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SPLITTING OF C.E. DEGREES AND SUPERLOWNESS

M.KH. FAIZRAHMANOV

Abstract. In this paper, we show that for any superlow c.e. degrees a
and b there exists a superlow c.e. degree c such that c 6= a0 ∪ b0 for all
c.e. degrees a0 6 a, b0 6 b. This provides one more elementary di�erence
between the classes of low c.e. degrees and superlow c.e. degrees. We also
prove that there is a c.e. degree that is not the supremum of any two
superlow not necessarily c.e. degrees.
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1. Introduction

In the last �fty or so years, there have emerged a large number of lowness
notions associated with c.e. (as well as other classes of) sets and degrees. Some
notable examples include the superlow degrees, the jump-traceable degrees, the
array computable degrees, theK-trivial degrees, the contiguous degrees, the strongly
jump-traceable degrees (for all of these de�nitions, see [1]). Some of these concepts
will, where necessary, be de�ned later in context.

In this paper, we study and compare two lowness properties, being low and
being superlow. The �rst problem to which the paper is devoted is the search for
new elementary di�erences between the classes of low c.e. degrees and superlow c.e.
degrees. This problem was formulated by Nies [2] and solved by Downey, Greenberg
and Weber [3]. They proved that no superlow c.e. degree can bound a critical triple,
but some low c.e. degree can. To �nd another elementary di�erence, we will use the
following theorem, which is derived from the Sacks Splitting Theorem [4], [5, Ch.
VII, Theorem 3.2]:
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Theorem 1 (Welch [6]). There exist low c.e. degrees a and b such that for every
c.e. degree c there are c.e. degrees a0 6 a and b0 6 b such that c = a0 ∪ b0.

The proof of Theorem 1 is based on the fact that, by the Sacks Splitting Theorem,
∅′ is a disjunctive union of two non-intersecting low c.e. sets (hence, 0′ = a ∪ b
for some low c.e. degrees a and b). Bickford and Mills [7] [1, Theorem 6.1.4] have
shown that 0′ = a∪b for some superlow c.e. degrees a and b. However, one cannot
replace lowness by superlowness in Theorem 1. In particular, it follows from the
�rst result of this paper:

Theorem 2. Let a and b be superlow c.e. degrees. Then there is a superlow c.e.
degree c such that c 6= a0 ∪ b0 for all c.e. degrees a0 6 a, b0 6 b.

Thus, Theorems 1 and 3 immediately provide another elementary di�erence between
the classes of low c.e. degrees and superlow c.e. degrees.

There are other elementary properties that distinguish the classes of low and
superlow c.e. degrees. For instance, Diamondstone [8] proved that there exists a
noncappable (hence, low cuppable) degree which does not cup with a superlow c.e.
degree to 0′. In [9], it was proved that the semilattice generated by superlow c.e.
degrees and the semilattice of all c.e. degrees (that is generated by low c.e. degrees)
are not elementary equivalent. This implies that there is a low c.e degree which is
not the supremum of any two superlow c.e. degrees. Downey and Ng [10] proved
that such a degree can be chosen to be ultrahigh. In this paper, we prove that there
is a c.e. degree that is not the supremum of any two superlow not necessarily c.e.
degrees. The question of the existence of such degrees was also formulated in [2].

Recall that a set A is low if its jump A′ is Turing-below the halting problem ∅′.
The following concept is more restrictive.

De�nition 1. The set A is superlow if A′ 6tt ∅′. Equivalently, A′(e) = lims g(e, s)
for a computable 0, 1-valued g such that g(e, s) changes at most b(e) times, for a
computable function b.

This notion goes back to work of Mohrherr [11], and an unpublished manuscript of
Bickford and Mills [7] (where they studied only superlow c.e. sets and called them
¾abject¿).

We write JA(e) for Φe(A; e), the jump at argument e. While lowness and super-
lowness restrict the domain A′ = {e : JA(e) ↓} of JA, jump traceability introduced
by Nies [1, 2] expresses that JA(e) has few possible values.

