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SOME REMARKS ON DO�SEN'S LOGIC N

AND ITS EXTENSIONS

S.O. SPERANSKI

Abstract. This paper collects some observations about Do�sen's logic
N, where negation is treated as a modal operator, and its extensions.
We shall see what happens when we add the contraposition axiom to
several important extensions of N, show that certain extensions of N are
canonical, and also revisit the method of �ltration.
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1. Introduction

Do�sen's logic N, proposed in [3], enriches the positive fragment of intuitionistic
logic by adding a negative modality, which is weaker than the negation of Johans-
son's minimal logic. (For information about quanti�ed versions of logics containing
N, the reader may consult [11].) Among the interesting extensions of N are the
logics N∗ and Hype. The former was introduced in [2] in the course of developing
a framework for the study of logic programs with negation. The latter has been
advocated in [6] as a system suitable for dealing with `hyperintensional' contexts,
but was �rst described in [7]; the reader may consult [8] for further discussion.
Following [11], we shall write N• instead of Hype. Note that N• extends N∗.

While the system for N employs the contraposition rule, the corresponding
scheme

(φ→ ψ)→ (¬ψ → ¬φ)

cannot be derived even in N•. In Section 3 we shall see what happens when we
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add the above scheme to some important extensions of N.1 In Section 4 we shall
prove that certain extensions of N � which are obtained by adding various schemes
involved in the de�nitions of N∗ and N• � are canonical. In Section 5 we shall
revisit the method of �ltration, which was used in [4] to establish the decidability
of N and N∗. This will lead to further decidability results.

It should be noted that these remarks are inspired by the work of K. Do�sen
and that of S. Odintsov, and are intended to complement [3], [9], [4] and [8]. The
technique used in the paper is quite simple, but the results may be of interest to
those working in non-classical logics.

2. Preliminaries

Fix once and for all a countable set Prop of propositional variables. The syntax
of N is exactly the same as that of intuitionistic logic; so the connective symbols are
→, ∧, ∨ and ¬. However, one should bear in mind that

in the semantics of N, ¬ will be interpreted as a negative modal

operator, and thus many intuitionistic principles involving ¬ will

not be valid.

Denote by Form the collection of all formulas � i.e. the set of all expressions that
can be built up from Prop using the connective symbols. We treat ↔ as de�ned in
the obvious way, viz.

φ↔ ψ := (φ→ ψ) ∧ (φ→ ψ).

For convenience, when concerned only with non-empty sets of formulas, we shall
abbreviate the condition `∆ 6= ∅ and ∆ ⊆ Form' as ∆ v Form.

2.1. The logics N, N◦, N∗ and N•. The Hilbert-type system for N was described
in [3]. It employs the following axiom schemes:

I1. φ→ (ψ → φ);
I2. (φ→ (ψ → θ))→ ((φ→ ψ)→ (φ→ θ));
C1. φ ∧ ψ → φ;
C2. φ ∧ ψ → ψ;
C3. φ→ (ψ → φ ∧ ψ);
D1. φ→ φ ∨ ψ;
D2. ψ → φ ∨ ψ;
D3. (φ→ θ)→ ((ψ → θ)→ (φ ∨ ψ → θ));
N. ¬φ ∧ ¬ψ → ¬ (φ ∨ ψ).

Thus we have the `positive' axioms of intuitionistic logic plus all instances of N. It
also employs two inference rules:

MP. modus ponens, i.e.

φ φ→ ψ
;

ψ

CR. the contraposition rule, which is rendered as

φ→ ψ .
¬ψ → ¬φ

1The writing of this section has been partially motivated by a question of Dick de Jongh (pri-
vate communication): he asked about extending N by adding the scheme

(?) (φ↔ ψ)→ (¬φ↔ ¬ψ)

� which is the same as adding ¬φ ∧ ¬ψ → ¬ (φ ∨ ψ) to the system of `subminimal logic' studied
in [1] (see also [5]). Among other things, we shall derive the contraposition scheme from (?) over
N.
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Note that if we think of ¬ as an impossibility operator, then CR can be viewed as
a modal rule. Clearly, ¬ is weaker than intuitionistic negation, and even minimal
negation.

Now let N denote the least set of formulas containing the axioms of our calculus
and closed under its rules of inference. For each Γ ⊆ Form, take

Disj (Γ) := {φ0 ∨ . . . ∨ φn | n ∈ N and φ0, . . . , φn ∈ Γ}.2

Given Γ ⊆ Form and ∆ v Form, we write Γ ` ∆ i� some element of Disj (∆) can
be obtained from elements of Γ ∪ N by means of MP. As may be expected, φ ` ∆
and Γ ` φ abbreviate {φ} ` ∆ and Γ ` {ψ} respectively. Exactly as in intuitionistic
logic, one can prove:

Theorem 2.1 (see [3]). For any Γ ⊆ Form and φ, ψ ∈ Form,

Γ ∪ {φ} ` ψ ⇐⇒ Γ ` φ→ ψ.

Here is another simple but useful observation.

Theorem 2.2 (see [3]). Let {φ, ψ, ψ′} ⊆ Form, and suppose that φ′ is obtained
from φ by replacing some occurrence of ψ by ψ′. Then ` ψ ↔ ψ′ implies ` φ↔ φ′.

Proof. By induction on the complexity of φ.
The case where φ ∈ Prop is trivial.
Suppose φ = ¬θ. The result then follows by the inductive hypothesis and CR.
The other cases can be handled as in intuitionistic logic. �

Evidently, for any φ, ψ ∈ Form we have ` (φ→ φ) ↔ (ψ → ψ); thus by Theo-
rem 2.2, φ→ φ and ψ → ψ are practically interchangeable. Denote

> := φ◦ → φ◦ and ⊥ := ¬>

where φ◦ is a �xed formula. We shall occasionally abbreviate φ → ⊥ to −φ. One
may think of − as intuitionistic negation provided that ⊥ behaves as the falsum.

