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MINIMIZING MAKESPAN FOR PARALLELIZABLE JOBS WITH

ENERGY CONSTRAINT

A. KONONOV, YU. ZAKHAROVA

Abstract. We investigate the problem of scheduling parallelizable jobs
to minimize the makespan under the given energy budget. A parallelizable
job can be run on an arbitrary number of processors with a job execution
time that depends on the number of processors assigned to it. We consider
malleable and moldable jobs. Processors can vary their speed to conserve
energy using dynamic speed scaling. Polynomial time algorithms with
approximation guarantees are proposed. In our algorithms, a lower bound
on the makespan and processing times of jobs are calculated. Then
numbers of utilized processors are assigned for jobs and a feasible solution
is constructed using a list-type scheduling rule.

Keywords: parallelizable job, speed scaling, scheduling, approximation
algorithm.

1. Introduction

We investigate the problem of scheduling a set of jobs J = {1, . . . , n} on m
speed scalable parallel processors. Each job j ∈ J is characterized by processing
volume (work) Wj and the upper bound δj ≤ m on the possible number of utilized
processors. We consider malleable and moldable jobs [2]. In the case of moldable
jobs, the number of utilized processors is chosen by the scheduler before starting

Kononov, A., Zakharova, Yu., Minimizing makespan for parallelizable jobs with

energy constraint.

© 2022 Kononov A., Zakharova Yu.

The work is supported by Russian Science Foundation (grant 21-41-09017).
Received May, 13, 2022, published August, 30, 2022.

586



MINIMIZING MAKESPAN FOR PARALLELIZABLE JOBS 587

the job, and it is not changed until the job termination. In the case of malleable
jobs, we may change the number of processors utilized by a job during the schedule.
We investigate the linear case, when the runtime of a job decreases linearly with
the number of processors assigned to it, and Wj is the execution time of job j on
one processor with unit speed. We assume that all jobs arrive at time step 0. Job
preemption, migration, and precedence constraint might or might not be allowed
in the exploring of scheduling in this paper.

The standard homogeneous model in speed-scaling is considered. When a process-
or runs at a speed s, then the rate with which the energy is consumed (the power)
is sα, where α > 1 is a constant. Each of m processors may operate at variable
speed. However, we assume that the total work Wj of a job j ∈ J should be
uniformly divided between the utilized processors, i.e. if job j uses mj processors,
then processing volumes are the same for all mj processors, and all these processors
run at the same speed. It is supposed that a continuous spectrum of processor speeds
is available.

The aim is to �nd a feasible schedule with the smallest value of the maximum
completion time (makespan, Cmax) so that the energy consumption is not greater
than a given energy budget E. This is a natural assumption in the case when the
energy of a battery is �xed, i.e. the problem �nds applications in computer devices
whose lifetime depends on a limited battery e�ciency (for example, multi-core
laptops). Moreover, the bicriteria problems of minimizing energy consumption and
a scheduling metric arise in real practice. The most obvious approach is to bound
one of the objective functions and optimize the other. The energy of the battery can
be reasonably estimated, so we bound the energy used, and optimize the regular
timing criterion.

The moldable and malleable variants of the speed-scaling scheduling subject to
bound on energy consumption are denoted by P |any, δj , energy|Cmax and
P |var, δj , energy|Cmax, respectively.

2. Previous Research

Now we review the known results for the classical makespan minimization problem
of scheduling moldable and malleable jobs with given durations and without energy
constraint. The non-preemptive problem with moldable jobs is NP-hard. For problems
P2|any|Cmax and P3|any|Cmax pseudopolynomial algorithms based on dynamic
programming have been proposed in [4]. A PTAS is known for Pm|any|Cmax [6].
List-type approximation algorithms were developed for problem P |any, δj , prec|Cmax,
scheduling moldable jobs with linear speedup, limits on parallelism δj and precedence
constraints [14]. Algorithms use Earliest Completion Time strategy and take into
account alternative starting times and available numbers of processors.

