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RESTORATION OF IMAGES CORRUPTED BY STRIPE

INTERFERENCE USING RADON DOMAIN FILTERING

I.G. KAZANTSEV, R.Z. TUREBEKOV, M.A. SULTANOV

Abstract. The article deals with the problem of removing noise that
has some anisotropy in a certain direction, in images received as a result
of remote sensing. Such interference can occur with satellite imagery of
the surface of Earth and planets due to the peculiarities of the imaging
equipment. In the article, the method of removing such noise in the
Radon space is considered, using its singular value decomposition. The
use of this approach provides signi�cant advantages over spatial �ltering
methods when pixel brightness values are used and can be a noticeable
loss of useful information in the form of a blurring of borders. When using
�ltering in the Radon space to remove periodic noise predominantly only
interference is removed, since only a small part of the Radon projections
corresponds to noise. The numerical experiments on real-world images
demonstrate the e�ciency of the techniques proposed.

Keywords: image restoration, stripe interference, Radon transform, rid-
ge functions.

1. Introduction

Image enhancement approaches fall into two broad categories: spatial domain
processing methods (spatial methods) and transform domain processing methods
(Fourier tansform, or frequency methods, Laplace, Radon and other transforms)
[1], [2], [3], [4], [5], [6]. The term spatial domain refers to the image plane as such,
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and this category includes approaches based on direct manipulation of image pixels.
Methods of processing in the frequency domain are based on the modi�cation of
the signal generated by applying the Fourier transform to the image. Drawback of
the spatial �ltering is often a blurring of the contours, and decrease in sharpness.
Frequency same �ltering, in case of interference with a periodic component, allows
exert a more concentrated in�uence, at a minimum a�ecting the useful information.

Intermittent noise is usually caused by electrical or electromechanical interference
during image acquisition (the so-called "drift of dark currents"). In this case the
image is usually heavily distorted by spatial sinusoidal noise of various frequencies.
Such noise can be signi�cantly reduced by frequency �ltering in the region of the
Fourier transform [1]. The Fourier transform of a sinusoid in its purest form is
a pair conjugate pulses located at centrally symmetrical points of the frequency
areas that correspond to the frequencies of the sine wave. If the amplitudes of
sinusoidal waves in the spatial domain are large enough, it can be expected that
pairs will be visible in the spectrum of the image pulses, one for each sine wave
in the original image. Therefore, periodic noise can be analyzed and �ltered quite
e�ectively using frequency methods. The main idea is that in the Fourier spectrum,
periodic noise looks like a concentrated spike energy at the position corresponding
to the frequencies of the periodic interference. An approach comes down to using a
selective �lter (notch, bandpass and narrowband), capable of isolating noise.

In this article we consider an alternative approach, and pay basic attention
to the Radon transform, its singular value decomposition (SVD) into sums of
ridge functions and its application to removal of strip interference.The Radon
transform maps an image into a one-dimensional integral projection, which makes
it possible to calculate the convolution and correlation of two images [3], linear and
nonlinear �ltering, compression and encoding of information [4] in devices designed
to process one-dimensional signals. Estimates show that the use of modern elements
of optoelectronics allows such image processing systems to compete successfully
with other similar devices.

The motivation of using the Radon transform in this paper is an observation that
a sequence of strips is a ridge function. We need to extract a single ridge function (or
few neighbors of it) from the distorted image. Compared to the frequency approach,
projections of Radon space still retain their connection with spatial geometry.
The mathematical relation of the Fourier and Radon transforms is known [5], [6].
Important theorem, Central Slice Theorem relates Radon and Fourier spaces : the
1 -D Fourier transformation of a projection yields a "slice"of the 2 -D Fourier
transform of the object along a central line.

The paper structure is as follows. In Section 2, we revisit the methods relevant
to the image reconstruction using the ridge functions. In Section 3, we present a
scheme for the background and strip interference (single ridge function) separation.
In Section 4, we illustrate the results of extrating the strip interference in a real-
world images of remote sensing. We present our conclusion in Section 5.

2. The Radon transform and ridge functions

De�nition 1. The Radon transform R of the function f with a support in the form
of the unit disk D is de�ned as the set of its integrals along a line with direction α
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and distance s from the origin

(1) Rα[f ](s) =

∫ √1−s2

−
√
1−s2

f(s cosα− t sinα, s sinα+ t cosα) dt.