De�nition 2. A c.e. sequence of sets {Te}e∈N is a trace if for some computable h,

∀e [|Te| 6 h(e)].

The set A is jump-traceable if there is a trace {Te}e∈N such that

∀e [JA(e) ↓⇒ JA(e) ∈ Te].

In the proof of the �rst result of this paper, we essentially use the following theorem.

Theorem 3 (Nies [2]). Superlowness and jump-traceability coincide within the c.e.
sets.

Note that none of the properties implies the other within the ω-c.e. sets.

Our notation from computability theory is mostly standard. In the following, ϕ
(n)
e

denotes the n-ary partial computable function with the G�odel number e. For unary
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partial computable functions we skip the upper index. We write ϕ
(n)
e (x1, . . . , xn) ↓

if this computation is de�ned, and ϕ
(n)
e (x1, . . . , xn) ↑ otherwise. We are assuming

that

ϕ
(n)
k,s(x1, . . . , xk) ↓⇒ ϕ

(n)
k (x1, . . . , xk) < s.

Let Φe be the Turing functional with the G�odel number e and u(X; e, x, s) be the
use-function of the computation Φe,s(X;x). We are assuming that

Φe,s(X;x) ↓⇒ max{Φe,s(X;x), u(X; e, x, s)} < s.

Let We(X) be the domain of Φe(X). For unexplained notions we refer to Soare [5]

2. The elementary difference

In the proof of the following theorem, we let c(x, y) denote the computable pairing
function 2x(2y + 1) − 1. We write c(x0, . . . , xn+2) instead of
c(x0, . . . , xn, c(xn+1, xn+2)). Let N[y] = {c(x, y) : x ∈ N} for each y.

Theorem 2. Let a and b be superlow c.e. degrees. Then there is a superlow c.e.
degree c such that c 6= a0 ∪ b0 for all c.e. degrees a0 6 a, b0 6 b.

Proof. Let a = degT (A) and b = degT (B). We will construct a superlow c.e. set C
satisfying the following requirements:

Ne : ∃∞s [Φe,s(Cs; e) ↓]⇒ Φe(C; e) ↓,

Re,i,j
k,p,q : Wp = Φi(A) &Wq = Φj(B) &Wp ⊕Wq = Φk(C)⇒ C 6= Φe(Wp ⊕Wq).

To satisfy the requirements Ne, we will use the standard lowness strategy from the
low simple set construction [5, Ch. VII, Theorem 1.1].

The strategy for satisfying the requirement Re,i,j
k,p,q is as follows. First we note that

all c.e. sets A0, B0 with A0 6T A, B0 6T B are uniformly (by Turing functionals
providing these reducibilities) superlow. Therefore, one can choose integers z and

m such that if the left-hand side of the implication in Re,i,j
k,p,q is true, then the sum

of the number of changes in the values JWp(z) and JWq (z) of the jump operator
does not exceed m. Then we choose witnesses

x0 < x1 < · · · < xm

to diagonalize the equality

C = Φe(Wp ⊕Wq)

in such a way that adding each xi, 0 < i 6 m, to C does not a�ect the restraints
imposed by xi−1. Thus, by subsequently enumerating the witnesses xm, xm−1, . . .
into C and changing the values of JWp(z) and JWq (z), we get

C 6= Φe(Wp ⊕Wq).

In more detail, to satisfy the requirement Re,i,j
k,p,q, we construct auxiliary functionals

Θ and Ξ with use-functions θ and ξ respectively. Using the Recursion theorem,
we can assume that before starting the construction we know indices a and b such
that Θ = Φa and Ξ = Φb. Hence, we know c.e. sequences of sets {T i,p

x }i,p,x∈N,
{U j,q

x }j,q,x∈N and computable sequences of functions {f ip}i,p∈N, {gjq}j,q∈N such that

(1) |T i,p
x | 6 f ip(x), |U j,q

x | 6 gjq(x),

(2) Wp = Φi(A) & Θ(Wp;x) ↓⇒ Θ(Wp;x) ∈ T i,p
x ,
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(3) Wq = Φj(B) & Ξ(Wq;x) ↓⇒ Ξ(Wq;x) ∈ U j,q
x

for all i, j, p, q, x. Now we choose a z from some preselected computable set and
de�nem = f ip(z)+gjq(z)+1. Then we proceed according to the following instructions.