Constant factor approximation algorithms have been obtained for the more
general problems with nondecreasing sublinear speedup functions of jobs on the
number of utilized processors (NdSub). A 2

1− 1
m

-approximation algorithm for problem

P |any,NdSub, δj |Cmax initially considers all jobs as single-processor ones and builds
a schedule using LPT (Largest Processing Time First) rule. Then this algorithm
iteratively increases the number of utilized processors for long jobs [1]. Similar
approaches were used in [5, 9]. For the instances with precedence constraints, a
two-stage approximation algorithm is known [11]. At the �rst stage, processor
allotments are selected by a 2-approximation algorithm, taking into account the
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Table. 1. Approximation results for various types of jobs and
makespan criterion

Type of Jobs Preemptive and Non-preemptive Precedence
Migrative Constraints

Rigid OPT+ε [8] 2− 1
m [8] 2−q

1−q [8]

Moldable ? 2− 2
m+1

3+
√
5

2

Malleable poly � ?

longest path in the partial order graph and the total load of processors. At the
second stage, a feasible schedule of jobs with given sizes is constructed using a
precedence-dependent list-scheduling rule.

The problem with malleable independent jobs and linear speedup is solvable in
linear time [3]. The problem with precedence constraints as chains is polynomially
solvable when the number of processors is �xed, and it is NP-hard when the number
of processors is a part of the input [3].

In our previous research, we investigated the speed-scaling problem with rigid
and single mode jobs [7, 8]. A rigid job can be processed on any subset of parallel
processors of the given size. A single mode job uses the prespeci�ed subset of
dedicated processors. NP-hardness proofs and approximation algorithms were propo-
sed. Our strategies are based on relaxed formulations of the problems as convex
programs solved by the Ellipsoid method and the KKT-conditions. These programs
allow us to obtain lower bounds on the makespan and auxiliary processing times of
jobs. Then we �nd feasible schedules using various greedy rules.

Our results. We develop two-stage algorithms for the following cases:

• malleable jobs,
• moldable jobs,
• moldable jobs with precedence constraints.

At the �rst stage, a lower bound on the makespan and processing times of jobs are
calculated. Then, at the second stage, numbers of utilized processors are assigned for
jobs, and a feasible solution is constructed by a list-type scheduling rule. Constant
factor approximation guarantees are provided.

In Table 1 we present the previously obtained results, new results provided in
this paper and open questions (marked by �?�) for various types of jobs.

3. Malleable Jobs

In this section we consider malleable jobs, that can be executed by more than one
processor in parallel, decreasing in this way its total execution time. Preemption,
migration and changing the number of used processors are allowed. The duration
of job j on k processors is supposed to be

pj
k , when pj is the processing time of the

job on one processor.
The considered speed-scaling problem with malleable jobs is polynomially solvable.

Indeed, the lower bound on the objective function is calculated by solving the
following convex program:
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(1) LB → min,

(2)
1

m

n∑
j=1

pj ≤ LB,

(3)
pj
δj
≤ LB, j ∈ J ,

(4)
∑
j∈J

pj

(
Wj

pj

)α
≤ E,

(5) pj ≥ 0, j ∈ J .
Here pj denote the processing time of job j on one processor. Inequality (2) states
that the total load of all processors is no more than LB · m. Constraints (3)
guarantee that the duration of any job j does not exceed LB, when the maximum
possible number δj of processors is used. Inequality (4) ensures that the total energy
consumption is not greater than the budget E. Program (1)-(5) can be solved
in polynomial time using Karush-Kuhn-Tucker conditions [10] similar to [8] (see
description in Appendix).

We construct the optimal schedule using the obtained processing times of jobs
and the algorithm of McNaughton [12]: Jobs are assigned consecutively, one after
another, to the processors starting from the �rst one. If the interval of processing
some job on some processor i exceeds LB, then the job is divided into parts:

• the �rst part �nishing by LB on processor i;
• several parts which are executed during interval [0, LB) on processors i +

1, . . . , i+ l − 1;
• the last part starting at time 0 on processor i+ l.

This procedure is repeated for all jobs. The time complexity is O(n).

Theorem 1. An optimal schedule can be found in polynomial time for scheduling
problem P |var, δj , energy|Cmax.

