � to zM ). Each a ∈ A assigned to a triple
e ∈ E contains in binary form exactly three 1's in the rightmost bits of groups,
corresponding to the elements of E. The number B contains 1's in the rightmost
bits of all groups. Since each element from X ∪ Y ∪ Z lies in at least two triples,
the condition W ≥ 2B holds. Note that the number N needs exactly dlog(N + 1)e
binary digits; so, 2N needs dlog(N + 1)e + 1 = p digits. This means that even in
the double sum of all numbers from A the sums of the bits in each group remains
in the same group; i. e., since S(I1, I2) 6 2W , no shift of 1's between the groups
occurs in S(I1, I2). Therefore, the equality S(I1, I2) = B can take place only if
|I1| = M, I2 = ∅ and for each group exactly one addend in S(I1, I2) contains 1 in
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t

M1

M2

A1 JN+1 JN+2 A3

A3 A1 JN+2 JN+1

Fig. 1. A sketch of the feasible schedule in case of the positive
answer to the 2-Summing problem. Hatched rectangles represent
the set of jobs A2.

the rightmost bit. But then the elements of E, corresponding to I1 form the desired
E0. �

Remark 1. Note that for any constant k, the presented proof can be generalized
for the k-Summing problem where the input is the same and the question is whether
there are k pairwise disjoint subsets I1, . . . , Ik such that

k∑
j=1

j∑
i∈Ij

ai

 = B.

The only di�erence is that p = dlog(N + 1)e+ dlog ke in this case.
Remark 2. Clearly, k-Summing problem is not NP-complete in the strong sense

since the standard dynamic programming algorithm for the Subset Sum problem
can be generalized for solving it: at each step the algorithm just has to choose the
best of k + 1 variants instead of 2.

Now we are ready to prove the main result of this section.

Theorem 2. The RO2|j-prpt,G = K2|Rmax problem is NP-complete.

Proof. Consider an instance of 2-Summing and reduce it to an instance of
RO2|j-prpt,G = K2|Rmax in the following way. Put n = N + 2 and let the depot
v0 contain N jobs corresponding to the numbers ai ∈ A, processing times of both
operations of the job Jj equal to aj , j = 1, . . . , N . The second node v1 contains two
auxiliary jobs JN+1 and JN+2 with processing times 3W and 2W +B, respectively.
Choose an arbitrary τ > 0 and put dist(v0, v1) = τ . Let us prove that this instance
has a schedule of makespan R = 6W + B + 2τ if and only if in the instance of
2-Summing disjoint subsets I1, I2 with S(I1, I2) = B exist.

Necessity. Assume that there are disjoint subsets I1, I2 with S(I1, I2) = B.
Denote by A1, A2, and A3 the sets of numbers with indices from I1, I2, and
{1, . . . , N}\(I1∪I2), respectively, and let w(Ai) be the sum of the numbers from Ai

for i = 1, 2, 3. Consider the following scheduling (see Fig. 1). Let the �rst machine
process the jobs in the order A1, A2, JN+1, JN+2, A3, while the second machine �
in the order A3, A1, JN+2, JN+1, A2 (the order of jobs inside the sets Ai can be
arbitrary for each machine). Clearly, the length of the schedule is R. Let us verify
its correctness. It is clear that the operations of any job from A2 ∪ A3 do not
intersect. Since W = w(A1) + w(A2) + w(A3) and B = w(A1) + 2w(A2), we have
w(A1) + w(A2) + 3W = w(A3) + w(A1) + 2W + B, i. e. the completion time of
job JN+1 at the �rst machine coincides with the completion time of JN+2 at the
second machine. Finally, note that

w(A3) = W −w(A1)−w(A2) ≥ 2B −w(A1)−w(A2) = w(A1) + 3w(A2) ≥ w(A1).
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Therefore, processing any job from A1 at the second machine starts after �nishing
processing the last job from A1 at the �rst machine. So, the schedule is feasible.

