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Abstract. The paper considers a scheduling problem on parallel
identical machines to minimize the sum of the completion times. All jobs
are of unit length and require one unit of one of the additional resources.
We o�er an algorithm that is much faster and simpler than previously
available.
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1. Introduction

Within Machine Scheduling there is an established research area known as
Scheduling under Resource Constraints. There are multiple publications in this
area which have been reviewed in a number of surveys, from the earliest [2] to the
most recent [3]. The models with resource constraints extend the classical Machine
Scheduling models, traditionally formulated in terms of jobs to be processed on
machines, by allowing additional resources to be present. These resources are
di�erent from the processing machines, but their use is compulsory for processing.

In this paper, we consider scheduling problems on parallel machines under
speci�c resource constraints. The jobs of set N = {J1, J2, . . . , Jn} have to be
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processed on m identical parallel machines M1, . . . ,Mm. The processing time of
job Jj ∈ N is equal to pj . There are also Q renewable resources, so that at any
time moment exactly one unit of each resource is available. Some jobs, known as
the resource jobs, at any time of their processing must consume one unit of exactly
one of these Q resources. An instance may also contain n0 jobs which do not require
these resources; however, it is convenient to think of any such a job as a job that
consumes one unit of a unique additional resource r, Q+ 1 ≤ r ≤ Q+ n0. Such an
interpretation allows us to denote q = Q+ n0 as the total number of resources and
to treat all jobs as the resource jobs. Therefore, set N can be seen as partitioned into
q disjoint sets N1, . . .Nq such that each job of set Nr at any time of its processing
requires one unit of resource r, 1 ≤ r ≤ q. The resource constraints imply that no
two jobs of the same set Nr can be processed simultaneously.

Resource constraints of this type have found applications and motivation in
various areas. Hebrard et al. [6] motivate their study by the problem that arises
in satellite data download management. Janssen et al. [7] present a motivation
based on a manufacturing problem in the microelectronic industry. An example
in Strusevich [12] is related to human resource management; another meaningful
example is contained in this paper (see Example 1 in Section 4).

For a scheduling problem, the completion time of a job Jj in a feasible schedule
S is denoted by Cj (S); often, if no confusion arises, the reference to the schedule
is omitted and we simply write Cj . The two most popular objective functions to
be minimized are the maximum completion time or the makespan Cmax (S) =
max {Cj (S) |Jj ∈ N} and the total completion time F (S) =

∑
Jj∈N Cj (S).

In scheduling with resource constraints many results are obtained under the
assumption that the processing times of all jobs are equal to one time unit. We
follow the traditional terminology and say that these jobs are jobs of Unit Execution
Time or the UET jobs. Among the results presented in [7] there is a polynomial-
time algorithm for minimizing the total completion time F (S) of the UET jobs on
m parallel identical machines under the resource constraints of the described type.
In this note, we develop a much faster algorithm for this problem.

The remainder of this paper is organized as follows. Section 2 introduces notation
and provides a brief review of the relevant problems. Section 3 is of an auxiliary
nature and discusses the problem of minimizing the total completion time on parallel
machines with no resource constraints and its links to majorization of vectors. The
fast algorithm for minimizing the total completion time of the UET jobs on parallel
machines with resource constraints is given in Section 4. Concluding remarks and
problems for further study can be found in Section 5.

2. Notation and Preliminaries

In order to denote scheduling problems in a clear and compact way, the three-
�eld classi�cation scheme of the form α|β|γ is widely accepted, where α describes
a machine environment, β is responsible for presenting the processing conditions
and γ is the objective function. In the case of a processing system with parallel
identical machines, in the �rst �eld α we write �P �; if the number of machines is
not variable (part of the input) but is �xed and equal to m, then in the �rst �eld
α we write �Pm� rather than �P �. In this paper, we mainly focus on the problem
with the objective of the total completion time F (S) =

∑
Jj∈N Cj (S); in this
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review section we also pay attention to the problems of minimizing the makespan
Cmax (S) = max {Cj (S) |Jj ∈ N}.

