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A FASTER ALGORITHM FOR COUNTING THE INTEGER

POINTS NUMBER IN ∆-MODULAR POLYHEDRA
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Abstract. Let a polytope P be de�ned by a system Ax ≤ b. We
consider the problem to count a number of integer points inside P,
assuming that P is ∆-modular. The polytope P is ∆-modular if all the
rank sub-determinants of A are bounded by ∆ in the absolute value.

We present a new FPT-algorithm, parameterized by ∆ and by the
number of simple cones in the normal fun triangulation of P, which is
more e�cient for ∆-modular problems, than the approach of A. Barvinok
et al. [1, 2, 3, 4, 5]. To this end, we do not directly compute the short
rational generating function for P ∩Zn, which is commonly used for the
considered problem. We compute its particular representation in the form
of exponential series that depends on one variable, using the dynamic
programming principle. We completely do not use the A. Barvinok's
unimodular sign decomposition technique.

Using our new complexity bound, we consider di�erent special cases
that may be of independent interest. For example, we give FPT-algorithms
for counting the integer points number in ∆-modular simplicies and
similar polytopes that have n + O(1) facets. For any �xed m, we give
an FPT-algorithm to count solutions of the unbounded m-dimensional
∆-modular knapsack problem. For the case, when ∆ grows slowly with
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respect to n, we give a counting algorithm, which is more e�ective, than
the state of the art ILP feasibility algorithm due to [6, 7].
Keywords: integer linear programming, short rational generating function,
bounded sub-determinants, multidimensional knapsack problem, subset-
sum problem, counting problem.

1. Introduction

1.1. Brief discussion of our results. Let a polytope P be de�ned by one of the
following ways:

(i) System in the canonical form: P = {x ∈ Rn : Ax ≤ b}, where A ∈
Z(n+m)×n, b ∈ Q(n+m), rank(A) = n and d := dim(P) = n;

(ii) System in the standard form: P = {x ∈ Rn+ : Ax = b}, where A ∈
Zm×n, b ∈ Zm, rank(A) = m and d := dim(P) = n−m;

and let all the rank-order sub-determinants of A be bounded by ∆ in the absolute
values. We show that | P ∩Zn | can be computed with an algorithm, having the
arithmetic complexity bound

O
(
ν · d3 ·∆4 · log(∆)

)
,

where ν is the maximal possible number of vertices in a d-dimensional polytope P,
de�ned by one of the systems above.

1.2. Basic de�nitions and notations. Let A ∈ Zm×n. We denote by Aij its ij-th
element, by Ai∗ its i-th row, and by A∗j its j-th column. For subsets I ⊆ {1, . . . ,m}
and J ⊆ {1, . . . , n}, the symbol AIJ denote the sub-matrix of A, which is generated
by all the rows with indices in I and all the columns with indices in J . If I or J is
replaced by ∗, then all the rows or columns are selected, respectively. Sometimes,
we simply write AI instead of AI∗ and AJ instead of A∗J , if this does not lead to
confusion.

The maximum absolute value of entries of a matrix A is denoted by ‖A‖max =
max
i,j

∣∣Ai j∣∣. The lp-norm of a vector x is denoted by ‖x‖p. The number of non-zero

components of a vector x is denoted by ‖x‖0 =
∣∣{i : xi 6= 0}

∣∣.
For x ∈ R, we denote by bxc, {x}, and dxe the �oor, fractional part, and ceiling

of x, respectively.
For c, x ∈ Rn, by 〈c, x〉 we denote the standard scalar product of two vectors. In

other words, 〈c, x〉 = c>x.
Let S ∈ Zn×n≥0 be a diagonal matrix and v ∈ Zn. We denote by v mod S the

vector, whose i-th component equals vi mod Sii. For M ⊆ Zn, we denote Mmod
S = {v mod S : v ∈M}. For example, the set Zn mod S consists of det(S) elements.