We note that an optimal schedule for malleable jobs with δj = m, j ∈ J ,
can be easily found in linear time by assigning m processors to each job and
arbitrary ordering the jobs. In this case, the processing times of jobs are pj =

Wj

m

(
E∑

i∈J Wi

)1/(1−α)
and all processors work with the same constant speed.

4. Moldable Jobs

In the case of moldable jobs, the number of required processors is chosen by the
scheduler before starting the job, and it is not changed until the job termination.
Suppose that a moldable job j can be executed on up to δj ≤ m processors.
Preemption and migration are not allowed. The problem is NP-hard even in the
case of δj = 1 for all j ∈ J and m = 2 (the well known Partition problem is reduced
to it). So, here we develop an approximation algorithm.

The lower bound LB on the makespan and processing times of jobs pj can be
found in polynomial time using model (1)�(5) for malleable jobs. Then, if we assign
the number of utilized processors mj := δj for all jobs j ∈ J , and construct a
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feasible schedule by the �non-preemptive list-scheduling� algorithm proposed in [8],
then we obtain a

(
2− 1

m

)
-approximate solution of the problem as in the case of

rigid jobs.

Now we propose an algorithm with approximation ratio of
(

2− 2
m+1

)
(see

Algorithm 1). For example, we have 3
2 -approximation algorithm for rigid jobs and

4
3 -approximation algorithm for moldable jobs in the case of two processors.

In Algorithm 1, all jobs are initially considered as single-processor ones, and a
feasible schedule is constructed using the Longest Processing Time First strategy.
Then, at each iteration, we identify a job, that de�nes the schedule length, and
increase the number of utilized processors for it until an approximate solution with
the stated guarantee factor will be obtained. The running time of each iteration is
O(nlogm) as a subset of sequential processors should be assigned for multiprocessor
jobs, and each single-processor job should be placed on the speci�c processor. The
total time complexity of Algorithm 1 is equal to O(n2logm).

Recall that LB ≥ max{A; max
j∈J

pj
δj
}, where A := 1

m

∑
j∈J

pj . We will show that

the presented algorithm has
(

2− 2
m+1

)
approximation ratio. Initially, we provide

properties of the constructed schedule and then prove the main result of this section.

Algorithm 1 List Schedule for Moldable Jobs

1: Sort the jobs in non-increasing order based on execution times pj . The jobs are
assigned to processors such that the next job is placed on the processor with
the current minimum �nish time. Put the number of utilized processors mj = 1
for all j ∈ J . Denote the obtained schedule by S and its length by Cmax(S).

2: Find a job i = argmaxj∈J
pj
mj

and set h = maxj∈J
pj
mj

.

3: If either Cmax(S) 6= h, or mi > 1, or δi = 1, then go to Step 5. If Cmax(S) = h,

but h ≤
(

2− 2
m+1

)
· LB, then also go to Step 5.

4: Set mi :=

⌈
pi

(2− 2
m+1 )·LB

⌉
. Construct a schedule S in the following form. The

jobs j ∈ J with mj > 1 are placed on the required number of processors at
starting time 0 (the total number of utilized processors will be no more thanm).
We schedule the remaining jobs in the same way as at Step 1. If Cmax(S′) > h,
then put mi := 1 and go to Step 5, else set S := S′ and go to Step 2.

5: Return schedule S.

Lemma 1. Let m ≥ 2 and S be the schedule obtained on some Step of Algorithm 1.

Then pi
mi

>
(

1− 1
m+1

)
· LB for all i ∈ J such that mi > 1.

Proof. Assume that pi
mi
≤
(

1− 1
m+1

)
· LB for some job i utilizing more than one

processor, i.e. pi ≤
(

1− 1
m+1

)
· LB · mi. Then we see pi

mi−1 ≤
(1− 1

m+1 )·LB·mi
mi−1 ≤

2
(

1− 1
m+1

)
· LB =

(
2− 2

m+1

)
· LB. This is contrary to the choice of mi in

Step 4. �
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Lemma 2. At Step 4 of Algorithm 1 we have
∑

j∈J : mj>1

mj ≤ m after assigning

mi :=

⌈
pi

(2− 2
m+1 )·LB

⌉
.