For the scheduling problems under the resource constraints, the notation that
has become standard since its �rst appearance in [2] places into the middle �eld β
a string that speci�es the rules of resource usage by addressing three parameters.

Widely accepted, that notation however does not provide enough details in
order to distinguish between various versions of the resource-constrained scheduling
problems. Following [12], we adopt the extended scheme that adds to the middle
�eld β a four-parameter string of the form �res ρ1ρ2ρ3ρ4�, where

• ρ1 is the number of available renewable resources;
• ρ2 is an upper bound on the number of resources a job may need;
• ρ3 is an upper bound on the number of units of any resource available at a
time;
• ρ4 is an upper bound on the number of units of any resource that can be
consumed by a job at a time.

The value of each of these parameters is either a known constant or the symbol
�·�; in the latter case the value of the parameter is variable (part of the input). In
accordance with this updated scheme, for the main resource-constrained problem
considered in this paper the string �res · 111� is used. This notation implies that

• ρ1 = �·�, i.e., that there several renewable resources (as above, their number
is denoted by q);
• ρ2 = 1, i.e., each job needs either exactly one resource at any time of its
processing;
• ρ3 = 1, i.e., one unit of each resource is available at a time;
• ρ4 = 1, i.e., a job consumes one unit of the relevant resource at any time of
its processing.

In the traditional scheme the parameter ρ2 was missing. Therefore, in most of
the previously considered models with resource constraints it was assumed that a
job might need any number of resources. The four-parameter scheme is free from
that drawback.

A focused review of resource-constrained scheduling on parallel machines can be
found in [5]. Most of known results in the area are on the models with the unit
processing times. For the problems with the UET jobs we write �pj = 1� in the
middle �eld β of the three-�eld notation. Some of the known results hold for a more
general machine environment that identical machines, e.g, the parallel machines can
be uniformly related, i.e., may have di�erent speeds. In the latter case, in the �rst
�eld α of the three-�eld notation scheme we write �Q� rather than �P �.

Here we do not review the known results for the resource-constrained problems on
parallel machines with arbitrary processing times; the relevant material is contained
in the corresponding surveys [1]-[3], [5]. Neither we consider the problems for other
machine environments, e.g., parallel dedicated machines [8].

The results on minimizing the makespan for the problems with the UET
jobs are explained in detail in the survey [2], which also contains all relevant
references that we do not quote here explicitly. Problem P2 |pj = 1, res · · · ·|Cmax

with arbitrary resource constraints reduces to the matching problem and is
solvable is O

(
qn2 + n5/2

)
time, while each problem P3 |pj = 1, res · ·11|Cmax

and Q2 |pj = 1, res · ·11|Cmax is NP-hard in the strong sense. Each problem
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Q2 |pj = 1, res 11 · ·|Cmax and Q |pj = 1, res11 · 1|Cmax is solvable in polynomial
time.

In the case of minimizing the total completion time, Problem
P2 |pj = 1, res · ·11|

∑
Cj is NP-hard in the strong sense [2]. If no more

that one resource is needed by any job, the complexity status of Problem
P |res · 111|

∑
Cj with arbitrary processing times is unknown, while Problem

P |pj = 1, res · 111|
∑
Cj with the UET jobs admits a polynomial-time algorithm

[7]. In the remainder of this paper we present a much simpler and faster algorithm
for the latter problem.

3. UET Jobs: No Resource Constraints

We start with Problem P |pj = 1|
∑
Cj to minimize the total completion time

F (S) =
∑

Jj∈N Cj (S) of the UET jobs without resource constraints. In what

follows, we assume that n > m, since otherwise in an optimal schedule exactly one
job is processed in the interval [0, 1] on one of the n machines. Let C [i] (S) denote
the latest completion time of the jobs assigned to machine Mi in a schedule S.