De�nition 1. For a matrix A ∈ Zm×n, by

∆k(A) = max
{∣∣det(AIJ)

∣∣ : I ⊆ {1, . . . ,m}, J ⊆ {1, . . . , n}, |I| = |J | = k
}
,

we denote the maximum absolute value of determinants of all the k×k sub-matrices
of A. By ∆gcd(A, k) we denote the greatest common divisor of determinants of all
the k × k sub-matrices of A. Additionally, let ∆(A) = ∆rank(A)(A) and ∆gcd(A) =
∆gcd(A, rank(A)).

If ∆(A) ≤ ∆, for some ∆ > 0, then A is called ∆-modular.
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De�nition 2. For A ∈ Zm×n and b ∈ Zm, we denote

P(A, b) = {x ∈ Rn : Ax ≤ b},

xz = xz11 · . . . · xznn , and f(P;x) =
∑

z∈P ∩Zn

xz .

1.3. The lattice points counting problem and the detailed description of

our results. In this paper, we consider the problem to count integer points in a
polyhedron, which is de�ned as follows:

Problem 1. Let P be a rational polytope de�ned by one of the following ways:

(1) The polytope P is de�ned by a system in the canonical form: P = {x ∈
Rn : Ax ≤ b}, where A ∈ Z(n+m)×n, b ∈ Qn+m, and dim(P) = rank(A) =
n;

(2) The polytope P is de�ned by a system in the standard form: P = {x ∈
Rn≥0 : Ax = b}, where A ∈ Zm×n, b ∈ Qm, rank(A) = m, dim(P) = n−m
and ∆gcd(A) = 1.

The problem at state is to compute the value of | P ∩Zn |.

Theorem 1. Problem 1 can be solved with an algorithm, having the arithmetic
complexity bound

O
(
ν(d,m,∆) · d3 ·∆4 · log(∆)

)
,

where ∆ = ∆(A), d = dim(P) (d = n, for the canonical form, and d = n−m, for
the standard form) and ν(d,m,∆) is the maximal possible number of vertices in a
d-dimensional polytope of problem 1.

Using this theorem and results of the papers [8, 9] that can help to bound the
value of ν(d,m,∆), we present new complexity bounds for problem 1. Additionally,
we show how to handle the case of unbounded polyhedron.

Corollary 1. The arithmetic complexity of an algorithm by Theorem 1 can be
bounded with the following relations:

(1) The bound O
(
d
m + 1

)m · d3 ·∆4 · log(∆) that is polynomial in d and ∆, for
any �xed m;

(2) The bound O
(
m
d + 1

) d
2 · d3 ·∆4 · log(∆) that is polynomial in m and ∆, for

any �xed d;

(3) The bound O(d)3+ d
2 ·∆4+d · log(∆) that is polynomial in ∆, for any �xed d.

To handle the case, when P is an unbounded polyhedron, we need to pay an additional
factor of O( dm + 1) · d4 in the �rst bound and O(d4) in the second bound. The third
bound stays unchanged.

Proofs of Theorem 1 and Corollary 1 will be given in Section 2 and Subsection
2.4, respectively.

Taking m = 1, the �rst bound can be used to count the number of integer
points in a simplex or the number of solutions of the unbounded subset-sum problem
w>x = w0, x ∈ Zn≥0. For both problems, it gives the arithmetic complexity bound

O
(
n4 ·∆4 · log(∆)

)
, where ∆ = ‖w‖∞ for the subset-sum problem.

The second and third bounds can be used to obtain a faster algorithm for the ILP
feasibility problem, when the parametersm and ∆ are relatively small. For example,
taking m = O(d) and ∆ = 2O(d) in the second bound, it becomes 2O(d), which is
faster, than the state of the art algorithm, due to [6, 7] (see also [10, 11, 12], for
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a bit more general setting) that has the complexity bound O(d)d · poly(size(A, b)).

Substituting ∆ = (log d)O(1) to the third bound, it gives O(d)
d
2 +o(d), which again

is better, than the general case bound O(d)d · poly(size(A, b)).

Remark 1. We are interested in development of algorithms that will be polynomial,
when we bound some of the parameters d, m, and ∆. Due to [13, Corollary 3], the
problem in the standard form can be polynomially reduced to the problem in the
canonical form maintaining values of m and ∆, see also [14, Lemmas 4 and 5]
and [15] for a more general reduction. Hence, in the proofs we will only consider
polytopes de�ned by systems in the canonical form.