Su�ciency. Assume that the instance of Problem 1 has a schedule with makespan
R = 6W +B + 2τ . Then each machine has only one travel to the second node and
back, and process jobs without idle. We may assume that the job JN+1 is processed
�rst at the machine M1. Since R < 8W +B + 2τ , the job JN+2 must be processed
�rst at the machine M2; moreover, the absence of idle intervals implies that the
machine M1 �nishes processing the job JN+1 at the same time when M2 �nishes
processing JN+2. Denote by X the set of all jobs in the depot that the machine
M1 �nished before processing the job J1, and by Y the set of all jobs in the depot
that the machine M2 started after processing the job J2. Note that X and Y may
intersect and one of them may be empty. By the above mentioned observation,
w(X)+3W = (W −w(Y ))+2W +B, i. e. w(X)+w(Y ) = B. Put A2 = X ∩Y and
A1 = (X ∪ Y ) \ A2. Then we have B = w(X) + w(Y ) = w(A1) + 2w(A2). Hence,
the sets of indices I1, I2 corresponding to the sets A1, A2 satisfy the condition
S(I1, I2) = B, as required. �

3. Optima localization for small number of nodes

In [5] a reduction procedure for the RO2||Rmax problem is described, which
transforms any instance I into simpli�ed instance I ′ with the same value of the
standard lower bound (1). This transformation has the following important proper-
ties:

• it is reversible, i.e. any feasible schedule for I ′ can be treated as a feasible
schedule for the initial instance I with the same makespan,
• I ′ contains a single job at each node of the transportation network except
maybe one node that contains two or three jobs.

This procedure is based on a job aggregation operation (also known as job grouping),
which basically is replacing a subset of jobs from the same node by a new one, with
processing times equal to the total processing time of the replaced jobs.

The following approximation algorithm A for RO2|G = K3|Rmax, based on this
procedure, is suggested:

(1) Transform given instance I into a simpli�ed one I ′. (Note that it contains
at most 5 jobs.)

(2) Build an optimal schedule S′ for I ′. (Note that it can be done in constant
time.)

(3) Treat the schedule S′ as a feasible schedule S for instance I. Output S.

It is shown in [5] by means of case analysis, that Rmax(S) 6 6
5 R̄, and the algorithm

described is therefore a 6
5 -approximation.

In this section we use the same idea the RO2|j-prpt,G = K3|Rmax problem.
The following lemma establishes the lower bound on the performance guarantee of
algorithm A for the proportionate routing open shop.

Lemma 1. There exists an instance Ĩ of RO2|j-prpt,G = K2|Rmax, such that the

optimal makespan for Ĩ equals 7
6 R̄.

Proof. Consider the following instance Ĩ: the depot v0 contains a single job J1
with processing times 2, the other node v1 contains two identical jobs J2, J3 with
processing times 4. The travel time between the nodes is dist(v0, v1) = 1. Note that
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M2

M1 J1

J1J2

J2

J3

J3

5 9 14

Fig. 2. An optimal schedule S for instance Ĩ.

machine loads are `1 = `2 = 10, maximum job duration in node v1 is dmax(v1) = 8,

and T ∗ = 2, therefore R̄(Ĩ) = 12. A feasible schedule S for Ĩ with makespan 14 is
given in Fig. 2. Concave arcs represent travel times.

Let us prove that schedule S is optimal for Ĩ. Suppose otherwise and consider
a schedule S′ such that Rmax(S′) < 14. Note that each machine in S′ travels
form v0 to v1 and back exactly once, otherwise the travel time would be at least
4 and the makespan at least 14. Without loss of generality assume that machine
M1 processes jobs in order J1, J2, J3. Idle time of any machine in S′ is less than
2 (otherwise Rmax(S′) is at least 14), therefore M2 cannot start with job J1, and
hence job J1 is performed last by machineM2. If machineM2 processes job J2 after
machineM1, then is completes J2 not earlier than at 11. In this case Rmax(S′) > 14.
On the other hand, if machine M2 processed J2 before M1, machine M1 idles for
at least two time units before the processing of operation of job J2. Therefore, by
contradiction, such schedule S′ does not exist. �

Now consider an instance I of RO2|G = K3|Rmax with nodes {v0, v1, v2} and
corresponding simpli�ed instance I ′, obtained from I by the reduction procedure
from [5]. Assume that I ′ is irreducible, i.e. no further job aggregation in I ′ is possible
without violating the standard lower bound R̄. If a node in I ′ contains more that
one job, it is called overloaded. A node with three jobs in irreducible instance is
referred to as superoverloaded (see [6] for details).

Our goal is to prove that there exists a feasible schedule for I ′ (and therefore for
I) with makespan of at most 7

6 R̄. It is proved in [3] that any instance of RO2||Rmax

with an overloaded depot admits constructing a normal schedule (i.e. feasible
schedule of makespan R̄). It follows from [6] that any instance of RO2|G = K3|Rmax

with a superoverloaded node has the same property. Therefore we only need to
consider a special case of irreducible instance I ′ with at most two jobs at node v1
and single jobs at nodes v0 and v2.