In this article by a (normal) logic we mean a superset of N closed under MP, CR
and substitutions. Given a logic L, we de�ne

Γ `L ∆ :⇐⇒ L ∪ Γ ` ∆.

Thus Theorems 2.1 and 2.2 generalise readily to extensions of N. If L is a logic
and S1, . . . , Sn are formula schemes, we write L + {S1, . . . Sn} for the least logic
containing L and all instances of S1, . . . , Sn. Here are examples of extra schemes:

N1◦. ¬ (φ→ φ)→ ψ;
N2◦. ¬¬ (φ→ φ);
N∗. ¬ (φ ∧ ψ)→ ¬φ ∨ ¬ψ;
N1•. φ→ ¬¬φ;
N2•. ¬¬φ→ φ.

They can be used to de�ne three important extensions of N:

N◦ := N + {N1◦, N2◦};
N∗ := N◦ + {N∗};
N• := N∗ + {N1•, N2•}.

It is known that N◦ is the least logic in which ⊥ behaves as the falsum; see [11].
Next, N∗ was introduced in [2] and studied further in [9, 4]. Finally, N• has been

2When n = 0, we have φ0 ∨ . . .∨φn = φ0. Thus Disj (Γ) contains non-empty disjunctions only.
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advocated in [6], but it was �rst described in [7]; consult [8] for discussion.3 Here
are a few useful observations:

• the converses to N and N∗ are derivable in N, even without N;
• N, N1◦, N2◦ and N∗ are redundant � i.e. derivable from the other axioms �
in N•.

See [11] for the details.
While the rule CR is obviously admissible in each extension of N, it is not deriv-

able even in N•, let alone N and N∗ � this can be shown using the corresponding
possible world semantics; see [9]. The same applies to the rule

φ↔ ψ .
¬ψ ↔ ¬φ

In other words, the following schemes are not derivable in N•:

C. (φ→ ψ)→ (¬ψ → ¬φ);
E. (φ↔ ψ)→ (¬ψ ↔ ¬φ).

Interestingly enough, C and E turn out to be equivalent, i.e. derivable from each
other over the basic logic N.

Proposition 2.3. Let L be a logic. Then L+ {C} coincides with L+ {E}.

Proof. Clearly, it su�ces to show that C is derivable in N + {E}. For convenience,
let L denote N + {E}. Observe that φ→ ψ `L ¬ψ → ¬φ:

1 φ→ ψ hypothesis

2 (φ→ ψ)→ ((φ ∨ ψ)↔ ψ) positive intuitionistic logic

3 (φ ∨ ψ)↔ ψ from 1, 2

4 ((φ ∨ ψ)↔ ψ)→ (¬ (φ ∨ ψ)↔ ¬ψ) E

5 ¬ (φ ∨ ψ)↔ ¬ψ from 3, 4

6 (¬φ ∧ ¬ψ)↔ ¬ (φ ∨ ψ) N

7 (¬φ ∧ ¬ψ)↔ ¬ψ from 6, 5

8 ((¬φ ∧ ¬ψ)↔ ¬ψ)→ (¬ψ → ¬φ) positive intuitionistic logic

9 ¬ψ → ¬φ from 7, 8.

By the deduction theorem for L, this gives us C. �

One may wonder what happens if we add C to a given logic. Some natural ex-
amples will be discussed in Section 3.

2.2. Do�sen-style semantics. As in [3], by a frame we mean a triple W = 〈W,6,
R〉 whereW is a non-empty set, 6 is a preordering onW , and R is a binary relation
on W such that

6 ◦ R ⊆ R ◦ 6−1.4

Given W, we call ξ : Prop → P (W ) a valuation in W i� for any p ∈ Prop and
x, y ∈W ,

x ∈ ξ (p) and x 6 y =⇒ y ∈ ξ (p),

i.e. the ξ (p)'s are upward closed. By a model we mean a pair M = 〈W, ξ〉 where
W is a frame and ξ is a valuation in W. Now M, x  φ is de�ned exactly as in
intuitionistic logic, except for the negation clause:

M, x  ¬ψ :⇐⇒ M, y 1 ψ for all y ∈ R (x).5

3In [6], N• was presented in a slightly di�erent language: > was treated as primitive, rather
than de�ned. So formally speaking, the system for N• as given above is a de�nitional variant of
that in [6].

4Here ◦ and ·−1 denote the composition operation and the inverse operation respectively.
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When there is no ambiguity, we shall dropM and write x  φ instead ofM, x  φ.
Naturally,M, x  φ is read φ is true at x inM. Also de�ne:

• M  φ i�M, x  φ for all x ∈W ;
• W  φ i�M  φ for all modelsM based on W.

These are read φ is true inM and φ is valid in W respectively.

Lemma 2.4 (see [3]). LetM be a model. Then for any φ ∈ Form and x, y ∈W ,

M, x  φ and x 6 y =⇒ M, y  φ.

More informally, it means that  is intuitionistically hereditary.

As in modal logic, some of the formulas correspond to frame properties. For in-
stance, ⊥ is valid in W i� R = ∅. For a more interesting example, consider the
principle of weak excluded middle, which can be represented as the formula scheme

WEM. ¬φ ∨ ¬¬φ.
As was shown in [3], it corresponds to a rather complicated property:

W  ¬p ∨ ¬¬p ⇐⇒
∀x∀y ∀z (R (x, y) & R (x, z)⇒ ∃u (R (y, u) & z 6 u)).

Here is yet another example.

Proposition 2.5. For every frame W,

W  ¬ (p ∧ q)→ ¬p ∨ ¬q ⇐⇒
∀x∀y ∀z (R (x, y) & R (x, z)⇒ ∃u (R (x, u) & y 6 u & z 6 u)).