Recall that Problem P | |
∑
Cj with arbitrary processing times is solvable in

O (n log n) time. The corresponding algorithm is due to Conway et al. [4] and is
based on the Shortest Processing Times (SPT) priority rule. For completeness, we
present the algorithm below.

Algorithm SPT

Step1. : Form the list of jobs by sorting them in the SPT order, i.e., in non-
decreasing order of their processing times.

Step 2.: Scanning the list, assign the next job to the �rst available machine.

If the processing times are unit, Algorithm SPT cannot be seen as polynomial
for Problem P |pj = 1|

∑
Cj , since the input of that problem is nothing else but the

number of bits needed to encode the number of machines and the number of jobs.
Still, it is possible to solve Problem P |pj = 1|

∑
Cj in time that is polynomial in

O (log n+ logm) by associating each job with a position (a unit time interval) on
some machine. Below we reproduce the reasoning for such an algorithm, since it
will be useful for deriving a fast algorithm for a more general problem with resource
constraints.

For Problem P |pj = 1|
∑
Cj , de�ne C

∗, the smallest makespan, C∗ = dn/me.

Lemma 1. In a schedule S∗ that is optimal for Problem P |pj = 1|
∑
Cj the

inequality

C [i] (S∗) ≤ C∗

holds for each machine Mi, 1 ≤ i ≤ m.

Proof. Suppose that in schedule S∗ there is a machineM` such that C [`] (S∗) > C∗.
Since

∑m
i=1 C

[i] (S∗) = n, it follows from C∗ = dn/me that there exists a machine

Mk, k 6= `, such that C [k] (S∗) < C∗. Notice that

C [`] (S∗) > C∗ ≥ C [k] (S∗) + 1.

Transform schedule S∗ to a schedule S′ by moving the last job from machineM`

to become the last job on machine Mk, keeping the remaining jobs assigned as in
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schedule S∗. Notice that C [`] (S′) = C [`] (S∗)−1 and C [k] (S′) = C [k] (S∗)+1 ≤ C∗.
For schedule S′ we obtain

F (S′) = F (S∗)− C [`] (S∗) + C [k] (S∗) + 1 < F (S∗) ,

which contradicts the optimality of schedule S∗. �

Notice that in any optimal schedule S∗ for at least one machine Mi the
completion time C [i] (S∗) is equal to C∗.

De�nition 1. For Problem P |pj = 1|
∑
Cj, let H

m
n be the set of all vectors x =

(x1, x2, . . . , xm) with non-increasing positive integer components such that x1 = C∗

and
∑m

i=1 xi = n. A vector x ∈Hm
n is called an allocation vector.

Each allocation vector x de�nes a schedule S (x) in which the number of jobs
assigned to machine Mi is equal to xi, 1 ≤ i ≤ m. For machine Mi, its contribution
to the objective function value F (S) is equal to 1 + 2 + · · · + xi = 1

2xi (xi + 1).

De�ne a function h : R→ R such that h (u) = 1
2u (u+ 1). It follows that

F (S (x)) =

m∑
i=1

h (xi) .

An allocation vector y = (y1, y2, . . . , ym) de�nes an optimal schedule S∗ = S (y)
and is called an optimal allocation vector if the inequality

F (S (y)) ≤ F (S (x))

holds for all allocation vectors x.
Since function h (u) is convex, it is convenient to justify the choice of an optimal

allocation vector by the concepts of the majorization theory [9].

De�nition 2. For two vectors a = (a1, a2, . . . , am) and b = (b1, b2, . . . , bm) with
non-increasing components and such that

∑m
i=1 ai =

∑m
i=1 bi we write a � b and

say that vector a majorizes vector b (or vector b is majorized by vector a) if

k∑
i=1

ai ≥
k∑

i=1

bi, 1 ≤ k ≤ m.

The monograph [9] gives a comprehensive exposition of numerous aspects of
majorization theory and its applications. For our purposes, we formulate several
relevant facts with respect to Hm

n , the set of all allocation vectors.