Proof. Assume that
∑

j: mj>1

mj ≥ m + 1, then from Lemma 1 the total load of

processors by jobs with mj > 1 will be greater than

(m+ 1)

(
1− 1

m+ 1

)
· LB = m · LB ≥

∑
j∈J

pj .

This leads to a contradiction. �

Lemma 3. Let S be the schedule obtained on Step 1 or 4 of Algorithm 1, and y is
the execution time of the �rst job that starts at time t > 0 (if there is no such job,
y = 0). Then Cmax(S) ≤ max{h(S);A + y

(
1− 1

m

)
}, where h(S) = maxj∈J

pj
mj

is

the execution time of the largest job in schedule S.

Proof. If Cmax(S) corresponds to the completion time of a job scheduled at time
0, then Cmax(S) = h(S). Otherwise, Cmax(S) is equal to the �nish time of a job i,
which was scheduled later (see Fig. 1). It is easy to see that mi = 1 and pi ≤ y.
Job i starts at time t′ = (Cmax(S)− pi). From the construction of S in Algorithm 1,
none of the processors has completed before time t′. Set A′ := 1

m

∑
j∈J ′ pj , where

J ′ is the subset of the jobs already started before time t′. Then t′ ≤ A′ ≤ A− pi
m .

As a result we have

Cmax(S)− pi ≤ A−
pi
m

and

Cmax(S) ≤ A+ pi

(
1− 1

m

)
≤ A+ y

(
1− 1

m

)
.

�

Lemma 4. Let S be the schedule obtained on Step 1 or 4 of Algorithm 1, and y is
the execution time of the �rst job that starts at time t > 0 (if there is no such job,
y = 0). Then
1. y ≤ pi

mi
for all i ∈ J such that mi > 1; 2. Cmax(S) ≤ max{h(S); 2A

(1+ 1
m )
}.

Proof. 1. From Lemma 1 we have pi
mi

>
(

1− 1
m+1

)
· LB for all jobs i ∈ J using

more than one processor. Assume that y ≥
(

1− 1
m+1

)
·LB, then all single-processor

jobs starting at time 0 have durations pj ≥
(

1− 1
m+1

)
· LB. So the total load of

m processors by jobs starting at zero time and by the job corresponding to y will
be greater than

(m+ 1)

(
1− 1

m+ 1

)
· LB = m · LB ≥

∑
j∈J

pj .

This leads to a contradiction. Therefore, y <
(

1− 1
m+1

)
· LB and y < pi

mi
for all

i ∈ J such that mi > 1.
2. The execution time of the job corresponding to y is no more than the durations
of jobs, starting at time 0. So, we have A ≥ m y

m + y
m . In other words, y ≤
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Fig. 1. Types of schedules constructed by Algorithm 1.

A
(1+ 1

m )
. Substituting this expression in the result of Lemma 3, we obtain Cmax(S) ≤

max

{
h(S); 2A

(1+ 1
m )

}
. �

Theorem 2. Let S be the schedule obtained on Step 5 of Algorithm 1. Then

Cmax(S) ≤
(

2− 2
m+1

)
· LB.

Proof. There are two cases (see Fig. 1).
Case 1. Cmax(S) 6= h(S) := maxj∈J

pj
mj

. It is easy to check that Cmax(S) ≥
max{h(S);A}. So, Cmax(S) > h(S), and from Lemma 4 we have Cmax(S) ≤(

2− 2
m+1

)
A ≤

(
2− 2

m+1

)
· LB.

Case 2. Cmax(S) = h(S). We consider the various possible cases of termination
in Algorithm 1.

Algorithm 1 terminated at Step 3 since

1)mi > 1, so, due to the selection rule ofmi value we have h(S) = pi
mi
≤
(

2− 2
m+1

)
·

LB;
2) δi = 1, therefore, pi = pi

δi
≤ LB;

3) h(S) ≤
(

2− 2
m+1

)
· LB, thus, Cmax(S) ≤

(
2− 2

m+1

)
· LB.