Remark 2. To simplify analysis, we assume that ∆gcd(A) = 1 for ILP problems
in the standard form. It can be done without loss of generality, because the original
system Ax = b, x ≥ 0 can be polynomially transformed to the equivalent system
with ∆gcd(A) = 1. For the justi�cation see [13, Remark 3].

Good surveys on the related ∆-modular ILP problems and parameterised ILP
complexity are given in [16, 14, 13, 17].

1.4. Auxiliary facts from the polyhedral algebra. In this Subsection, we
mainly follow [1, 2]. Let V be a d-dimensional real vector space and L ⊂ V be
a lattice.

De�nition 3. Let A ⊆ V be a set. The indicator [A] of A is the function [A] : V →

R de�ned by [A](x) =

{
1, if x ∈ A
0, if x /∈ A

.

The algebra of polyhedra P(V) is the vector space de�ned as the span of the
indicator functions of all the polyhedra P ⊂ V.

De�nition 4. A linear transformation T : P(V) → W, where W is a vector
space, is called a valuation. We consider only L-valuations or lattice valuations
that satisfy

T ([P +u]) = T ([P]), for all rational polytopes P and u ∈ L,

see [38, pp. 933�988], [39].

We are mainly interested in two valuations, the �rst is the counting valuation
E([P]) = | P ∩Zd | and the second valuation F([P]), which will be signi�cantly
used in our paper, is de�ned by the following theorem, proved by J. Lawrence [40],
and, independently, by A. Khovanskii and A. Pukhlikov [41]. We borrowed the
formulation from [1, Section 13]:

Theorem 2 ([40, 41]). Let R(Cd) be the space of rational functions on Cd spanned
by the functions of the type

xv

(1− xu1) . . . (1− xud)
,

where v ∈ Zd and ui ∈ Zd \{0}, for any i ∈ {1, . . . , d}. Then there exists a

linear transformation (a valuation) F : P(Qd) → R(Cd) such that the following
properties hold:
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(1) Let P ⊂ Rd be a non-empty rational polyhedron without lines, and let C be
its recession cone. Let C be generated by rays w1, . . . , wn, for some wi ∈
Zd \{0}, and let us de�ne

WC =
{
x ∈ Cd : |xwi | < 1, for any i ∈ {1, . . . , n}

}
.

Then, WC is a non-empty open set and, for all x ∈ WC, the series

f(P;x) =
∑

z∈P ∩Zd

xz

converges absolutely and uniformly on compact subsets ofWC to the function
f(P;x) = F([P]) ∈ R(Cd).

(2) If P contains a line, then f(P;x) = 0.

If P is a rational polyhedron, then f(P;x) is called its short rational generating
function.

De�nition 5. Let P ⊂ V be a non-empty polyhedron, and let v ∈ P be a point. We
de�ne the tangent cone of P at v by

tcone(P, v) =
{
v + y : v + εy ∈ P, for some ε > 0

}
.

If an n-dimensional polyhedron P is de�ned by a system Ax ≤ b, then, for any
v ∈ P, it holds

tcone(P, v) = {x ∈ V : AJ (v)∗x ≤ bJ (v)}, where J (v) = {j : Aj∗v = bj}.

It is widely known that a slight perturbation in the right-hand sides of a system
Ax ≤ b can transform the polyhedron P(A, b) to a simple one. Here, we need an
algorithmic version of this fact, presented in the following technical theorem.

Theorem 3. Let A ∈ Zk×n, rank(A) = n ≤ k, b ∈ Qk, γ = max{‖A‖max, ‖b‖∞},
and P = P(A, b) be the n-dimensional polyhedron.

Then, for 1/ε = 1 + 2n · ndn/2e · γn and the vector t ∈ Qk, with ti = εi−1, the
polyhedron P ′ = P(A, b+ t) is simple.