Lemma 2. Let I be an irreducible instance of RO2|j-prpt,G = K3|Rmax with
single jobs at v0 and v2 and at most two jobs at v1. Then there exists a feasible
schedule S for I such that Rmax(S) 6 7

6 R̄(I).

Proof. We consider two cases with di�erent number of jobs at node v1 separately.
Case 1. Node v1 has two jobs.
Denote the processing times of four jobs J1, J2, J3, J4 by a, b, c, d respectively, J1

at v0, J4 at v2. Denote travel times as follows:

dist(v0, v1) = τ,dist(v0, v2) = µ,dist(v1, v2) = ν, T ∗ = τ + µ+ ν.
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J1 J4 J2 J3

J2 J3 J4 J1

µ ν τ

τ ν µ

Fig. 3. Processing order for schedule S1.

J1 J2 J3 J4

J4 J3 J2 J1

τ ν µ

µ ν τ

Fig. 4. Processing order for schedule S2.

Note that, due to the irreducibility of instance I, aggregation of jobs J2 and J3
would violate the lower bound R, therefore

(2) 2b+ 2c+ 2dist(v0, v1) > R̄.

Without loss of generality assume

(3) b > c.

Note that in this case

(4) R̄(I) = max{a+ b+ c+ d+ τ + µ+ ν, 2a, 2b+ 2τ, 2d+ 2µ}.
We will describe a series of schedules for I and prove that at least one of the
schedules constructed has a makespan of at most 7

6 R̄. Each schedule will be described
by specifying the linear order of operations on each machine and each job.

Let S1 be a schedule with sequence of jobs J1 → J4 → J2 → J3 on M1 and
J2 → J3 → J4 → J1 on M2, jobs J1 and J4 are processed �rst by M1, and J2, J3
processed �rst by M2 (Fig. 3).

Note that due to (2) we have

2a+ 2d+ 2µ 6 2R̄− (2b+ 2c+ 2τ) < R̄,

therefore by (3) and (4) it is su�cient to consider Rmax(S1) = R1 = 2b + c + 2τ
(otherwise the makespan the schedule S1 is normal).

Construct schedule S2 according to the partial order of operations from Fig. 4.
Case 1.1. Rmax(S2) = R2 = 2a+ 2b+ 2τ .
Construct schedule S3 according to the partial order of operations from Fig. 5.
It is su�cient to consider the case Rmax(S3) = R3 = 2a+ 2c+ 2d+ τ + µ+ ν.
Construct schedule S4 according to the partial order of operations from Fig. 6.
Consider three subcases.
Case 1.1.1. Rmax(S4) = R4 = a+ 2d+ 2c+ 2µ+ 2ν.
In this case

2R1 + 3R2 + 4R4 = 10a+ 10b+ 10c+ 8d+ 10τ + 8µ+ 8ν 6 10R̄,

therefore min{R1, R2, R4} 6 10
9 R̄ < 7

6 R̄.
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J1 J4 J3 J2

J2 J3 J4 J1

µ ν τ

τ ν µ

Fig. 5. Processing order for schedule S3.

J1 J4 J3 J2

J2 J1 J3 J4

µ ν τ

τ τ τ ν µ

Fig. 6. Processing order for schedule S4.

J1 J4 J3 J2

J2 J1 J4 J3

µ ν τ

τ τ µ ν τ

Fig. 7. Processing order for schedule S5.

Case 1.1.2. Rmax(S4) = R4 = 2a+ c+ d+ τ + µ+ ν.
In this case

R1 +R4 = 2a+ 2b+ 2c+ d+ 3τ + µ+ ν 6 2R̄,

since by triangle inequality, τ ≤ µ + ν. So, at least one of schedules S1 and S4 is
normal.
Case 1.1.3. Rmax(S4) = R4 = a+ b+ c+ d+ 3τ + µ+ ν.
In this case, due to (3) and τ ≤ µ+ ν

2R1 + 3R3 +R4 = 5b+ 9c+ 7a+ 7d+ 10τ + 4µ+ 4ν 6 7R̄,

and min{R1, R3, R4} 6 7
6 R̄.