We denote a single projection (1) as p(α, s) = pα(s) and refer to it as a complete
projection if it is known for all points in the interval s ∈ [−1, 1]. In practical
tomographic reconstructions, only a limited number of projections and a �nite
number of samples per projection are available. Let us recall the de�nition of the
ridge functions [7], [8], [9], [10], [11]. [12], [13].

De�nition 2. A ridge function h(x, y) on D is understood as a function of the
form h(x, y) = h(x cosα+ y sinα).

If a set of directions of the projections is the n-tuple ω = (ω1, ..., ωn) ∈ [0, π)n,
then we denote the corresponding set of complete projections by

(2) Rω[f ] = (Rω1
[f ], . . . , Rωn

[f ]).

Tomographic scanners, recording a su�cient number of projections with equally
distributed direction angles, provide the reconstruction of the function f from the
data Rω[f ] in the form of the �ltered back-projection (FBP) approximation that
reads as

(3) f(x, y) ≈
n∑
i=1

ri(x cosωi + y sinωi).

Here, the function ri is de�ned as ri(s) =
∫∞
−∞ p(ωi, t)k(s−t)dt. For each ri the same

kernel k is used [6]. Formula (3) expresses the approximation of the function f as
superposition of the ridge functions ri with the directions ωi uniformly distributed
in the interval [0, π). However, in the case of an arbitrary set of the directions ω =
(ω1, ..., ωn) ∈ [0, π)n, di�erent convolution kernels k -s have to be used for di�erent
directions. It is known that generally the FBP approximation is not accurate in the
case of a small (n < 10) number of projections.

The alternative approach providing a better accuracy in case of small n is based
on the following approach by Logan and Shepp [7]. The representation they use is
similar to (3)

(4) H(x, y) =

n∑
i=1

hωi
(x cosωi + y sinωi),

which satis�es the Radon transform - based constraints

(5) Rωi
[f ] = Rωi

[H], i = 1, . . . , n.

The minimum norm solution to problem (4) - (5) has the following form

(6) hωi
(s) =

1

π

∞∑
k=1

n∑
j=1

η
(k)
ij Uk−1(s)

∫ 1

−1
pωj

(t)Uk−1(t) dt,

where pωj
(t) = Rωj

[f ](t), Uk−1(t) = sin(k arccos t)
sin(arccos t) , k = 1, 2, . . . are the Chebyshev

polynomials of the second kind, η
(k)
ij are entries of the matrix Λ+

k (generalized

inverse), Λk = (λ
(k)
ij ), i, j = 1, . . . , n, λ

(k)
ij =

sin
(
k(ωi−ωj)

)
k sin(ωi−ωj)

.
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Equation (6) provides us with the singular value decomposition (SVD) solution
of the Radon transform inversion task. It can be shown that the norm of H can be
calculated using the projections pi ≡ pωi

(7) ‖H‖2 =
1

π

∞∑
k=1

n∑
i,j=1

η
(k)
ij

∫ 1

−1
pωi

(s)Uk−1(s) ds

∫ 1

−1
pωj

(t)Uk−1(t) dt.

The directions ω can be arbitrary, and for the generalized pseudo inversion of
the matrices Λk we use the pinv function of the Matlab package. The integrals∫
pωj

(t)Uk−1(t)dt in (6) and (7) can be calculated using the Gauss-Chebyshev
quadrature formula

(8)

∫ 1

−1

g(t)√
1− t2

dt ∼=
π

m

m∑
l=1

g(tl),

where tl = cos( 2l−1
2m π), l = 1, . . . ,m are sampling points of a function g. Then

formula (6) becomes

(9) hωi(s) =
1

m

∞∑
k=1

n∑
j=1

η
(k)
ij Uk−1(s)

m∑
l=1

pj(tl) sin(k
2l − 1

2m
π).

The truncation parameter m in series (9) is used for regularization of the SVD
decomposition [14]. We will use an algorithm (6) for computing the superposition
of the ridge functions Hω from an arbitrary set of complete projections Rω.

3. An image model with background and stripes

Let us consider an additive model [15], [16], [17] of image formation (distortion)
in the form of the equation

(10) z(x, y) = u(x, y) + v(x, y),

where z is the observed image; u is the desired useful image, as a rule, with
many details, and v is a certain interfering structure, which is known to be well
approximated by the sum of a small number of the ridge functions in n directions
ω = (ω1, . . . , ωn). The task is to restore u from the data of z. Due to the additivity of
model (10) and the linearity of the Radon transform, the expansion of the functions
z, u, v into the superposition of the ridge functions in the directions ω results in
the equality

(11) Zω = Uω + Vω.