Thus the scheme N∗ corresponds to the property on the right-hand side.

Proof. For convenience, denote by (?) the property on the right-hand side.
⇐= Assume (?) holds. LetM be a model based on W. It su�ces to show that

for every x ∈W ,

M, x  ¬ (p ∧ q) =⇒ M, x  ¬p or M, x  ¬q.

Suppose x 1 ¬p and x 1 ¬q. So there exist y, z ∈ R (x) such that

y  p and z  q

Then by (?), there exists u ∈ R (x) such that y 6 u and z 6 u. Consequently, u  p
and u  q, i.e. u  p ∧ q. Hence x 1 ¬ (p ∧ q).

=⇒ Assume (?) fails. So there exist x ∈W and y, z ∈ R (x) such that for every
u ∈ R (x) we have y 66 u or z 66 u. Consider a modelM based on W such that

ξ (p) := {u ∈W | y 6 u} and ξ (q) := {u ∈W | z 6 u}.

It is straightforward to check that M, x  ¬ (p ∧ q) but M, x 1 ¬p and M, x 1
¬q. �

For more examples, see the table below.

5Here R (u) denotes the image of {u} under R, i.e. {v ∈W | uRv}.
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Property Scheme Reference

∀x∃y R (x, y) N1◦ [3]
∀x (∃y R (y, x)⇒ ∃z R (x, z)) N2◦ [3]
∀x∀y ∀z (R (x, y) & R (x, z)⇒ ∃u (R (x, u) & y 6 u & z 6 u)) N∗ This article
∀x∀y (∃u (R (x, u) & y 6 u)⇒ ∃u (R (y, u) & x 6 u)) N1• [3]
∀x∃y (R (x, y) & ∀z (R (y, z)→ z 6 x)) N2• [3]
∀x∀y (R (x, y)⇒ ∃z (R (x, z) & x 6 z & y 6 z)) C [3]

Table 1. Properties vs. Schemes.

As was shown in [3], the canonical model method can be adapted to N and its
extensions. Let L be a logic. Call Γ ⊆ Form a prime L-theory i�:

(i) {φ ∈ Form | Γ `L φ} ⊆ Γ;
(ii) for every φ ∨ ψ ∈ Γ we have φ ∈ Γ or ψ ∈ Γ.

Thus (i) and (ii) say that Γ is closed under `L and has the disjunction property.
The following is proved in the usual way.

Lemma 2.6 (see [3]). Let L be a logic. Suppose Γ ⊆ Form and ∆ v Form are such
that Γ 0L ∆. Then there exists a prime L-theory Γ′ ⊇ Γ such that Γ′ 0L ∆.

Given Γ ⊆ Form, we write Γ for {φ | ¬φ ∈ Γ}.
Proposition 2.7 (see [3, 11]). Let Γ ⊆ Form be such that {φ ∈ Form | Γ ` φ} ⊆ Γ
and Γ 6= ∅. Then:

(i) {φ ∈ Form | φ ` Γ} ⊆ Γ;
(ii) for any φ, ψ ∈ Γ we have φ ∨ ψ ∈ Γ.

Now takeWL to be the collection of all prime L-theories. By the canonical frame
for L we mean the triple WL = 〈WL,6L, RL〉 where

6L :=
{

(Γ,∆) ∈WL ×WL | Γ ⊆ ∆
}

and

RL :=
{

(Γ,∆) ∈WL ×WL | Γ ∩∆ = ∅
}
.

By the canonical model for L we mean the pairML = 〈WL, ξL〉 where ξL is given
by

ξL (p) :=
{

Γ ∈WL | p ∈ Γ
}
.

One readily veri�es that WL is a frame, andML is a model. Moreover,

6L ◦ RL ◦ 6−1 ⊆ RL.

Hence WL is strictily condensed, in the terminology of [3].6 In fact, we might limit
ourselves to strictly condensed frames if needed.

Lemma 2.8 (see [3]). Let L be a logic. Then for any Γ ∈WL and φ ∈ Form,

ML,Γ  φ ⇐⇒ φ ∈ Γ.

Given Γ ⊆ Form and ∆ v Form, we write Γ � ∆ i� for any model M and
w ∈W ,

M, w  φ for all φ ∈ Γ =⇒ M, w  ψ for some ψ ∈ ∆.

For each logic L, denote by �L the relativization of � to {W | W  L}.7 Further,
call a logic L canonical i� WL  L.

6There are several di�erent but equivalent ways of de�ning this notion; see De�nition 6 in [3]
together with the comments after it. In particular, for every frame W,

6 ◦ R ◦ 6−1 ⊆ R ⇐⇒ R ◦ 6−1 ⊆ R.

7Here W  L means that W  φ for all φ ∈ L.
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Theorem 2.9 (see [3]). Let L be a canonical logic. Then for any Γ ⊆ Form and
∆ v Form,

Γ `L ∆ ⇐⇒ Γ �L ∆.

In particular, since N is canonical, ` coincides with �.

We conclude with two technical remarks.

(I) In [3], Do�sen employed single-succedent derivability and semantical conse-
quence relations � this, in a sense, forced him to utilize Zorn's lemma for
the canonical model lemma. As has been shown in [11], this is not essential.

(II) Do�sen emphasized that Form should be treated as a prime theory in his
canonical model construction. In most cases this is not necessary; see [11].
In particular, if L contains at least one negated formula, we may assume
that all prime L-theories are non-trivial.

In view of (II), we shall adopt the convention that Form is a prime L-theory i� no
negated formula belongs to L. So if L contains some negated formulas, then each
element of WL must be non-trivial; otherwise Form is also an element of WL.

Next we turn to a more elegant semantics appropriate for logics containing N∗.