Case 1.2. Rmax(S2) = R2 = 2c+ 2d+ 2µ+ 2ν.
Construct schedule S5 with the partial order of operations as shown in Fig. 7.
Due to (3) it is su�cient to consider two cases.
Case 1.2.1. Rmax(S5) 6 R5 = a+ d+ max{a, d}+ c+ τ + µ+ ν.
In this case

R1 +R5 = 2b+ 2c+ a+ d+ max{a, d}+ 3τ + µ+ ν 6 2R̄

and the makespan of at least one of schedules S1 and S5 equals R̄.
Case 1.2.2. Rmax(S5) = R5 = a+ b+ c+ d+ 3τ + µ+ ν.
In this case, due to (3)

2R1 + 3R2 +R5 = 5b+ 9c+ 7d+ a+ 7τ + 7µ+ 7ν 6 7R̄,
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J1 J2 J3

J3 J2 J1

τ ν µ

µ ν τ

Fig. 8. Processing order for schedule S6.

J1 J2 J3

J2 J3 J1

τ ν µ

τ ν µ

Fig. 9. Processing order for schedule S7.

J1 J2 J3

J3 J1 J2

τ ν µ

µ µ τ
τ

Fig. 10. Processing order for schedule S8.

and min{R1, R2, R5} 6 7
6 R̄.

Case 2. Each node contains exactly one job. In this case denote processing
times of three jobs J1, J2, J3 by a, b, c respectively, J1 at v0, J3 at v2. Travel time
are denoted as in Case 1. In this case we have

(5) R̄(I) = max{a+ b+ c+ τ + µ+ ν, 2a, 2b+ 2τ, 2c+ 2µ}.
Without loss of generality we assume

(6) b+ τ 6 c+ µ.

Construct three schedules S6, S7 and S8 according to partial orders at Figures
8, 9, 10, respectively.

Using (5) and (6), and assuming each of the schedules built has makespan greater
that R̄ we have

Rmax(S6) = R6 = 2a+ 2b+ 2τ,

Rmax(S7) = R7 = b+ c+ max{b, c}+ τ + µ+ ν,

Rmax(S8) = R8 = max{2a+ b+ 2τ, a+ b+ c+ 2µ+ 2τ}.
Consider the following two subcases.
Case 2.1. R8 = 2a+ b+ 2τ .
In this case using (6), µ+ τ 6 T ∗, and 2τ 6 T ∗ we obtain

R7 +R8 = 2a+ 2b+ c+ µ+ ν + 2τ + max{b+ τ, c+ τ} 6
2a+ 2b+ 2c+ µ+ ν + 2τ + max{µ, τ} 6 2a+ 2b+ 2c+ 2T ∗ 6 2R̄,
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therefore at least one of schedules S7 and S8 is normal.
Case 2.2. R8 = a+ b+ c+ 2µ+ 2τ .
In this case using (6) and τ 6 µ+ ν we have

Σ = 3R6 + 2R7 +R8 = 7a+ 9b+ 3c+ 2 max{b, c}+ 10τ + 4µ+ 2ν

6 7a+7b+5c+2 max{b, c}+8τ+6µ+2ν 6 7a+7b+5c+2 max{b, c}+7τ+7µ+3ν.

If b 6 c then Σ clearly does not exceed 7R̄. Assume b > c. Then

Σ = 7a+ 9b+ 5c+ 7τ + 7µ+ 3ν 6 7a+ 7b+ 7c+ 5τ + 9µ+ 3ν

6 7a+ 7b+ 7c+ 7τ + 7µ+ 5ν 6 7R̄.

Anyway, 3R6 + 2R7 +R8 6 7R̄; so,

min{R6, R7, R8} 6
7

6
R̄.

We have considered all possible cases, and in each case the makespan of one of
the schedules built does not exceed 7

6 R̄. Lemma is proved. �

Theorem 3. The tight optima localization interval for both RO2|G = K2, j −
prpt|Rmax and RO2|G = K3, j-prpt|Rmax problems is [R̄, 76 R̄].

Proof. Straightforward from Lemmas 1 and 2. �

Remark 3. Theorem 3 together with algorithm A imply the existance of 7
6 -

approximation for the RO2|G = K3, j-prpt|Rmax problem.

4. Conclusion

The main result of this paper is the NP-hardness of a very restricted special
case of RO2||Rmax. We presume, that the auxiliary problem 2-Summing or its
variations might also be helpful in research of the computational complexity of
various scheduling problems.

To our opinion, it makes sense to continue the investigation of the proportionate
routing open shop in the following directions:

(1) Approximation algorithms and optima localization for two-machine propor-
tionate routing open shop with more complex structure of the transportation
network, as well as with asymmetric distances.

(2) Approximation algorithms for the problem with m > 3.
(3) Approximation algorithms for the generalization of proportionate routing

open shop with prorpotional processing times, which would �nally justify
the name proportionate.
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