Proof. Let us suppose by the contrary that there exists a vertex v of P ′ and a set
of indices J such that AJ v = (b+ t)J , | J | = n+ 1 and rank(AJ ) = n. The last is
possible i� det(M) = 0, where M =

(
AJ (b+ t)J

)
. Note that M = B +D, where

B =
(
AJ bJ

)
and D =

(
0(n+1)×n tJ

)
. We have,

det(M) = det(B) +

n+1∑
i=1

det(B[i, tJ ]) =

= det(B) +

n+1∑
i=1

n+1∑
j=1

(−1)i+j · (tJ )j · det(BJ \{j} I \{i}),

where I = {1, . . . , n+ 1} and B[i, tJ ] is the matrix induced by the substitution of
the column tJ instead of i-th column of B.

Let us assume that (tJ )j = εdj , for j ∈ I, where dj ∈ Z and 0 ≤ d1 < d2 <
· · · < dn+1 ≤ k − 1. Consequently, the condition det(M) = 0 is equivalent to the
following condition:

(1) det(B) +

n+1∑
j=1

εdj ·

 n∑
i=1

(−1)i+j · det(BJ \{j} I \{i})

 = 0.
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Note that the polynomial (1) is not zero. De�nitely, since rank(AJ ) = n, we can
assume that the �rst n rows of AJ are linearly independent. Consequently, there
exists a unique vector y ∈ Qn6=0 such that the last row of AJ is a linear combination
of the �rst rows with the coe�cients vector y. Since ∀ε : det(M) = 0, we have(
y
−1

)>
M = 0 and, consequently,

(
y
−1

)>
(bJ + t) = 0. But, the last may hold only

for a �nite number of ε. That is the contradiction.
Using the well known Cauchy's bound, we have that |ε∗| ≥ 1

1+αmax/β
= β

β+αmax
,

where ε∗ is any root of (1), αmax is the maximal absolute value of the coe�cients,
and β is the absolute value of the leading coe�cient.

Finally, 1/|ε∗| ≤ 2αmax ≤ 2n · nn/2 · γn, which contradicts to the Theorem's
condition on ε. �

2. Proof of Theorem 1

2.1. A recurrent formula for the generating function of a group polyhedron.

Let G be a �nite Abelian group and g1, . . . , gn ∈ G. Let, additionally, ri =
∣∣〈gi〉∣∣ be

the order of gi, for i ∈ {1, . . . , n}, and rmax = max
i
ri. For g0 ∈ G and k ∈ {1, . . . , n},

let PG(k, g0) be the polyhedron induced by the convex hull of solutions of the
following system:

(2)


k∑
i=1

xigi = g0

x ∈ Zk≥0 .

Let us consider the formal power series fk(g0;x) =
∑
z∈PG(k,g0)∩Zk xz .

For k = 1, we clearly have

f1(g0;x) =
xs1

1− xr11

, where s = min{x1 ∈ Z≥0 : x1g1 = g0}.

If such s does not exist, then we put f1(g0;x) = 0.
Note that, for any value of xk ∈ Z≥0, the system (2) can be rewritten as

k−1∑
i=1

xigi = g0 − xkgk

x ∈ Zk−1
≥0 .

Hence, for k ≥ 1, we have

(3) fk(g0;x) =

=
fk−1(g0;x) + xk · fk−1(g0 − gk;x) + · · ·+ xrk−1

k · fk−1(g0 − gk · (rk − 1);x)

1− xrkk
=

=
1

1− xrkk
·
rk−1∑
i=0

xik · fk−1(g0 − i · gk;x).

(4) Consequently, fk(g0;x) =

r1−1∑
i1=0

· · ·
rk−1∑
ik=0

εi1,...,ikx
i1
1 . . . xikk

(1− xr11 )(1− xr22 ) . . . (1− xrkk )
,
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where the numerator is a polynomial with coe�cients εi1,...,ik ∈ {0, 1} and degree
at most (r1−1) . . . (rk−1). Additionally, the formal power series fk(g0;x) converges
absolutely to the given rational function if |xrii | < 1, for each i ∈ {1, . . . , k}.