De�nition 3. A function f : Hm
n → R is called Shur convex over Hm

n if for any
allocation vectors a,b ∈ Hm

n it follows from a � b that f (a) ≥ f (b).

For a convex function h : R → R, function f (a) =
∑m

i=1 h (ai) is known to
be Shur convex [9]. Applying this result, we immediately deduce the following
statement.

Lemma 2. For Problem P |pj = 1|
∑
Cj, an allocation vector that is majorized by

any other allocation vector is an optimal allocation vector.

It is fairly easy to see that an optimal allocation vector can be found by Algorithm
SPT.

Lemma 3. An allocation vector y = (y1, y2, . . . , ym) associated with a schedule
found by Algorithm SPT is an optimal allocation vector.
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Proof. Assume that in Problem P |pj = 1|
∑
Cj the number of jobs can be

expressed as n = mu+v, where u and v are integers such u ≥ 1 and 0 ≤ v ≤ m−1.
If v = 0, then C∗ = u and Algorithm SPT assigns u jobs to each machine. In

this case, the allocation vector is (y1, . . . , ym) with yi = u, 1 ≤ u ≤ m, and this is
the only vector in which each component does not exceed C∗.

If v ≥ 1, then Algorithm SPT assigns u + 1 jobs to each of v machines (for
convenience, assume that these are the �rst v machines M1,M2, . . . ,Mv taken in
the order of their numbering) and u jobs to each of the remaining m− v machines.
The corresponding allocation vector is (y1, . . . , ym) with yi = u+1, 1 ≤ u ≤ v, and
yi = u, v+1 ≤ u ≤ m. Clearly, in any allocation vector the number of components
equal to u+1 cannot be less than v, since (u+ 1) (v − 1)+u (m− v + 1) = mu+v−
1 = n− 1. On the other hand, any allocation vector with more than v components
equal to u + 1 will majorize the vector in which the number of such components
is equal to v. Thus, the allocation vector generated by Algorithm SPT is either
unique or is majorized by any other allocation vector. Therefore, such a vector is
an optimal allocation vector. �

In fact, an optimal allocation vector can be found without running
Algorithm SPT. Moreover, without running the algorithm, we may tell the position
of any job in an optimal schedule of n = mu + v UET jobs. Given a job Jj ,
j = mu′ + v′, where u′ ≤ u and 0 ≤ v ≤ m − 1, assign the job to be processed
on machine Mm in the time interval [u′ − 1, u′], provided that v′ = 0; otherwise,
assign the job to be processed on machine Mv′ in the time interval [u′, u′ + 1].

4. UET Jobs under Resource Constraints

We now turn to Problem P |pj = 1, res · 111|
∑
Cj . Recall that for this problem

the set N of jobs is partitioned into q sets N1, N2, . . . , Nq such that each job of
set Nr, and only of that set, requires resource r, 1 ≤ r ≤ q. No two jobs of the
same set Nr can be assigned to be processed in the same time slot. An input of this
problem consists of q integers nr, 1 ≤ r ≤ q, where nr = |Nr| ≥ 1 is the number of
jobs that require resource r. In this section, we assume that

(1) n1 ≥ n2 ≥ · · · ≥ nq;
otherwise, the corresponding renumbering of the resources can be done in O (q log q)
time, which is polynomial with respect to the length of the input of the problem.

We may assume that q > m; otherwise, in an optimal schedule machine Mr

processes the block of nr UET jobs of set Nr in the time interval [0, nr], 1 ≤ r ≤ q.
As shown in [7], Problem P |pj = 1, res · 111|

∑
Cj admits a polynomial-time

algorithm based on its reduction to a min-cost max-�ow problem. The network
presented in [7] has O (nq) vertices and O (nqm) arcs (under the assumption that
q > m). Thus, even if the fastest known min-cost max-�ow algorithm by Orlin [11]
is used, the approach from [7] cannot lead to an algorithm for solving Problem
P |pj = 1, res · 111|

∑
Cj faster than in O

(
n2q2m log (nq) (m+ (nq))

)
time.