2.3. Routley-style semantics. Following [9], by a Routley frame we mean a tri-
ple W = 〈W,6, ∗〉 where W is a non-empty set, 6 is a preordering on W , and ∗ is
an anti-monotone function from W to W . Obviously, ∗ may be viewed as a binary
relation on W , and moreover, it is easy to verify that

6 ◦ ∗ ⊆ ∗ ◦ 6−1.

So Routley frames are frames.8 Models based on Routley frames are called Routley
models. By de�nition, for any Routley model M, w ∈W and ψ ∈ Form,

M, x  ¬ψ ⇐⇒ M, x∗ 1 ψ

where x∗ stands for ∗ (x). This kind of semantics is suitable for N∗ and its extensi-
ons.

Given Γ ⊆ Form, denote Form \ Γ � i.e. {φ ∈ Form | ¬φ 6∈ Γ} � by Γ∗. Notice
that if L is an extension of N∗, then it contains some negated formulas, and
hence all prime L-theories are non-trivial by the above convention. The following
is straightforward.

Proposition 2.10 (see [9]). Let Γ be a prime L-theory, where L is an extension
of N∗. Then Γ∗ is also a prime L-theory.

Let L be an extension of N∗. Observe that for every Γ ∈WL,

Γ∗ = the greatest element of {∆ ∈WL | Γ ∩∆ = ∅}
(with respect to inclusion). By the canonical Routley frame for L we mean

WL = 〈WL,6L, ∗L〉
where WL and 6L are as before, and ∗L maps each Γ in WL to Γ∗. By the cano-
nical Routley model for L we mean

ML = 〈WL, ξL〉
where ξL is de�ned in the usual way. Clearly, WL and ML are a Routley frame
and a Routley model respectively.

Lemma 2.11 (see [9]). Let L be an extension of N∗. Then for any Γ ∈ WL and
φ ∈ Form,

ML,Γ  φ ⇐⇒ φ ∈ Γ.

8Semantically, the class of Routley frames plays the same role as the class of all framesW such
that for each w ∈W , R (w) has a greatest element with respect to 6; cf. [9].
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For each extension L of N∗, de�ne �∗L exactly as �L but with `frames' replaced
by `Routley frames'. Further, we call an extension L of N∗ Routley canonical i�
WL  L.

Theorem 2.12 (see [9]). Let L be a Routley canonical extension of N∗. Then for
any Γ ⊆ Form and ∆ v Form,

Γ `L ∆ ⇐⇒ Γ �∗L ∆.

In particular, since N∗ is Routley canonical, `N∗ coincides with �∗N∗ .

3. Adding the contraposition axiom

Naturally, one may wonder what happens when we add the scheme C � which
is equivalent to E by Proposition 2.3 � to a given logic, e.g. N◦, N∗ or N•. Here we
focus on logics containing at least one negated formula. As will become clear from
what follows, this leads us to consider logics that include N2◦.9 Note that N2◦ is
semantically weaker than N1◦; see Table 1. We shall write CL for classical logic, IL
for intuitionistic logic, and JL for Johansson's minimal logic.

Lemma 3.1. N + {N2◦, E} coincides with JL, and hence includes N1•.10

Proof. For convenience, let L denote N + {N2◦, E}. Clearly, L ⊆ JL. For the other
inclusion, it su�ces to show that

¬φ↔ (φ→ ¬ (φ→ φ))︸ ︷︷ ︸
−φ

is derivable in L. The implication from left to right can be obtained as follows:

1 φ→ ((φ→ φ)→ φ)
2 ((φ→ φ)→ φ)→ (¬φ→ ¬ (φ→ φ)) C (see Proposition 2.3)

3 φ→ (¬φ→ ¬ (φ→ φ)) from 1, 2

4 ¬φ→ (φ→ ¬ (φ→ φ)) from 3.

On the other hand, observe that φ→ ¬ (φ→ φ) `L ¬φ:

1 φ→ ¬ (φ→ φ) hypothesis

2 (φ→ ¬ (φ→ φ))→ (¬¬ (φ→ φ)→ ¬φ) C (see Proposition 2.3)

3 ¬¬ (φ→ φ)→ ¬φ from 1, 2

4 ¬¬ (φ→ φ) N2◦

5 ¬φ from 4, 3.

By the deduction theorem for L, this gives us the implication from right to left. �

Before proceeding, a few observations from [11] are worth recalling here.

Proposition 3.2 (see [11]). (i) N2◦ is derivable in N + {N1•}.
(ii) N1◦ and N∗ are derivable in N + {N2•}.

So in particular, N2◦ is deductively weaker than N1•, which implies the following.

Corollary 3.3. N + {N1•, E} coincides with JL.

Proof. Since N2◦ and N1• are derivable in N + {N1•} and JL respectively, we have

N + {N1•, E} = N + {N2◦, N1•, E} = JL + {N1•} = JL

(using Lemma 3.1 for the second equality). �

9In particular, N + {E} will not be considered because of Proposition 3.4 below.
10In [3], Do�sen notes that JL coincides with N + {N1•, C}.
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Interestingly enough, N1◦ is stronger than N2◦ semantically but not deductively,
as the next result shows.

Proposition 3.4 (cf. [9]). No formula beginning with ¬ can be derived in N +
{N2•, E}. In particular, N2◦ is not derivable in N + {N2•, E}.11

Proof. The analogous result for N + {N1◦, N∗} was proved in [9], using a `Kleene
slash', and the same argument applies to N + {N2•, E}. �

Finally, we turn to the extensions of N◦, N∗ and N• obtained by adding E.

Theorem 3.5. (i) N◦ + {E} = IL.
(ii) N∗ + {E} = IL + {WEM}.
(iii) N• + {E} = CL.