Here, Zω, Uω, Vω are the minimum norm solutions obtained by reconstructing the
images z, u, v from the data sets Rω[z], Rω[u], Rω[v], respectively.

Since it is known that the distortion v is well approximated by the ridge functions
in the directions ω, we have v ≈ Vω. Then subtracting equation (10) from (11), we
approximately obtain

(12) z(x, y)− Zω(x, y) = u(x, y)− Uω(x, y).

We hypothesize that the di�erence u(x, y)−Uω(x, y) on the right-hand side of (12)
is approximately similar to u with a shifted average value. Converting the image
z(x, y) − Zω(x, y) to the range of values of a visualizing device, we synthesize an
image to be essentially free from distortions caused by the presence of the ridge
function v.
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Fig. 1. (a) The test image z = u + v is the sum of the
remote sensing image u distorted with parallel stripes v; (b)
The Radon transform, or sinogram; (c) The sinogram with 15
projections �ltered out (horizontal black strip of 15 samples width,
or projections directions angle range of 2γ ≈ 6◦); (d) The result of
the SVD-based approximation Zω of z in the directions ω without
�ltered out projections; (e) The di�erence z−Zω of images (a) and
(d); (f) The pro�le of the sinusoidal distortion v (central column
of image (e)).

In this paper n = 1 and direction ω1 is known in advance. However, when
restoring a useful image, we �lter out more than one ridge function, but several
close adjacent ones, in the range [ω1 − γ, ω1 + γ], using small γ as a parameter.

4. The stripe inteference extraction: a real-world examples

To illustrate the task of computing the SVD reconstruction for the real-world
problem of removing strip interference in an image, we use (publicly available
from the open datasets MODIS [18] and Hyperion [19]) test remote sensing images
�Example 1� (Fig. 1 (a)) and �Example 2� (Fig. 2 (a)), respectively, as the distorted
images. They are denoted as z and treated as a sum of useful unknown images u
that are superimposed by the stripe distortion v, and the image z = u+ v is image
(10) observed by the vision system. The ridge distortions v are unknown. However,
their directions are known in advance, they constitute a beam of parallel horizontal
lines resembling dark and light scratches. Images �Example 1� and �Example 2� are
both of 450× 450 size.
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Fig. 2. (a) The test image z = u + v is the sum of the
Hyperion satellite image u distorted with parallel stripes v; (b) The
Radon transform; (c) The sinogram with 25 projections �ltered
out (horizontal black strip of 25 samples width, or projections
directions angle range of 2γ ≈ 9◦); (d) The result of the SVD-
based approximation Zω of z in the directions ω without �ltered
out projections; (e) The di�erence z − Zω of images (a) and (d);
(f) The pro�le of the distortion v (central column of image (e)).

It is easy to show that a ridge function with a known direction can be uniquely
reconstructed from its projection taken in the same direction. This property is
used by us to extract the ridge function from the additive model. To do this, we
generate the Radon transform for a su�ciently large number of projections, then we
calculate the reconstruction based on the singular value decomposition, by excluding
the ridge function (or group of adjacent projections) responsible for the distortion
from the data set. If this ridge function is not excluded, the reconstruction will
contain distortion and this is almost the original noisy image. This is the �ltration
in the Radon space - noise components are �ltered out. The distorted image z is
limited to a circular domain within n × n image, n = 450. For the image z, n
projections are numerically generated, evenly distributed in the range [0, π), that
is, with a discreteness of 180◦/n. Each projection has n = 450 samples, so the
Radon transform, or a sinogram, is the n× n image. The projections are arranged
line by line in succession from top to bottom, counts ("detectors") make up the
horizontal axis (Fig. 1 (b) and Fig. 2 (b). In Fig. 2 (the upper and bottom rows)
we repeat computations with a similar methodology of numerical experiments. The
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reconstruction, or a minimum norm solution Zα is shown in (Fig. 2 (d)), and the
di�erence between the image z and its ridge approximation Zα can be seen in
(Fig. 2 (e)). We did not use additional image enhancement tricks in the numerical
examples.

5. Conclusion

We consider the task of removing the stripe interference in terms of the Radon
integral transform, where the approach based on the ridge functions allow the use
of anisotropy information in the enhancement of noisy images. We have performed
computational experiments to illustrate the e�ciency of the SVD algorithm for the
Radon transform as applied to the method of �ltering in the Radon space of an
image to supress sinusoidal noise. The experimental results in the visual inspection
of real-world images, show a bene�t in decomposition of a distorted image into a
sum of a ridge function and useful informative image.
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