Algorithm 1 terminated at Step 4 as the constructed schedule S′ has Cmax(S′) >
h(S). Similar to the Proof of Lemma 4 we can show

Cmax(S′) ≤ max

{
h(S′);

2A(
1 + 1

m

)} .
From our assumption Cmax(S′) > h(S) ≥ h(S′), so, Cmax(S′) ≤ 2A

(1+ 1
m )

. However,

Cmax(S) = h(S) < Cmax(S′) ≤ 2A
(1+ 1

m )
≤
(

2− 2
m+1

)
· LB. �

Theorem 3. A
(

2− 2
m+1

)
-approximate schedule can be found in polynomial time

for problem P |any, δj , energy|Cmax.
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5. Moldable Jobs with Precedence Constraints

In this section, we consider the case of non-preemptive moldable jobs and precedence
relations between jobs. If job j precedes job j′ (we write j ≺ j′), then j′ cannot
start until j is completed. The precedence constraints are represented by a directed
acyclic graph G = (J,A), where arc (j, j′) belongs to set A if and only if job j must
precede job j′.

We formulate the following convex problem to obtain a lower bound on the
optimal makespan:

(6) T → min,

(7)
1

m

∑
j∈J

pj ≤ T,

(8) Cj ≤ T, j ∈ J ,

(9)
pj
δj
≤ Cj , j ∈ J ,

(10) Cj +
pj′

δj′
≤ Cj′ , (j, j′) ∈ A,

(11)
∑
j∈J

Wα
j p

1−α
j ≤ E,

(12) Cj ≥ 0, pj ≥ 0, j ∈ J .

Here variable pj (Cj) represents the processing time of job j ∈ J on one processor
(the estimation of the completion time of j). Inequalities (7), (8) and (9), (11)
have the same sense as inequalities (2), (3), (4) in the model for the problem
without precedence constraints (see Section 3). Inequality (10) allow estimating the
completion times of jobs taking into account the precedence constraints. Convex
program (6)-(12) implies a polynomial-time algorithm for calculating the lower
bound, as convex programs can be solved to arbitrary precision by the Ellipsoid
algorithm (see, e.g., [13]).

After solving program (6)-(12) we can identify the longest path in graph Gδ =

(J,A, P δ) with lengths of job-vertices equal to
pj
δj
, i.e. P δ =

(
p1
δ1
, . . . , pnδn

)
. We denote

the length of this path by Lδ, and the average duration of jobs by A := 1
m

∑
j∈J pj .

Then, the optimal makespan C∗max ≥ max{Lδ; A}.
Let µ ≤ m+1

2 denote the maximum number of processors, that can be used by
any job in the schedule constructed by Algorithm 2. Here the number of processors
are assigned for each job at the �rst step, and the jobs are scheduled in accordance
with the precedence constraints in O(n3) time at the second step.
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Algorithm 2 List Schedule for Moldable Jobs with Precedence Constraints

1: Assign the number of processors for job j ∈ J equal to mj := min{δj , µ}.
This de�nes the execution time p̄j =

pj
mj

of job j ∈ J on each of the utilized
processors.

2: Repeat the following procedure until all jobs have been scheduled:
Let J̄ be the subset of unscheduled jobs whose predecessors all have already
been scheduled. For each job from J̄ calculate the earliest possible starting
time. Add the job with the smallest earliest starting time in the schedule.

We will show that Algorithm 2 has max
{
m
µ ; 2m−µ

m−µ+1

}
approximation ratio. Initially

we establish properties of the constructed schedule, and then provide constant factor
approximation guarantee. Let Capxmax denote the length of the schedule, constructed
by Algorithm 2. Then, Capxmax ≥ max{Lapx; A}, where Lapx is the length of the
longest path in graph Gapx = (J,A, P apx) with the vector of job lengths equal to

P apx =
(
p1
m1
, . . . , pnmn

)
.

The constructed schedule contains three type of intervals I1, I2, I3 (see Fig. 2),
such that

• I1 is the set of intervals, where at most µ− 1 processors are used;
• I2 is the set of intervals, where at least µ, but no more thanm−µ processors
are used;
• I3 is the set of intervals, where at least m− µ+ 1 processors are used.

Therefore,

(13) Capxmax = |I1|+ |I2|+ |I3|,

(14) mA =
∑
j∈J

pj ≥ |I1|+ µ|I2|+ (m− µ+ 1)|I3|.