2.2. Simple ∆-modular polyhedral cone and its generating function. Let
A ∈ Zn×n, b ∈ Zn, ∆ = |det(A)| > 0, P = P(A, b), and let us consider the formal
power series

f(P;x) =
∑

z∈P ∩Zn

xz .

Let A = P−1SQ−1 and σ = Snn = ∆/∆gcd(A,n − 1), where S ∈ Zn×n is the

SNF of A and P,Q ∈ Zn×n are unimodular matrices. After the unimodular map
x = Qx′ and introducing slack variables y, the system Ax ≤ b becomes

Sx+ Py = Pb

x ∈ Zn

y ∈ Zn≥0 .

Since P is unimodular, the last system is equivalent to the system

(5)

{
Py = Pb (mod S · Zn)

y ∈ Zn≥0 .

Note that points of P ∩Zn and the system (5) are connected by the bijective map
x = A−1(b− y).

The system (5) can be interpreted as a group system (2), where G = Zn mod S
with an addition modulo S, k = n, g0 = Pb mod S and gi = P∗i mod S, for
i ∈ {1, . . . , n}. Clearly, G is isomorphic to Zn /S · Zn, | G | = |det(S)| = ∆ and
rmax ≤ σ.

Following the previous Subsection, for k ∈ {1, . . . , n} and g0 ∈ G, letMk(g0) be
the solutions set of the system

k∑
i=1

yigi = g0

y ∈ Zk≥0,

and fk(g0;x) =
∑

y∈Mk(g0)

x
−

k∑
i=1

hiyi
,

where hi is the i-th column of the matrix A∗ = ∆ ·A−1.
Note that

(6) f(P;x) =
∑

z∈P ∩Zn

xz =
∑

y∈Mn(Pb mod S)

xA
−1(b−y) =

= xA
−1b ·

∑
y∈Mn(Pb mod S)

x−
1
∆A
∗y = xA

−1b · fn
(
Pb mod S;x

1
∆

)
.

Next, we will use the formulas (3) and (4) after the substitution xi → x−hi , for
i ∈ {1, . . . , n}. For k = 1, we have

(7) f1(g0;x) =
x−sh1

1− x−r1h1
, where s = min{y1 ∈ Z≥0 : y1g1 = g0}.
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For k ≥ 2, we have

fk(g0;x) =
1

1− x−rkhk
·
rk−1∑
i=0

x−ihk · fk−1(g0 − i · gk;x) and(8)

fk(g0;x) =

r1−1∑
i1=0

· · ·
rk−1∑
ik=0

εi1,...,ik x
−(i1h1+···+ikhk)

(1− x−r1h1)(1− x−r2h2) . . . (1− x−rkhk)
,(9)

where the numerator is a Laurent polynomial with coe�cients εi1,...,ik ∈ {0, 1}.
Clearly, the power series fk(g0;x) converges absolutely to the given function if
|x−rihi | < 1, for each i ∈ {1, . . . , k}.

Due to the formulae (9) and (6), we have

(10) f(P;x) =

r1−1∑
i1=0

· · ·
rn−1∑
in=0

εi1,...,in x
1
∆A
∗(b−(i1,...,in)>)(

1− x−
r1
∆ h1

)(
1− x−

r2
∆ h2

)
. . .
(
1− x−

rn
∆ hn

) .
Note that ri∆hi is an integer vector, for any i ∈ {1, . . . , n}, and

1
∆A
∗(b−(i1, . . . , in)>)

is an integer vector, for any (i1, . . . , in), such that εi1,...,in 6= 0. Indeed, by de�nition
of ri, we have riP∗i ≡ 0 (mod S · Zn), so ri

∆hi = (riA
−1)∗i = (QS−1Pri)∗i, which

is an integer vector. Vectors (i1, . . . , in)> correspond to solutions y of the system
(5), and 1

∆A
∗(b− (i1, . . . , in)>) = A−1(b− y) is an integer vector.

Additionally, note that the vectors − ri∆hi represent extreme rays of the recession
cone of P.