1. Choose a �nite sequence x0, . . . , xm such that

Φe,s(Wp,s ⊕Wq,s;xn) ↓= 0 for all n 6 m,

Φk,s(Cs;x) ↓ for each x 6 max{u(Wp,s ⊕Wq,s; e, xn, s) : n 6 m},
xn+1 > max{u(Cs; k, x, s) : x 6 u(Wp,s ⊕Wq,s; e, xn, s)} for each n < m,

at some stage s. We de�ne

Θ(Wp,t; z) ↓= Ξ(Wq,t; z) ↓= s

at each stage t > s and the values of their use-functions at z equal to s.

2. We do not allow elements less than or equal to s to be enumerated into C.

3. We start subsequently enumerating the elements xm, xm−1, . . . into C whenever

Θ(Wp,t; z) ∈ T i,p
z,t , Ξ(Wq,t; z) ∈ U j,q

z,t

for some new stage t.

4. We de�ne

Θ(Wp,u+1; z) = Θ(Wp,t; z) + 1, Ξ(Wq,u+1; z) = Ξ(Wq,t; z) + 1

for suitable t and u whenever xn is enumerated into C.

Taking into account conditions (1)�(3) and the equality m = f ip(z) + gjq(z) + 1, we

will have that the requirement Re,i,j
k,p,q is satis�ed.

Construction

Stage 0. Let γ0 = ∅, C0 = ∅, h0(y) = r(y, 0) = 0 for each y. At each next stage,
we assume that the value of each parameter remains the same, unless otherwise
speci�ed.

Stage 2s+ 1 = 2c(e, i, j, k, p, q, v) + 1. Let y = c(e, i, j, k, p, q), z = c(y, hs(y)), and
m = f ip(z) + gjq(z) + 1.

1. If γs(z) ↑ and there is a �nite sequence x0, . . . , xm ∈ N[y] \ Cs such that

Φe,s(Wp,s ⊕Wq,s;xn) ↓= 0 and xn > r(w, s) for all n 6 m, w 6 2y,

Φk,s(Cs;x) ↓ for each x 6 max{u(Wp,s ⊕Wq,s; e, xn, s) : n 6 m},
xn+1 > max{u(Cs; k, x, s) : x 6 u(Wp,s ⊕Wq,s; e, xn, s)} for each n < m,

then we de�ne
γs+1(z) = c(m,x0, . . . , xm),

r(2y + 1, s+ 1) = s,

Θ(Wp,s; z) = Ξ(Wq,s; z) = s

with the use-values
θ(Wp,s; z) = ξ(Wq,s; z) = s

respectively, and go to the next stage. We are assuming that

θ(Wp,t; z) = ξ(Wq,t; z) = s

for each t > s.
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Suppose γs(z) ↓= c(m,x0, . . . , xm).

2. If there are n 6 m, w 6 2y such that xn 6 r(w, s), then we de�ne

hs+1(z) = hs(z) + 1

and go to the next stage.

3. Suppose
Θ(Wp,s; z) ↓∈ T i,p

z,s , Ξ(Wq,s; z) ↓∈ U j,q
z,s ,

∀n 6 m [Φe,s(Wp,s ⊕Wq,s;xn) = Cs(xn)],

and there is an l 6 m such that xl 6∈ Cs. Let l0 = max{l 6 m : xl /∈ Cs}. If
Φk,s(Cs;x) = (Wp,s ⊕Wq,s)(x)

for each x 6 max{u(Wp,s ⊕Wq,s; e, xl0 , s) : n 6 l0}, then we de�ne

Cs+1 = Cs ∪ {xl0}, r(2y + 1, s+ 1) = s,

and go to the next stage.