If we multiply (13) by (m− µ+ 1) and subtract (14), then obtain

(15) (m− µ+ 1)Capxmax ≤ mA+ (m− µ)|I1|+ (m− 2µ+ 1)|I2|.

Now we provide the relation between the length Lδ of the critical path in Gδ

and total durations of intervals from I1, I2.

Lemma 5. Inequality |I1| + µ
m |I2| ≤ Lδ holds for the schedule, constructed by

Algorithm 2.

Proof. We �nd a critical chain of jobs in the schedule constructed by Algorithm 2.
Let j1 be any job that completes at time Capxmax. After we have obtained jobs ji →
ji−1 → · · · → j1 we �nd the next job ji+1 as follows:
Consider the latest time interval I in I1 ∪ I2 that lies before the starting time of
ji. Identify the set J ′ of jobs that includes ji and all its predecessor jobs that start
after interval I. Since during interval I at most (m − µ) processors are busy, and
since Algorithm 2 assigns at most µ processors to each job, all jobs from J ′ cannot
be performed during interval I due to some predecessor jobs. As the next job ji+1,
we select any predecessor of ji that is executed in interval I and completed at the
end of I or later. This procedure terminates when the critical chain contains a job
that starts before all intervals in I1∪I2. By the construction, the jobs of the critical
chain cover all intervals in I1 ∪ I2.
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Fig. 2. Schedule S constructed by Algorithm 2, Lδ = 13 (arcs
of the longest paths are presented by solid lines), Cmax = 18.
Here n = 9, m = 4, µ = 2, p = (8, 4, 6, 10, 6, 4, 8, 2, 5), δ =
(4, 2, 3, 2, 3, 1, 2, 1, 1), P δ = (2, 2, 2, 5, 2, 4, 4, 2, 5),
P apx = (4, 2, 3, 5, 3, 4, 4, 2, 5).

Now we consider any job j of the obtained critical chain. If mj = δj ≤ µ, then
this job has the same length in the schedule and in the graph Gδ from the lower
bound. The job can be executed in I1 and I2. If mj = µ < δj , then this job has
duration p̄j =

pj
µ in the schedule and length

pj
δj

in graph Gδ. So,
pj
δj
≥ µ

m p̄j and

the job can be executed only in I2. The lower bound on the length of the critical
chain in terms of graph Gδ is |I1| + µ

m |I2|. At the same time this lower bound

|I1|+ µ
m |I2| ≤ L

δ as Lδ is the length of the longest path in Gδ. �

Lemma 6. Let m
µ ≤

2m−µ
m−µ+1 . Then C

apx
max ≤

2m−µ
m−µ+1C

∗
max.

Proof. From the assumed inequality we have (m− µ+ 1) ≤ µ
m (2m− µ) = µ

m (m−
µ) + µ, therefore, (m − 2µ + 1) ≤ µ

m (m − µ). Then, using (15) and Lemma 5 we
obtain

(m− µ+ 1)Capxmax ≤ mA+ (m− µ)|I1|+ (m− 2µ+ 1)|I2| ≤

mA+ (m− µ)|I1|+
µ

m
(m− µ)|I2| ≤ mA+ (m− µ)Lδ.

As max{A; Lδ} ≤ C∗max, the required inequality takes place:

(m− µ+ 1)Capxmax ≤ mC∗max + (m− µ)C∗max = (2m− µ)C∗max.

�

Lemma 7. Let m
µ ≥

2m−µ
m−µ+1 . Then C

apx
max ≤ m

µ C
∗
max.

Proof. The assumed inequality is equivalent to (m− µ) ≤ m
µ (m− 2µ+ 1). Hence,

from (15) and Lemma 5 we have

(m− µ+ 1)Capxmax ≤ mA+ (m− µ)|I1|+ (m− 2µ+ 1)|I2| ≤

mA+
m

µ
(m− 2µ+ 1)|I1|+ (m− 2µ+ 1)|I2| ≤ mA+

m

µ
(m− 2µ+ 1)Lδ.
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Due to max{A; Lδ} ≤ C∗max, we obtain:

(m− µ+ 1)Capxmax ≤ mC∗max +
m

µ
(m− 2µ+ 1)C∗max =

m

µ
(m− µ+ 1)C∗max.