Further in this section we describe a much more e�cient algorithm. In fact, the
most time consuming part of our algorithm is obtaining the numbering (1).

Simple as it is, our algorithm is based on several ingredients listed below.
Ingredient 1. It is proved in [7] that for Problem P |res · 111|

∑
Cj with

arbitrary processing times there exists an optimal schedule in which each machine
is busy from time 0 and has no intermediate idle time. Similarly to Section 3, for
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Problem P |pj = 1, res · 111|
∑
Cj with the UET jobs a vector x = (x1, x2, . . . , xm)

with non-increasing positive integer components is called a feasible allocation vector
if there exists a feasible schedule S such that machineMi completes its jobs at time
C [i] (S) = xi, 1 ≤ i ≤ m. An analogue of Lemma 2 holds, i.e., a feasible allocation
vector y that is majorized by any feasible allocation vector x is an optimal allocation
vector associated with an optimal schedule S∗. In what follows, we describe how
�nd a feasible schedule with a given feasible allocation vector.
Ingredient 2. The second ingredient is the concept of a composite job. For

Problem P |res · 111|
∑
Cj , associate each set Nr of jobs that require resource r,

1 ≤ r ≤ q, with a composite job Vr, 1 ≤ r ≤ q. The processing times of these
composite jobs are de�ned by

p (Vr) = nr, 1 ≤ r ≤ q.

We will call a schedule of the composite jobs a group technology schedule. Clearly,
a group technology schedule can be converted into a feasible schedule for the original
instance by replacing a composite job by the block of the corresponding original
UET jobs.
Ingredient 3. Part of our algorithm relies on �nding a preemptive group

technology schedule for all or some of the composite jobs. In fact, what is needed is
the following procedure. Given a (sub)set of the composite jobs {Vr, Vr+1, . . . , Vq},
m′ = m− r+ 1 parallel machines Mr, . . .Mm, and a vector z = (zr, . . . , zm) of the
desired completion times on these machines, we need to �nd a preemptive schedule
of these composite jobs. In such a schedule, the last completion time on machine
Mi must be equal to zi, r ≤ i ≤ m. The processing of each composite job can be
interrupted and resumed, possibly on a di�erent machine, the parts of a preempted
job to be scheduled without overlapping.

Such a schedule can be found by adapting the classical algorithm by McNaughton
[10] for �nding a preemptive schedule that minimizes the makespan. Below we
present a modi�ed version of McNaughton's algorithm, adapted for our purposes,
as a generic procedure.

Procedure McN(r, z)
Parameters: an integer r, 1 ≤ r ≤ m and a vector z = (zr, . . . , zm) with

non-increasing components.
Input: the composite jobs Vr, Vr+1, . . . Vq; the parallel machines Mr, . . .Mm.
Conditions:

(2) zr − zm ≤ 1, nr < zr,

q∑
k=r

nk =

m∑
i=r

zi.

Output: a feasible preemptive schedule for processing the given composite jobs,
in which the last completion time on machine Mi is equal to zi

Step1. : Create an arti�cial schedule SA in which the given composite jobs to
be scheduled are placed on an auxiliary single machine, as a block starting
at time 0.

Step 2.: Set a := 0. For each i from r to m do the following:
(a): Allocate the segment of schedule SA in the time interval [a, a+ zi]

to machine Mi to be processed in the time interval [0, zi].
(b): Update a := a+ zi.

Step 3.: Output the obtained schedule as schedule S(r).
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Procedure McN(r, z) takes O (q − r) time, i.e., O (q) time in the case of a
complete set of composite jobs. The resulting schedule S(r) has at most m′ − 1
preemptions, since on each machine other than Mm at most one job is interrupted.