4. Assume that
Θ(Wp,t; z) ↓, Ξ(Wq,t; z) ↓,

where t = c(e, i, j, k, p, q, v − 1). Then we de�ne

Θ(Wp,s; z) = Θ(Wp,t; z) + 1, if Wp,s � θ(Wp,t; z) 6= Wp,t � θ(Wp,t; z),

Ξ(Wq,s+1; z) = Ξ(Wq,t; z) + 1, if Wq,s+1 � ξ(Wq,t; z) 6= Wq,t � ξ(Wq,t; z),

and go to the next stage.

Stage 2s+ 2. De�ne
r(2e, s+ 1) = u(Cs; e, e, s)

for each e.

End construction

It remains to check that C is superlow. Indeed, we know the number of witnesses z
belonging to a preselected computable set needed to satisfy each R-requirement.
Therefore, we know the number of restraints imposed by each requirements of
lower priority. Hence C is superlow. Note that similar arguments were used in
the construction of a superlow simple set [1, Theorem 1.6.5]. �

Corollary 1. The classes of low c.e. and superlow c.e. degrees are not elementary
equivalent.

The following corollary shows that in the Sacks Splitting Theorem [4] [5, Ch. VII,
Theorem 3.1], in the general case, splitting sets cannot be chosen to be superlow.

Corollary 2. There are no superlow c.e. sets A and B such that A ∩ B = ∅ and
A ∪B = ∅′.

Proof. Assume that ∅′ = A∪B for some superlow c.e. sets A and B with A∩B = ∅.
Then there exist superlow c.e. sets Â and B̂ such that

K0 = {c(e, x) : x ∈We, e ∈ N} = Â ∪ B̂, Â ∩ B̂ = ∅.

Let n be an integer such that Wn 6≡T A0 ⊕ B0 for all c.e. sets A0 6T Â and

B0 6T B̂. We have

Wn ≡T {c(n, x) : c(n, x) ∈ Â} ⊕ {c(n, x) : c(n, x) ∈ B̂}.
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That is a contradiction. �

3. A c.e. degree that cannot be split into two superlow degrees

For a binary function ϕ
(2)
e , we let

ϕ̂e(x) =

{
ϕ
(2)
e (x,min{n : ϕ

(2)
e (x, n) ↓}), if ∃n [ϕ

(2)
e (x, n) ↓],

unde�ned, otherwise.

It follows from [12] that X is superlow i� there exists an e such that X ′ = ϕ̂e i�
for every i there exists an e such that Wi(X) = ϕ̂e.

Theorem 4. There exists a c.e. degree c such that c 6= a ∪ b for all superlow
degrees a and b.

Proof. We will construct a c.e. set C and Turing functionals Θ, Ξ satisfying the
following requirements:

Re,i,j
k,p,q : C = Φe(Φi(C)⊕ Φj(C)) & Φi(C)⊕ Φj(C) = Φk(C)⇒

⇒ H(Φi(C)) 6= ϕ̂p ∨ S(Φj(C)) 6= ϕ̂q,

where H(X) = dom Θ(X) and S(X) = dom Ξ(X).

The strategy for satisfying the requirement Re,i,j
k,p,q is similar to the strategy from

Theorem 2. The main di�erence between these strategies is as follows. We need to
diagonalize the condition

H(Φi(C)) = ϕ̂p &S(Φj(C)) = ϕ̂q,

but we cannot immediately choose z and m as in Theorem 2 (so, this prevents C
from being superlow). Instead, we are looking for z, mp, mq such that ϕp,s(z,mp) ↓
and ϕq,s(z,mq) ↓. After that we choose witnesses

x0 < x1 < · · · < xm,

where m = mp + mq + 1, for the diagonalization in such a way that adding
each xi, 0 < i 6 m, to C does not a�ect the restraints imposed by xi−1. Thus,
by subsequently adding the witnesses xm, xm−1, . . . to C and changing the values
of H(Φi(C)) and H(Φj(C)), we get

H(Φi(C)) 6= ϕ̂p ∨ S(Φj(C)) 6= ϕ̂q.

In more detail, to satisfy the requirement Re,i,j
k,p,q, we proceed according to the

following instructions.