�

Lemma 8. For each m ≥ 2 we have

min
1≤µ≤m+1

2

max

{
m

µ
;

2m− µ
m− µ+ 1

}
<

3 +
√

5

2
≈ 2.62.

The minimum is reached either on the integer above or on the integer below 1
2 (3m−√

5m2 − 4m).

Proof. Function f1(µ) = m
µ is decreasing and function f2(µ) = 2m−µ

m−µ+1 is increasing.

Therefore, the equality f1(µ) = f2(µ) gives the minimum on the fractional value

µ̃ = 1
2 (3m−

√
5m2 − 4m) (it is the root of equation µ2 − 3mµ + m2 + m = 0). In

this case we have

m

µ̃
=

m

(3m−
√

5m2 − 4m)/2
=
m(3m+

√
5m2 − 4m)

(2m2 + 2m)
<

3m+
√

5m

2m
=

3 +
√

5

2
.

Note that f1(µ) = 3+
√
5

2 for µ = 3−
√
5

2 m and f2(µ) = 3+
√
5

2 for µ = 3−
√
5

2 m +
√
5+1
2 . The length of interval

[
3−
√
5

2 m, 3−
√
5

2 m+
√
5+1
2

]
is greater than one and

this interval contains value µ̃. So, the minimum of max
{
m
µ ; 2m−µ

m−µ+1

}
< 3+

√
5

2 and

it is reached either on the integer above or on the integer below µ̃ for integer values
of µ. �

As a result, we obtain the following theorem.

Theorem 4. A
(

3+
√
5

2

)
-approximate schedule can be found in polynomial time for

problem P |any, δj , prec, energy|Cmax.

Consider the case when δj ≤ qm for all j ∈ J , 0 < q < 1. If we assign the
number of utilized processors mj = δj for all jobs, and construct a feasible schedule
by the �precedence-dependent list-scheduling� algorithm from [8], then we obtain a(

2−q
1−q

)
-approximate solution of the problem as for rigid jobs. It is easy to see that

2−q
1−q >

3+
√
5

2 for all q >
√
5−1√
5+1

≈ 0.38.

The complexity status of the problem with precedence dependent jobs of malleable
type is open.

Conclusion

We provide approximation and exact algorithms for the speed scaling problems
with the makespan criterion under the given energy budget. In our algorithms,
initially, a lower bound on the makespan and processing times of jobs are calculated,
and then a feasible solution is constructed using a list-type scheduling rule. In
contrast to the previous research of speed scaling scheduling, we analyze parallelizable
jobs, which can be run on an arbitrary number of processors up to the given upper
level.



MINIMIZING MAKESPAN FOR PARALLELIZABLE JOBS 597

Appendix

Appendix contains a polynomial time algorithm solving the lower bound model (1)-
(5). We consider the following two subproblems.

Subproblem (P1)

1

m

∑
j∈J

pj → min,

∑
j∈J

Wα
j p

1−α
j ≤ E,

pj ≥ 0, j ∈ J .
Subproblem (P2)

max
j∈J

pj
δj
→ min,

∑
j∈J

Wα
j p

1−α
j ≤ E,

pj ≥ 0, j ∈ J .
Problems (P1) and (P2) are relaxations of the problem (1)-(5). Therefore, if an

optimal solution of (P1) or (P2) is a feasible solution of (1)-(5), it is also an optimal
solution of (1)-(5).

Our algorithm for (1)-(5) consists of three steps. At the �rst two steps, problems
(P1) and (P2) are solved, and at the third step, a combination of (P1) and (P2) is
formed by equating the values of the objective functions.

The �rst step. Before solving problem (P1), we check the following condition

(16) max
j∈J

Wj

δj
≤ 1

m

∑
j∈J

Wj .

If inequality (16) takes place, then the optimal solution of problem (P1) is
an optimal solution of problem (1)-(5), otherwise, go to the second step. Indeed,
problem (P1) corresponds to the case when it is required to schedule jobs on one
processor. So, in an optimal solution of (P1) all jobs have the same speed s, which
can be found through equation ∑

j∈J
Wjs

α−1 = E.