Lemma 4. Under the conditions (2) Procedure McN(r, z) outputs a required feasible
schedule.

Proof. The action of splitting schedule SA into segments, as described in Step 2,
guarantees that the last completion time on each machine Mi, r ≤ i ≤ m, is equal
to zi. The equality

∑q
k=r nk =

∑m
i=r zi implies that the processing capabilities of

the machines Mr, . . .Mm are equal to the processing requirements.
The only thing that should be demonstrated is the feasibility of schedule S(r),

i.e., that the two segments of any preempted job are assigned to the intervals
that do not overlap. Notice that the inequality zr − zm ≤ 1 implies that either
all values of zi are equal to zr or some of them are equal to zr while others are
equal to zr − 1. Thus, the inequality nr < zr and the ordering (1) mean that the
processing time of any composite job does not exceed any machine completion time
zi. Since in schedule S(r) any preempted job completes at time zi on some machine
Mi and starts at time 0 on machine Mi+1, r ≤ i ≤ m− 1, it follows that no overlap
occurs. �

Ingredient 4. The �nal key component required for the design of our algorithm
is the concept of the genus of an input.

Compute

H1 : = n;(3)

Hr : = Hr−1 − nr−1, 2 ≤ r ≤ q.

De�nition 4. An instance of Problem P |pj = 1, res · 111|
∑
Cj is said to be of

genus k, if k, 0 ≤ k ≤ m− 1, is the smallest integer such that

(4) nk+1 < dHk+1/ (m− k)e .

For an instance of genus 0 of Problem P |pj = 1, res · 111|
∑
Cj the duration n1

of the longest composite job V1 is less that the optimal makespan dH1/ (m− 0)e =
dn/me, computed for Problem P |pj = 1|

∑
Cj of processing the jobs of the set N

1∪
· · ·∪Nq onm machinesM1, . . . ,Mm, without taking into consideration the resource
constraints. For an instance of genus k > 0, the duration of each of the k longest
composite jobs Vi, 1 ≤ i ≤ k, is no smaller than the optimal makespan computed
for Problem P |pj = 1|

∑
Cj of processing the jobs of the set N i ∪ · · · ∪ Nq on

machines Mi, . . . ,Mm, without taking into consideration the resource constraints.
Notice that for an instance of genus k > 0, a subinstance of a given Problem
P |pj = 1, res · 111|

∑
Cj related to the processing of the jobs of the set Nk+1 ∪

· · · ∪Nq on machines Mk+1, . . . ,Mm is an instance of genus 0.

Example 1. For illustration, consider the following problem. There are m analysts
who, as a team, have to update q = 8 �les in a database. The number of records to
be updated in a database �le i is equal to ni, 1 ≤ i ≤ 8, and their values are given
below as

n1 = 10, n2 = 9, n3 = 6, n4 = 4,

n5 = 4, n6 = 3, n7 = 3, n8 = 2.
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It can be assumed that updating any record takes the same time. Each database
�le cannot be accessed by several analysts simultaneously. The goal is to minimize
the total (or average) completion time of all updates. Treating the m analysts as
processing machines, records to be updated as UET jobs, and database �les as q = 8
resources, we obtain Problem Pm |pj = 1, res 8111|

∑
Cj .

Thus, there are n = H1 = 41 UET jobs. If there are 4 machines, i.e., m = 4, we
have that n1 = 10 < dH1/me = d41/4e = 11, i.e., (4) holds for k = 0 and this is a
genus 0 instance.

If m = 5, then we compute H2 = 31 and H3 = 22. We see that n1 = 10 >
dH1/me = d41/5e = 9 and n2 = 9 > dH2/ (m− 1)e = d31/4e = 8. On the other
hand, n3 = 6 < dH3/ (m− 2)e = d22/3e = 8, i.e., (4) holds for k = 2 and this
is a genus 2 instance. Notice that the subinstance associated with the jobs of sets
N3, . . . , N8 to be processed on machines M3,M4 and M5 is a genus 0 instance.