Let c ∈ Zn be chosen, such that (c>A∗)i 6= 0, for any i. Let us consider the
exponential sum

f̂k(g0; τ) =
∑

y∈Mk(g0)

e−τ ·〈c,
∑k

i=1 hiyi〉

that is induced by fk(g0;x), substituting xi = eτ ·ci .
The formulae (7), (8), and (9) become

f̂1(g0; τ) =
e−〈c,sh1〉·τ

1− e−〈c,r1h1〉·τ
,(11)

f̂k(g0; τ) =
1

1− e−〈c,rkhk〉·τ
·
rk−1∑
i=0

e−〈c,ihk〉·τ · f̂k−1(g0 − i · gk; τ),(12)

f̂k(g0; τ) =

r1−1∑
i1=0

· · ·
rk−1∑
ik=0

εi1,...,ike
−〈c,i1h1+···+ikhk〉·τ(

1− e−〈c,r1h1〉·τ
)(

1− e−〈c,r2h2〉·τ
)
. . .
(
1− e−〈c,rkhk〉·τ

) .(13)

Let χ = max
i∈{1,...,n}

{
|〈c, hi〉|

}
. Since 〈c, hi〉 ∈ Z6=0, for each i, the number of terms

e−〈c,·〉·τ is bounded by 1 + 2 ·k · rmax ·χ ≤ 1 + 2 ·k ·σ ·χ. So, after combining similar
terms, the numerator's length becomes O(k · σ · χ).

In other words, there exist coe�cients εi ∈ Z≥0, such that

(14) f̂k(g0; τ) =

k·σ·χ∑
i=−k·σ·χ

εi · e−i·τ(
1− e−〈c,r1·h1〉τ

)(
1− e−〈c,r2h2〉·τ

)
. . .
(
1− e−〈c,rkhk〉·τ

) .
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Let us discuss the group-operations complexity issues to �nd the representation

(14) of f̂k(g0; τ), for any k ∈ {1, . . . , n} and g0 ∈ G.
Clearly, to �nd the desired representation of f̂1(g0; τ), for all g0 ∈ G, we need

r1 ·∆ group operations.

Fix g0 ∈ G and k ∈ {1, . . . , n}. To �nd f̂k(g0; τ), for k ≥ 2, we can use the

formula (12). Each numerator of the term e−〈c,ihk〉·τ · f̂k−1(g0 − igk; τ) contains

at most 1 + 2 · (k − 1) · σ · χ non-zero terms of the type ε · e−〈c,·〉·τ . Hence, the
summation can be done with O(k ·σ2 ·χ) group operations. Consequently, the total
group-operations complexity can be expressed by the formula

O(∆ · n2 · σ2 · χ).

Finally, since the diagonal matrix S can have at most log2(∆) terms that are not
equal to 1, the arithmetic complexity of one group operation is O(log(∆)). Hence,
the total arithmetic complexity is

O
(
∆ · log(∆) · n2 · σ2 · χ

)
.

Finally, let us show how to �nd the exponential form

f̂(P; τ) =
∑

z∈P ∩Zn

e〈c,z〉·τ

of the power series f(P;x) induced by the map xi = eci·τ .
Due to the formula (6), we have

f̂(P; τ) = e〈c,A
−1b〉·τ · f̂n

(
Pb mod S;

τ

∆

)
.

Due to the last formula and the formulae (10) and (14), we have

f̂(P; τ) =

n·σ·χ∑
i=−n·σ·χ

εi · e
1
∆ (〈c,A∗b〉−i)·τ

(
1− e−〈c,

r1
∆ ·h1〉·τ

)(
1− e−〈c,

r2
∆ ·h2〉·τ

)
. . .
(
1− e−〈c, rn∆ ·hn〉·τ

) .
Again, due to (10), we have 〈c, ri∆hi〉 ∈ Z6=0, for any i ∈ {1, . . . , n}, and 1

∆ (〈c, A∗b〉−
i) ∈ Z, for any i, such that εi > 0.