The processing times of jobs are

(17) pi =
Wi

s
=
Wi

(∑
j∈J Wj

) 1
α−1

E
1

α−1

, i ∈ J .

The condition (16) guarantees that the inequality maxj∈J
pj
δj
≤ 1

m

∑
j∈J pj holds

for job durations (17).
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The second step. Initially we check the condition

(18)
∑
j∈J

δj ≤ m,

which indicates that the optimal solution of problem (P2) is an optimal solution of
problem (1)-(5). Problem (P2) corresponds to simultaneous execution of the jobs.
Thus, all jobs should have identical processing times on all utilized processors

(19)
pi
δi

=

(∑
j∈J δ

α−1
j Wα

j

) 1
α−1

E
1

α−1

, i ∈ J .

The condition (18) guarantees that 1
m

∑
j∈J pj ≤ maxj∈J

pj
δj

for job durations

(19). However, if the total number of processors required by all jobs is more then
m, we go to the third step.

The third step. If neither inequality (16) nor inequality (18) is satis�ed, according
to the Karush-Kuhn-Tucker necessary and su�cient conditions, the following equality
should hold for an optimal solution of problem (1)-(5):

1

m

∑
j∈J

pj = max
j∈J

pj
δj
.

As a result we have problem (P3):∑
j∈J

pj → min,

max
j∈J

pj
δj
− 1

m

∑
j∈J

pj = 0,

∑
j∈J

Wα
j p

1−α
j ≤ E,

pj ≥ 0, j ∈ J .
Solving (P3) begins with the optimal solution of (P1), where the processing times

of jobs on one processor are equal to

pi =
Wi

(∑
j∈J Wj

) 1
α−1

E
1

α−1

, i ∈ J ,

and the processing times of jobs on the maximum possible number of processors
are pi

δi
, i ∈ J .

As we can see, job durations
pj
δj

are proportional to
Wj

δj
. We order jobs in non-

increasing W1

δ1
≥ W2

δ2
≥ . . . Wn

δn
. Let l denote the job with a minimal ratio Wl

δl
such

that

(20)
Wl

δl
>

1

m

∑
j∈J

Wj .

This condition is equivalent to the condition pl
δl
> 1

m

∑
j∈J pj .
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Because the objective of (P3) is a linear function, a necessary condition for the
optimal solution of (P3) is

pj
δj

=
1

m

∑
i∈J

pi, j = 1, . . . , l.

Then we formulate a new problem (P4):∑
j∈J

pj → min,

pj
δj

=
1

m

∑
i∈J

pi, j = 1, . . . , l,

∑
j∈J

Wα
j p

1−α
j ≤ E,

pj ≥ 0, j ∈ J .
In order to �nd an optimal solution of problem (P4) we use the Lagrangian

method constructing the Lagrangian function

L(pj , λj) =
∑
j∈J

pj +

l∑
j=1

λj

{
pj
δj
−
∑
i∈J

pi
m

}
+ λl+1

∑
j∈J

Wα
j p

1−α
j − E

 .

We calculate the partial derivatives, equate them to zero and �nd the processing
times of jobs

pj
δj

=

∑n
i=l+1Wi

(m−
∑l
i=1 δi)

C, j = 1, . . . , l,

pj
δj

=
Wj

δj
C, j = l + 1, . . . , n,

where

C =

 E∑l
j=1

Wα
j (δj)1−α(

∑n
i=l+1Wi)1−α

(m−
∑l
i=1 δi)

1−α +
∑n
j=l+1Wj

 1
1−α

.

Note that m >
∑l
i=1 δi due to condition (20) for choosing index l.

If the following inequality is satis�ed for the obtained durations of jobs l+1, . . . , n

max
j=l+1,...,n

pj
δj

=
pl+1

δl+1
≤ 1

m

∑
j∈J

pj ,

then we have an optimal solution of problem (1)-(5). Otherwise, we go to solving
the problem (P4) with new value of l.

The time complexity of the method is O (nlog (nm)) time if we have an oracle
to exponentiation and root extraction operations.
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