We are now ready to present an algorithm that solves Problem
P |pj = 1, res · 111|

∑
Cj . The algorithm �rst determines the genus k of the given

instance. Then the algorithm �nds a schedule of the corresponding composite jobs.
If k = 0 then Procedure McN(1, z) is called, where z is the optimal allocation
vector found without taking into consideration the resource constraints, as de�ned
in Section 3. If k > 1, then a composite job Vi is assigned to be processed alone on
machine Mi, 1 ≤ i ≤ k. To schedule the remaining jobs, Procedure McN(k + 1, z)
with an appropriate vector z is called. The obtained group technology schedule of
the composite jobs is converted into an optimal schedule of the original UET jobs.

Algorithm 1

Step 1.: If necessary, renumber the resources so that (1) holds. Compute the
values Hr, 1 ≤ r ≤ m − 1. Determine k, the genus of a the given instance
of the problem. If k > 0, go to Step 2; otherwise, de�ne H ′ = n, m′ = m
and go to Step 3.

Step 2.: Create a (partial) schedule S′ in which each machine Mi processes
a single composite job Vi, 1 ≤ i ≤ k. De�ne H ′ = Hk+1 and m′ = m− k.

Step 3. : De�ne u′ = bH ′/m′c and v′ = H ′−u′m′, i.e., represent H ′ as H ′ =
u′m′+ v′. De�ne a vector z = (zk+1, . . . , zm) with m′ = m− k components
such that either all of them are equal to u′ (provided that v′ = 0) or the �rst
v′ of these components are equal to u′+1, while the remaining components
are equal to u′. Call Procedure McN(k + 1, z) and obtain a preemptive
schedule S(k+1) of processing the composite jobs Vk+1, . . . , Vq on machines
Mk+1, . . . ,Mm.

Step 4.: If k > 0, combine schedule S′ on machinesM1, . . . ,Mk with schedule
S(k+1) on machines Mk+1, . . . ,Mm into a complete preemptive group
technology schedule SGP of processing the composite jobs V1, . . . , Vq on

machines M1, . . . ,Mm. If k = 0, then rename schedule S(k+1) as schedule
SGP . Convert schedule SGP into schedule S∗ of processing the original UET
jobs by replacing any segment of a composite job Vr of length t by a block
of t UET jobs of set Nr, 1 ≤ r ≤ q.

The running time of Algorithm 1 is O (n+ q log q). In fact, �nding the numbering
(1) requires O (q log q) time, Step 2 takes O (q − k) time, and Step 4 takes O (n)
time. Below we prove the optimality of the algorithm.
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Theorem 1. Schedule S∗ found by Algorithm 1 is optimal for Problem
P |pj = 1, res · 111|

∑
Cj .

Proof. First, notice that S∗ is a feasible schedule, i.e., no two jobs that require the
same resource are assigned to the same time interval.

In terms of the group technology schedule SGP , this means that the two pieces
of any preempted composite job do not overlap. If k > 1, then the jobs in schedule
S′ are processed without preemption. Thus, for any genus k in order to prove the
feasibility, we need to check the output of Procedure McN(k + 1, z). Such feasibility
is guaranteed by Lemma 4, provided that the conditions (2) hold. To see this,
observe that in the call of Procedure McN(k + 1, z) either all components of vector
z are equal or di�er by 1, as required by (2). For a genus k instance, we have that
nk+1 < dHk+1/ (m− k)e = dH ′/m′e = zk+1, which is also part of (2). Finally,∑m

i=k+1 zi = H ′, and on the other hand H ′ is the number of the original UET jobs

in the set Nk+1∪· · ·∪Nq, equal to
∑q

r=k+1 nr. Thus, all conditions (2) are satis�ed,
i.e., due to Lemma 4 schedule SGP is a feasible group technology schedule, which
in turn implies that S∗ is a feasible schedule of the original UET jobs.