We have proven the following:

Theorem 4. Let A ∈ Zn×n, b ∈ Zn, ∆ = |det(A)| > 0, and P = P(A, b). Let,
additionally, σ = Snn, where S is the SNF of A, and χ = max

i∈{1,...,n}

{
|〈c, hi〉|

}
, where

hi is the i-th column of A∗ = ∆ ·A−1.

Then, the formal exponential series f̂(P; τ) can be represented as

f̂(P; τ) =

n·σ·χ∑
i=−n·σ·χ

εi · eαi·τ(
1− eβ1·τ

)(
1− eβ2·τ

)
. . .
(
1− eβn·τ

) ,
where εi ∈ Z≥0, βi ∈ Z6=0, and αi ∈ Z.

This representation can be found with an algorithm having the arithmetic complexity
bound

O
(
TSNF(n) + ∆ · log(∆) · n2 · σ2 · χ

)
,

where TSNF (n) is the arithmetical complexity of computing the SNF for n×n integer
matrices.



622 D.V. GRIBANOV, D.S. MALYSHEV

2.3. Handling the general case. Following Remark 1, we will only work with

systems in the canonical form. Let A ∈ Z(n+m)×n, b ∈ Qn+m, rank(A) = n, and
∆ = ∆(A). Let us consider the polytope P = P(A, b).

Let us choose γ = max{‖A‖max, ‖b‖∞}, β = min
i∈{1,...,n+m}

{dbie − bi : bi /∈ Z}, and

ε = min{β/2, (1 + 2n · ndn/2e · γ)−1}. If all bi are integer, we put β = +∞, so the
formula for ε remains correct. Then, by Theorem 3, the polytope P ′ = P(A, b+ t)
is simple, where the vector t is chosen, such that ti = εi−1, for i ∈ {1, . . . , n+m}.
By the construction, P ∩Zn = P ′ ∩Zn. From this moment, we assume that P =
P(A, b) is a simple polytope.

Using De�nition 5 for tangent cones, the Brion's Theorem [42] (see also [1,
Chapter 6]) gives:

[P] =
∑

v∈vert(P)

[
tcone(P, v)

]
=

∑
v∈vert(P)

[
P(AJ (v), bJ (v))

]
modulo polyhedra with lines .

Due to the seminal work [43], all vertices of the simple polyhedron P can be
enumerated with O

(
(m+ n) · n · | vert(P)|

)
arithmetic operations.

Denote f(P;x) = F([P]) ∈ R(Qn), for any rational polyhedron P, where F is
the evaluation considered in Theorem 2.

Note that f(P(B, u);x) = f(P(B, buc);x), for any B ∈ Zn×n and u ∈ Qn. So,
due to Theorem 2, we can write

f(P;x) =
∑

v∈vert(P)

f
(
P
(
AJ (v), bbJ (v)c

)
;x
)
.

Due to results of the previous Subsection, each term f
(
P
(
AJ (v), bbJ (v)c

)
;x
)

has the form (10).
To �nd the value of | P ∩Zn | = lim

x→1
f(P;x), we follow Chapters 13 and 14 of [1].

Let us choose c ∈ Zn, such that any element of the row-vector c>(AJ (v))
−1 is non-

zero, for each v ∈ vert(P). Substituting xi = eci·τ , let us consider the exponential
function

f̂(P; τ) =
∑

v∈vert(P)

f̂
(
P
(
AJ (v), bbJ (v)c

)
; τ
)
.

Due to [1, Chapter 14], the value | P ∩Zn | is a constant term in the Tailor series

of the function f̂(P; τ), so we just need to compute it.

Let us �x some term f̂
(
P(B, u); τ

)
of the previous formula. Due to Theorem 4,

it can be represented as

f̂
(
P(B, u); τ

)
=

n·σ·χ∑
i=−n·σ·χ

εi · eαi·τ(
1− eβ1·τ

)(
1− eβ2·τ

)
. . .
(
1− eβn·τ

) ,
where εi ∈ Z≥0, βi ∈ Z6=0, and αi ∈ Z.
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Again, due to [1, Chapter 14], we can see that the constant term in Tailor series

for f̂
(
P(B, u); τ

)
is exactly

(15)