Proof. i By Lemma 3.1, N◦ + {E} coincides with JL + {N1◦}, i.e. with IL.

ii By (i), N∗ + {E} coincides with IL + {N∗}. Thus it remains to show that N∗

and WEM are equivalent over IL.12 Notice that WEM is easily derivable in IL + {N∗}:

1 ¬ (φ ∧ ¬φ) JL

2 ¬ (φ ∧ ¬φ)→ ¬φ ∨ ¬¬φ N∗

3 ¬φ ∨ ¬¬φ from 1, 2.

On the other hand, ¬φ∨¬ψ can be derived from ¬ (φ ∧ ψ) in IL+{WEM} as follows:

1 ¬φ ∨ ¬¬φ WEM

2 ¬ψ ∨ ¬¬ψ WEM

3 (¬φ ∨ ¬¬φ) ∧ (¬ψ ∨ ¬¬ψ) from 1, 2

4 (¬φ ∧ ¬ψ) ∨ (¬φ ∧ ¬¬ψ) ∨ (¬¬φ ∧ ¬ψ) ∨ (¬¬φ ∧ ¬¬ψ) from 3

5 ¬φ ∧ ¬ψ → ¬φ ∨ ¬ψ
6 ¬φ ∧ ¬¬ψ → ¬φ ∨ ¬ψ
7 ¬¬φ ∧ ¬ψ → ¬φ ∨ ¬ψ
8 ¬ (φ ∧ ψ) hypothesis

9 ¬¬φ ∧ ¬¬ψ → ¬ (φ ∧ ψ) from 8

10 ¬¬φ ∧ ¬¬ψ → ¬¬ (φ ∧ ψ) JL

11 ¬¬φ ∧ ¬¬ψ → ¬ (φ ∧ ψ) ∧ ¬¬ (φ ∧ ψ) from 9, 10

12 ¬ (φ ∧ ψ) ∧ ¬¬ (φ ∧ ψ)→ ¬φ ∨ ¬ψ IL

13 ¬¬φ ∧ ¬¬ψ → ¬φ ∨ ¬ψ from 11, 12

14 ¬φ ∨ ¬ψ from 4�7, 13.

By the deduction theorem for IL + {WEM}, this gives us N∗.
iii By (ii), N• + {E} coincides with IL + {N2•}, i.e. with CL. �

4. Certain canonical extensions

Note that every canonical logic containing N1◦ must contain N2◦. So in particu-
lar, we have the following negative result.

Proposition 4.1. Let L be a logic between N+ {N1◦} and N+ {N2•, E}. Then L is
not canonical.

Proof. For any frame W, if W  L, then W  N1◦ and therefore W  N2◦ (see
Table 1). Thus �L ¬¬ (p→ p). On the other hand, we have 0L ¬¬ (p→ p) by
Proposition 3.4. Hence L is not canonical by Theorem 2.9. �

11Bear in mind that N + {N2•, E} coincides with N + {N1◦, N∗, N2•, E}.
12In fact, it is straightforward to prove this using the possible world semantics for IL (see e.g.

[10, Section 3]). Here a syntactic proof is provided.
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Obviously, N and N∗ are canonical and Routley canonical respectively. Also, one
can check that N◦ is canonical and N• is Routley canonical; cf. [11, 8]. Further
examples can be obtained by using so-called `canonical schemes'.

Let L be a logic and S be a scheme. We call S canonical over L i� WL′  S

for every extension L′ of L + {S}. Similarly with `Routley canonical' in place of
`canonical'. For instance, since the formulas of the form φ → φ are valid in all
frames, N2◦ turns out to be canonical over N.

For the purposes of the next proof note that if L includes N2◦, then some nega-
ted formulas belong to L, and hence for every Γ ∈WL we have Γ 6= ∅.

Theorem 4.2. N1◦, N∗, N1• and N2• are canonical over N + {N2◦}.

Proof. Let S be one of the schemes above, and let L be an extension of N+{N2◦, S}.
We want to show that WL has the property corresponding to S.

N1◦ Let Γ ∈ WL. We need to �nd ∆ ∈ WL such that Γ ∩∆ = ∅. It su�ces
to show that 0L Γ � because a suitable ∆ can then be obtained by applying
Lemma 2.6. Now assume, by way of contradiction, that `L Γ. So > `L Γ; thus
> ∈ Γ by Proposition 2.7, i.e. ¬> ∈ Γ. Hence we obtain Γ = Form (using N1◦), a
contradiction.

N∗ Let Γ,∆,Σ ∈WL be such that Γ∩∆ = ∅ and Γ∩Σ = ∅. We need to �nd

Π ∈WL such that

Γ ∩Π = ∅ and ∆ ∪ Σ ⊆ Π.

It su�ces to show that ∆ ∪ Σ 0L Γ � because a suitable Π can then be obtained
by applying Lemma 2.6. Now assume, by way of contradiction, that ∆ ∪ Σ `L Γ.
Since ∆ and Σ are closed under conjunction, while Γ is closed under disjunction by
Proposition 2.7, we have

{φ, ψ} `L θ for some φ ∈ ∆, ψ ∈ Σ and θ ∈ Γ.

So φ ∧ ψ → θ ∈ L. Therefore ¬θ → ¬ (φ ∧ ψ) ∈ L (by CR). This implies ¬ (φ ∧ ψ)
∈ Γ (since ¬θ ∈ Γ). Thus ¬φ ∨ ¬ψ ∈ Γ (using N∗), which gives ¬φ ∈ Γ or ¬ψ ∈ Γ,
i.e. φ ∈ Γ or ψ ∈ Γ. Hence we obtain Γ ∩∆ 6= ∅ or Γ ∩ Σ 6= ∅, a contradiction.