1. Choose integers z and mp,mq such that ϕp,s(z,mp) ↓ and ϕq,s(z,mq) ↓. Let
m = mp +mq + 1.

2. Choose a �nite sequence x0, . . . , xm such that

Φe,s(Φi,s(Cs)⊕ Φj,s(Cs);xn) = 0,

Φk,s(Cs;x) ↓ for each x 6 max{u(Φi,s(Cs)⊕ Φj,s(Cs); e, xn, s) : n 6 m},
xn+1 > max{u(Cs; k, x, s) : x 6 u(Φi,s(Cs)⊕ Φj,s(Cs); e, xn, s)} for each n < m.

3. We do not allow elements less than or equal to s to be enumerated into C.

4. We start subsequently enumerating the elements xm, xm−1, . . . into C whenever

ϕ̂p,s(z) = Hs(Φi,s(Cs))(z) = ϕ̂q,s(z) = Ss(Φj,s(Cs))(z) = 1.
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Taking into account the equalitym = mp+mq+1, we will have that the requirement

Re,i,j
k,p,q is satis�ed.

Construction

Stage 0. Let γ0 = ∅, C0 = ∅, h0(y) = r(y, 0) = 0 for each y. At each next stage,
we assume that the value of each parameter remains the same, unless otherwise
speci�ed.

Stage s+ 1 = c(e, i, j, k, p, q, v) + 1. Let y = c(e, i, j, k, p, q), z = c(y, hs(y)). Let

m =

{
mp +mq + 1, if mp = min{n : ϕp,s(z, n) ↓}, mq = min{n : ϕq,s(z, n) ↓},
−1, if ∀n [ϕp,s(z, n) ↑] ∨ ∀n [ϕq,s(z, n) ↑].

.

1. If γs(z) ↑ and there is a �nite sequence x0, . . . , xm such that

Φe,s(Φi,s(Cs)⊕ Φj,s(Cs);xn) = 0 and xn > max{r(w, s) : w < y} for each n 6 m,
where max∅ = −1,

Φk,s(Cs;x) ↓ for each x 6 max{u(Φi,s(Cs)⊕ Φj,s(Cs); e, xn, s) : n 6 m},

xn+1 > max{u(Cs; k, x, s) : x 6 u(Φi,s(Cs)⊕ Φj,s(Cs); e, xn, s)} for each n < m,

then we de�ne

γs+1(z) = c(m,x0, . . . , xm),

r(y, s+ 1) = s,

Θ(Φi,s(Cs); z) = Ξ(Φj,s(Cs); z) = 0

with the use-values

θ(Φi,s(Cs); z) = ξ(Φj,s(Cs); z) = s

respectively, and go to the next stage. We are assuming that

θ(Φi,t(Ct); z) = ξ(Φj,t(Ct); z) = s

for each t > s.

Suppose γs(z) ↓= c(m,x0, . . . , xm).

2. If there are n 6 m, w < y such that xn 6 r(w, s), then we de�ne

hs+1(z) = hs(z) + 1

and go to the next stage.

3. Assume that

ϕ(2)
p,s(z,mp) = Hs(Φi,s(Cs))(z), ϕ

(2)
q,s(z,mq) = Ss(Φj,s(Cs))(z).

If

z 6∈ Hs(Φi,s(Cs)) or z 6∈ Ss(Φj,s(Cs)),

then we de�ne

Θ(Φi,s(Cs); z) = 0 or Ξ(Φj,s(Cs); z) = 0,

respectively. If

z ∈ Hs(Φi,s(Cs)) ∩ Ss(Φj,s(Cs))

and there exists an l 6 m such that xl 6∈ Cs, then we de�ne

Cs+1 = Cs ∪ {xl0}
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for the greatest l0 with xl0 6∈ C, and
r(y, s+ 1) = s.

End construction

It is not hard to see that the construction combines strategies of satisfying each
R-requirement by the �nite injury priority method. This completes the proof of the
theorem. �

Note that we can easily combine the satisfying of the R-requirements from last
theorem with the satisfying of the N -requirements form Theorem 2. Hence, there
exists a low c.e. degree c such that c 6= a ∪ b for all superlow degrees a and b.
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