If k = 0, then for vector z found in Step 3, the vector y = (y1, . . . , ym) that
coincides with vector z is a feasible allocation vector associated with schedule S∗.
If k > 0 then a feasible allocation vector is y =(y1, . . . , ym), where

yi = ni, 1 ≤ i ≤ k;
yi = zi, k + 1 ≤ i ≤ m.

In any case, the value of the objective function of schedule S∗ is equal to
1
2

∑q
r=1 yi (yi+1). Similarly to Section 3, this function is Shur convex over the set

of all feasible allocation vectors. To prove the optimality, we rely on Ingredient 1
above and show that vector y is majorized by any feasible allocation vector.

If vector y is not optimal, there would exist a feasible allocation vector x such
that y � x.

Assume that k > 0 and show that if y � x then yi = xi, 1 ≤ i ≤ k. Indeed, in
any feasible schedule the processing of all jobs of set N1 takes n1 time units, i.e.,
there exists a machine which completes its jobs no earlier than time n1. Since in
a feasible schedule associated with the vector x the component x1 corresponds to
the latest completion time among all machines, it follows that x1 ≥ n1. However,
the assumption y � x implies that y1 = n1 ≥ x1 ≥ n1 so that y1 = x1.

Further, y � x implies that y1 + y2 ≥ x1 + x2, which is equivalent to y2 = n2 ≥
x2. Again, the component x2 corresponds to the latest completion time among
all machines except machine M1, so that x2 ≥ n2, from which we immediately
deduce that y2 = x2. Extending this argument, we conclude that if y � x then
yi = xi, 1 ≤ i ≤ k.

For any genus k, the components yi, k + 1 ≤ i ≤ m, are associated with a
schedule for a (sub)instance of genus 0 of processing H ′ UET jobs on m′ machines.
These components are found exactly as done in Section 3, i.e., due to Lemma 3
these components serve as an optimal allocation vector for this (sub)instance, even
if the resource constraints are ignored.

Thus, vector y cannot majorize another feasible allocation vector and is an
optimal allocation vector. Therefore, S∗ is an optimal schedule. �
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Fig. 1. Schedule SGP for intance in Example 1: (a) m = 4; (b)
m = 5

Example 2. To illustrate Algorithm 1, consider the instance in Example 1. In the
case of m = 4 this is a genus 0 instance, and the corresponding group technology
schedule SGP is found as described in Step 3 by calling Procedure McN(1, z), where
z = (11, 10, 10, 10); see Figure 1(a).

If m = 5, we obtain a genus 2 instance, with composite jobs V1 and V2 assigned
to machines M1 and M2, respectively, as described in Step 2. To schedule the
remaining 6 composite jobs on the remaining 3 machines, Procedure McN(3, z) is
called, where z = (8, 7, 7). The resulting schedule is shown in Figure 1(b).

In either case, the resulting optimal schedule for 41 original UET jobs is
obtained from schedule SGP by replacing each piece of job Vr by the block
of the jobs of set Nr. In the case of m = 4 the objective function is equal
to 1

2 (11 · 12 + 3 · 10 · 11) = 231, while for m = 5 the corresponding value is
1
2 (10 · 11 + 9 · 10 + 8 · 9 + 2 · 7 · 8) = 192.

5. Conclusion

In this paper, we present an algorithm for minimizing the total completion time
of the UET jobs on parallel machines with resource constraints. Our algorithm is
much simpler and several orders faster that the previously known method [7].

For future research, to resolve the complexity status of Problem
P |res · 111|

∑
Cj with arbitrary processing times is of a considerable interest. It

is likely that the problem is NP-hard for m = 2. If Problem P |res · 111|
∑
Cj is
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indeed NP-hard, design of approximation algorithms would be a good research goal.
An approximation algorithm for the problem described in [7] is left with a large
gap between an upper bound and a lower bound on its worst case performance,
and providing an algorithm with a tight worse case ratio is an interesting task.
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