N1• Since the composition of RL and 6−1
L coincides with RL, it su�ces to

prove that RL is symmetric. Let Γ,∆ ∈ WL be such that Γ ∩∆ = ∅. We need to
show that ∆∩Γ = ∅. This is easy: if φ ∈ Γ, then ¬¬φ ∈ Γ (using N1•), i.e. ¬φ ∈ Γ,
which implies ¬φ 6∈ ∆, i.e. φ 6∈ ∆.

N2• Assume, by way of contradiction, that WL does not have the property

corresponding to N2•, i.e. there exists Γ ∈WL such that for every ∆ ∈WL,

Γ ∩∆ = ∅ =⇒
there exists Σ ∈WL such that

∆ ∩ Σ = ∅ and Σ 6⊆ Γ.

For each ∆ ∈WL such that Γ∩∆ = ∅, choose Σ∆ ∈WL and φ∆ ∈ Form satisfying

∆ ∩ Σ∆ = ∅ and φ∆ ∈ Σ∆ \ Γ.

Take Π0 to be
{
¬φ∆ | ∆ ∈WL and Γ ∩∆ = ∅

}
. Observe that Π0 6= ∅:

Assume that Π0 = ∅, i.e. there exists no ∆ ∈ WL such that Γ ∩ ∆ = ∅.
Then φ `L Γ for all φ ∈ Form. So Γ = Form by Proposition 2.7. Hence we
obtain Γ = Form (using N2•), a contradiction.

Next, it is not hard to show that Π0 0L Γ:

Assume that Π0 `L Γ. So ¬φ∆0
∧ . . .∧¬φ∆n

`L Γ for some ¬φ∆0
, . . . ,¬φ∆n

∈ Π0. Thus ¬φ∆0
∧ . . . ∧ ¬φ∆n

∈ Γ by Proposition 2.7, i.e.

¬ (¬φ∆0
∧ . . . ∧ ¬φ∆n

) ∈ Γ.
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From this we obtain ¬¬φ∆0
∨ . . . ∨ ¬¬φ∆n

∈ Γ (using N∗), and hence
φ∆0
∨ . . .∨ φ∆n

∈ Γ (using N2•).13 Therefore one of φ∆0
, . . . , φ∆n

must be
in Γ, a contradiction.

Finally, let Π ∈WL be such that Π0 ⊆ Π and Π 0L Γ; the latter implies Γ∩Π = ∅,
of course. Then φΠ ∈ ΣΠ ⊆ Form \Π, which contradicts ¬φΠ ∈ Π0 ⊆ Π. �

Corollary 4.3. Let S ⊆ {N1◦, N∗, N1•, N2•}. Then (N ∪ {N2◦}) + S is canonical.

Proof. Immediate. �

Theorem 4.4. N1• and N2• are Routley canonical over N∗.

Proof. Let S be one of the schemes above, and let L be an extension of N∗ + {S}.
We want to show that WL has the property corresponding to S.

N1• It su�ces to show that for any Γ ∈ WL we have Γ ⊆ Γ∗∗. This is easy: if
φ ∈ Γ, then ¬¬φ ∈ Γ (using N1•), i.e. ¬φ 6∈ Γ∗, i.e. φ ∈ Γ∗∗.

N2• Similarly to N1•. �

Corollary 4.5. N∗ + {N1•}, N∗ + {N2•} and N• are Routley canonical.

Proof. Immediate. �

5. The method of filtration revisited

The decidability of N and N∗ can be established using the method of �ltration
as presented in [4, Section 4]. We are going to develop a somewhat more �exible
approach to �ltrations, which will lead to further decidability results.

5.1. General �ltrations. Fix a model M = 〈W, ξ〉. Let Φ ⊆ Form be closed
under subformulas. Take

≡Φ :=
{

(x, y) ∈W 2 | for all φ ∈ Φ,M, x  φ i�M, y  φ
}
.

For every x ∈ W , denote by [x]Φ the equivalence class of x under ≡Φ. We shall
often omit the subscript Φ if it is clear from the context. By a Φ-�ltration ofM we
mean a model

M′ = 〈〈WΦ,6
′, R′〉, ξΦ〉

where:

• WΦ is {[x] | x ∈W};
• 6′ is such that:

� for all x, y ∈W , if x 6 y, then [x] 6′ [y];
� for all x, y ∈W and φ ∈ Φ, if [x] 6′ [y] andM, x  φ, thenM, y  φ;

• R′ is such that:
� for all x, y ∈W , if xRy, then [x]R′ [y];
� for all x, y ∈W and ¬φ ∈ Φ, if [x]R′ [y] andM, x  ¬φ, thenM, y 1
φ;

• ξΦ is the function mapping each p ∈ Prop to {[x] | x ∈ ξ (p) and p ∈ Φ}.
Obviously, WΦ and ξΦ are both uniquely determined by M and Φ, unlike 6′ and
R′. De�ne

6Φ := the transitive closure of {([x], [y]) | x 6 y},
RΦ := the composition of 6Φ, {([x], [y]) | xRy} and 6−1

Φ .

To make this de�nition easier to handle, denote by v the transitive closure of
6 ∪ ≡, i.e. x v y i� there exist x0, . . . , xn ∈W such that:

13By Proposition 3.2, N∗ is derivable in L.
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• x0 = x and xn = y;
• for every i ∈ {0, . . . , n− 1} we have xi 6 xi+1 or xi ≡ xi+1.

Now, using v, the relations 6Φ and RΦ can be described as follows:

[x] 6Φ [y] ⇐⇒ x v y;

[x] RΦ [y] ⇐⇒ x v u R v w y for some u, v ∈W.

On the other hand, following [4, Section 4], one may consider

6Φ := {([x], [y]) | for all φ ∈ Φ, ifM, x  φ, thenM, y  φ},
RΦ := {([x], [y]) | for all ¬φ ∈ Φ, ifM, x  ¬φ, thenM, y 1 φ}.