n·σ·χ∑
i=−n·σ·χ

εi
β1 . . . βn

n∑
j=0

αji
j!
· tdn−j(β1, . . . , βn),

where tdj(β1, . . . , βn) is a homogeneous polynomial of degree j, called the j-th
Todd polynomial on β1, . . . , βn. Due to [20, Theorem 7.2.8, p. 137], the values of
tdj(β1, . . . , βn), for j ∈ {1, . . . , n}, can be computed with an algorithm that is
polynomial in n, and the bit-encoding length of β1, . . . , βn. Moreover, it follows
from the theorem's proof that the arithmetical complexity can be bounded by
O(n3).

Since σ ≤ ∆, due to Theorem 4, the total arithmetic complexity to �nd the value
of (15) can be bounded by

O
(
n3 + TSNF (n) + ∆3 · log(∆) · n2 · χ

)
.

Due to [44], TSNF (n) = O(n3). Assuming that O(n2 · χ) dominates O(n3), the
last bound can be rewritten to O

(
∆3 · log(∆) · n2 · χ

)
.

The constant term in Tailor series for the complete function f̂(P; τ) can be found
just by summation. It gives the arithmetic complexity bound

O
(
ν(n,m,∆) · n2 ·∆3 · log(∆) · χ

)
.

Finally, we choose c> as the sum of rows of some non-degenerate n × n sub-
matrix of A. Note that elements of the matrix A · A∗J (v) are included in the set

of all n × n sub-determinants of A, where A∗J (v) = ∆ · A−1
J (v), for all v ∈ vert(P).

Hence, χ ≤ n∆, and the total arithmetic complexity bound becomes

O
(
ν(n,m,∆) · n3 ·∆4 · log(∆)

)
. It �nishes the proof of Theorem 1.

2.4. Proof of Corollary 1. The presented complexity bounds follow from the
di�erent ways to estimate the value ν(m,n,∆). The �rst bound trivially follows

from the inequalities ν(m,n,∆) ≤
(
n+m
n

)
=
(
n+m
m

)
. em·(n+m)m

mm = O
(
n
m + 1

)m
.

To obtain the second bound, we refer to the seminal result, due to P. McMullen [9].
Together with the formula from [45, Section 4.7] for the number of facets of a
cyclic polytope, it follows that the maximal number of vertices in an n-dimensional
polyhedron with k facets is bounded by

ξ(n, k) =

{
k
k−s
(
k−s
s

)
, for n = 2s

2
(
k−s−1
s

)
, for n = 2s+ 1

= O

(
k

n

)n/2
.

Clearly, ν(m,n,∆) ≤ ξ(n, n + m), and ν(m,n,∆) = O
(
n+m
n

)n
2 . So, the second

bound holds.
Due to [8], we can assume that n+m = O(n2 ·∆2). Substituting the last formula

to the second bound, we obtain ν(m,n,∆) = O(n
n
2 · ∆n), and the third bound

holds.
Finally, let us show how to handle the case, when P is an unbounded n-dimensional

polyhedron. Clearly, we need to distinguish between two possibilities: | P ∩Zn | = 0
and | P ∩Zn | =∞. Let us choose any vertex v of P and consider a set of indices J ,
such that | J | = n, AJ v = bJ and rank(AJ ) = n. For the �rst and second bounds,
we add a new inequality c>x ≤ c0 to the system Ax ≤ b, where c> =

∑n
i=1(AJ )i∗
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and c0 = c>v + ‖c‖1 · n∆ + 1. Let A′x ≤ b′ be the new system. Due to [46],
| P ∩Zn | = 0 i� | P(A′, b′)∩Zn | = 0. Since P(A′, b′) is a polytope and ∆(A′) ≤ n∆,
we just need to add an additional multiplicative factor of O( dm + 1) · n4 to the �rst

bound and O(n4) to the second bound.
To deal with third bound, we just need to add additional inequalities AJ x ≥

bJ − ‖AJ ‖max · n2∆ · 1 to the system Ax ≤ b. The polyhedron becomes bounded
and the sub-determinants stay unchanged, and we follow the original scenario.
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