Substituting 6Φ, RΦ and 6Φ, RΦ for 6′, R′, we get

MΦ := 〈〈WΦ,6Φ, RΦ〉, ξΦ〉 and MΦ := 〈〈WΦ,6
Φ, RΦ〉, ξΦ〉.14

Naturally, 〈WΦ,6Φ, RΦ〉 and 〈WΦ,6Φ, RΦ〉 are abbreviated to WΦ and WΦ res-
pectively. It is easy to see that for every Φ-�ltrationM′ ofM,

6Φ ⊆ 6′ ⊆ 6Φ and R′ ⊆ RΦ;

furthermore, in the case whereM′ is strictly condensed we also have RΦ ⊆ R′.

Proposition 5.1. Let M and Φ be as above. Then WΦ is a strictly condensed
frame andMΦ is a Φ-�ltration ofM.

Proof. Obviously, 6Φ is a preordering on WΦ. We also have 6Φ ◦ RΦ ◦ 6−1
Φ ⊆ RΦ:

Let x, y ∈W . Suppose there exist u, v ∈W such that

[x] 6Φ [u], [u] RΦ [v] and [y] 6Φ [v].

Then x v u, y v v and there are s, t ∈ W such that u v s R t w v. Hence
x v s R t w y, which implies [x]RΦ [y].

Thus WΦ is a strictly condensed frame. The rest is routine. �

Proposition 5.2 (see [4, Section 4]). Let M and Φ be as above. Then WΦ is a
strictly condensed frame andMΦ is a Φ-�ltration ofM.

Proof. Evidently, 6Φ is a preordering on WΦ. We also have 6Φ ◦ RΦ ◦
(
6Φ
)−1 ⊆

RΦ:

Let x, y ∈W . Suppose there exist u, v ∈W such that

[x] 6Φ [u], [u] RΦ [v] and [y] 6Φ [v].

Observe that for all ¬φ ∈ Φ, if M, x  ¬φ, then M, u  ¬φ, and hence
M, v 1 φ, which impliesM, y 1 φ.

Thus WΦ is a strictly condensed frame. The rest is clear. �

Lemma 5.3. LetM, Φ andM′ be as above. Then for any x ∈W and φ ∈ Φ,

M, x  φ ⇐⇒ M′, [x]  φ.

Proof. By induction on the complexity of φ.
The case where φ ∈ Prop is trivial.
Suppose φ = ¬ψ. Consider each of the two implications separately.

=⇒ Assume x  φ. Let y ∈ W be such that [x]R′ [y]. Then y 1 ψ. So we have
[y] 1 ψ by the inductive hypothesis.

⇐= Assume [x]  φ. Let y ∈ W be such that xRy. Then [x]R′ [y], and hence
[y] 1 ψ. So we have y 1 ψ by the inductive hypothesis.

14In [4], only �ltrations of the formMΦ (which are, in a sense, rather `syntactic') were consi-
dered. Since our approach allows other kinds of �ltration, it appears to be more �exible.
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The other cases can be handled as in intuitionistic logic. �

By a standard argument, this gives the following.

Theorem 5.4 (see [4, Section 4]). N has the �nite model property and is decidable.

Further applications can be obtained by studying what happens to a given frame
property when we pass fromM toMΦ orMΦ for a suitable Φ.

Lemma 5.5. Let M, Φ and M′ be as above, and let S ∈ {N1◦, N2◦}. Suppose
W  S. Then W ′  S.15

Proof. N1◦ Since W is serial (see Table 1), so is W ′. Thus W ′  N1◦.

N2◦ Immediate from Lemma 5.3 � because N2◦ may be treated as variable-
free. �

Theorem 5.6. N+{N2◦} and N◦ have the �nite model property and are decidable.

Concerning more complex schemes:

Lemma 5.7. LetM and Φ be as above. Suppose W  N1•. Then WΦ  N1•.

Proof. Note the composition of RΦ and 6−1
Φ coincides with RΦ. So it su�ces to

show that RΦ is symmetric (see Table 1). Let x, y ∈ W be such that [x]RΦ [y].
Then x v u R v w y for some u, v ∈ W . Since R ◦ 6−1 is symmetric, there exists
t ∈W such that v R t > u. Hence

y v v R t w u w x.

Therefore [y]RΦ [x]. �

Theorem 5.8. N + {N1•} and N◦ + {N1•} have the �nite model property and are
decidable.

For each Φ ⊆ Form, denote by N (Φ) the closure of Φ under negation, i.e. the
least set Ψ of formulas such that Φ ⊆ Ψ and {¬φ | φ ∈ Ψ} ⊆ Ψ. Notice that the
scheme ¬¬φ↔ ¬¬¬¬φ can be derived in N + {N1•} as follows:

1 ¬φ→ ¬¬¬φ N1•

2 ¬¬¬¬φ→ ¬¬φ from 1 (by CR)

3 ¬¬φ→ ¬¬¬¬φ N1•

4 ¬¬φ↔ ¬¬¬¬φ from 2, 3.

Hence if Φ ⊆ Form is �nite, then N (Φ) may be treated as �nite modulo N+{N1•},
so N (Φ) is �nitely based over any model whose frame validates N1•.16

Lemma 5.9. LetM and Φ be as above. Suppose W  N1•. Then WN(Φ)  N1•.

Proof. For convenience, denote N (Φ) by Ψ. Let x, y ∈ W be such that [x]RΨ [y].
For every φ ∈ Ψ, ifM, x  φ, thenM, x  ¬¬φ (by N1•), and thereforeM, y 1 ¬φ
(because ¬φ ∈ Ψ and [x]RΨ [y]). Thus [y]RΨ [x]. �

This gives us another way of proving Theorem 5.8.
For each Φ ⊆ Form we denote by C (Φ) the closure of Φ under conjunction,

disjunction and negation. Evidently, the scheme ¬φ ↔ ¬¬¬φ can be derived in
N + {N2•}:

1 ¬¬φ→ φ N2•

2 ¬φ→ ¬¬¬φ from 1 (by CR)

3 ¬¬¬φ→ ¬φ N2•

4 ¬φ↔ ¬¬¬φ from 2, 3.

15Here W ′ abbreviates 〈WΦ,6′, R′〉.
16It follows that for anyM and Φ as above, ifW  N1• and Φ is �nite, then WN(Φ) is �nite �

though N (Φ) is in�nite, provided that Φ 6= ∅.
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Also, it is known that the following schemes are derivable in N + {N∗}, and hence
in N + {N2•} (by Proposition 3.2):

• ¬ (φ ∨ ψ)↔ (¬φ ∧ ¬ψ);
• ¬ (φ ∧ ψ)↔ (¬φ ∨ ¬ψ).

Consequently, if Φ ⊆ Form is �nite, then C (Φ) may be treated as �nite modulo
N + {N2•}, so C (Φ) is �nitely based over any model whose frame validates N2•.

Lemma 5.10. Let M and Φ be as above, with Φ �nite. Suppose W  N2•. Then
WC(Φ)  N2•.

Proof. For convenience, take Ψ := C (Φ). Assume, by way of contradiction, that
WΨ does not have the property corresponding to N2•, i.e. there exists x ∈W such
that for every y ∈W ,

[x]RΨ [y] =⇒
there exists z ∈W such that

[y]RΨ [z] and [z] 66Ψ [x].

For each y ∈W such that [x]RΨ [y], choose zy ∈W and φy ∈ Ψ satisfying

[y]RΨ [zy], M, zy  φy and M, x 1 φy.

Take Θ to be
{
φy | y ∈W and [x]RΨ [y]

}
. Obviously, since W is serial (recall Pro-

position 3.2), Θ is non-empty. Moreover, it can be treated as a �nite set (see the
comments made just before this lemma). Consider

θ :=
∨

Θ.

We have M, x 1 θ, which implies M, x 1 ¬¬θ (by N2•), so MΨ, [x] 1 ¬¬θ by
Lemma 5.3. On the other hand, for every y ∈ W , if [x]RΦ [y], then M, zy  θ, so
MΨ, [zy]  θ by Lemma 5.3, and thereforeMΨ, [y] 1 ¬θ. ThusMΨ, [x]  ¬¬θ, a
contradiction. �

Theorem 5.11. N∗+{N2•} and N• have the �nite model property and are decidable.

5.2. More speci�c �ltrations. Now we are going to present a di�erent way of
proving Theorem 5.11. It uses a special kind of �ltration suitable for Routley models
whose frames validate N1• or N2•.

Fix a Routley model M. Let Φ ⊆ Form be closed under subformulas and under
negation � so in particular, N (Φ) = Φ. De�ne the special Φ-�ltration of M to be

MΦ = 〈〈WΦ,6Φ, ∗Φ〉, ξΦ〉
where WΦ, 6Φ and ξΦ are as before, and ∗Φ maps each [x] in WΦ to [x∗]. Note
that since Φ is closed under negation, the de�nition of ∗Φ is correct; furthermore,
one can easily check that ∗Φ is anti-monotone with respect to 6Φ. Thus MΦ is a
Routley model. Naturally, we shall abbreviate 〈WΦ,6Φ, ∗Φ〉 to WΦ.

Lemma 5.12. Let M and Φ be as above. Then for any x ∈W and φ ∈ Φ,

M, x  φ ⇐⇒ MΦ, [x]  φ.

Proof. By induction on the complexity of φ.
The case where φ ∈ Prop is trivial.
Suppose φ = ¬ψ. Then

M, x  φ ⇐⇒ M, x∗ 1 ψ

⇐⇒ MΦ, [x
∗] 1 ψ

⇐⇒ MΦ, [x]
∗ 1 ψ

⇐⇒ MΦ, [x]  φ
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where [x]
∗
stands for ∗Φ ([x]), of course.

The other cases can be handled as in intuitionistic logic. �

Lemma 5.13. Let M and Φ be as above, and let S ∈ {N1•, N2•}. Suppose W  S.
Then WΦ  S.

Proof. It is easy to check that for every Routley frame W′:

W′  N1• ⇐⇒ x 6 x∗∗ for all x ∈W ′;
W′  N2• ⇐⇒ x∗∗ 6 x for all x ∈W ′.

In particular, this holds for W′ ∈ {W,WΦ}.
N1• For every x ∈W we have [x] 6Φ [x∗∗] = [x∗]

∗
= [x]

∗∗
. Thus WΦ  N1•.

N2• Similarly to N1•. �

This leads to a re�nement of Theorem 5.11:

Theorem 5.14. N∗ + {N1•}, N∗ + {N2•} and N• have the �nite model property in
terms of Routley models and are decidable.

6. Further discussion

One may wish to look at N and its extensions from a somewhat more general
point of view. In particular, following [12], Do�sen's semantics can be modi�ed by
replacing 〈W,6, R〉 by 〈W,6, R,N〉 where N is a subset of W such that for any
x, y ∈W ,

x ∈ N and x 6 y =⇒ y ∈ N
(the elements of N are called normal worlds). ThenM, x  φ is de�ned as before,
except that the negation clause becomes a bit more complicated:

M, x  ¬ψ :⇐⇒ (M, y 1 ψ for all y ∈ R (x)) and x ∈ N.
Naturally, some of the claims made with Do�sen's semantics in mind may fail
when we pass to the modi�ed semantics. One may proceed to study the problems
discussed above in this more general setting.
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