S@MR

ISSN 1813-3304

СИБИРСКИЕ ЭЛЕКТРОННЫЕ МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

Siberian Electronic Mathematical Reports http://semr.math.nsc.ru

Том 19, №2, стр. 651–661 (2022) DOI 10.33048/semi.2022.19.054 УДК 517.552 MSC 32A05, 32A27

TORIC MORPHISMS AND DIAGONALS OF THE LAURENT SERIES OF RATIONAL FUNCTIONS

D.Y. POCHEKUTOV, A.V. SENASHOV

ABSTRACT. We consider the Laurent series of a rational function in n complex variables and the n-dimensional sequence of its coefficients. The diagonal subsequence of this sequence generates the so-called complete diagonal of the Laurent series. We give a new integral representation for the complete diagonal. Based on this representation, we give a sufficient condition for a diagonal to be algebraic.

Keywords: algebraic function, diagonal of Laurent series, generating function, integral representations, toric morphism.

1. INTRODUCTION

Let \mathbb{C} be the field of complex numbers, $\mathbb{C}^{\times} := \mathbb{C} - \{0\}$ be its multiplicative group and $\mathbb{R} \subset \mathbb{C}$ be the subfield of real numbers. Let M be a lattice of the rank n and N be its dual lattice. Consider the *n*-dimensional complex torus $T^n := M \otimes_{\mathbb{Z}} \mathbb{C}^{\times}$. We fix a basis e^1, \ldots, e^n of M and the dual basis e_1, \ldots, e_n of N. Then $M \simeq \mathbb{Z}^n$, $N \simeq (\mathbb{Z}^n)^*$ and the torus can be written in the form

$$T_{\boldsymbol{z}}^n = \mathbb{C}^{\times} \times \ldots \times \mathbb{C}^{\times}.$$

It is an abelian group that, also, has the structure of a complex manifold equipped with coordinate functions $\boldsymbol{z} := (z_1, \ldots, z_n)$. Recall that the cohomology group $H^n(T_{\boldsymbol{z}}^n, \mathbb{Z})$ is generated by the class of the differential form $d\boldsymbol{z}/\boldsymbol{z}^e$, where $d\boldsymbol{z} := dz_1 \wedge \ldots \wedge dz_n, \, \boldsymbol{z}^e := z_1 \cdot \ldots \cdot z_n$ and $\boldsymbol{e} := \boldsymbol{e}_1 + \ldots + \boldsymbol{e}_n = (1, \ldots, 1) \in (\mathbb{Z}^n)^*$.

Pochekutov, D.Y., Senashov, A.V., Toric morphisms and diagonals of the Laurent series of rational functions.

^{© 2022} Pochekutov D.Y., Senashov A.V.

The research is supported by grant of the Russian Science Foundation (project № 20-11-20117). Received February 1, 2022, published September, 2, 2022.

A Laurent polynomial Q over \mathbb{C} is a finite sum of the form

$$Q(\boldsymbol{z}) := \sum_{\boldsymbol{\alpha} \in A} a_{\boldsymbol{\alpha}} \boldsymbol{z}^{\boldsymbol{\alpha}},$$

where A is a finite subset of the dual to \mathbb{Z}^n lattice $(\mathbb{Z}^n)^*$, $q_{\boldsymbol{\alpha}} \in \mathbb{C}$ and $\boldsymbol{z}^{\boldsymbol{\alpha}} := z_1^{\alpha^1} \dots z_n^{\alpha^n}$. Its Newton polytope Δ_Q is the convex hull of A in $(\mathbb{R}^n)^*$. The set of all Laurent polynomials over \mathbb{C} in \boldsymbol{z} forms a ring $R_{\boldsymbol{z}}$ of Laurent polynomials. There is an injective homomorphism from $R_{\boldsymbol{z}}$ to the ring of functions on $T_{\boldsymbol{z}}^n$. So the set

$$Z^{\times}(Q) := \{ \boldsymbol{z} \in T^n_{\boldsymbol{z}} : Q(\boldsymbol{z}) = 0 \}$$

of zeros in $T_{\boldsymbol{z}}^n$ of a Laurent polynomial Q in $R_{\boldsymbol{z}}$ is well-defined. The *amoeba* \mathcal{A}_Q of a Laurent polynomial $Q \in R_{\boldsymbol{z}}$ is the image of $Z^{\times}(Q)$ under the logarithmic mapping

$$\Lambda: T^n_{\boldsymbol{z}} \to \mathbb{R}^n, \ \Lambda(\boldsymbol{z}) := (\log |z_1|, \dots, \log |z_n|),$$

where $\mathbb{R}^n := \mathbb{Z}^n \otimes_{\mathbb{Z}} \mathbb{R}$.

Let P(z), Q(z) be irreducible polynomials in R_z . Consider a Laurent series (centered at the origin)

(1)
$$F(\boldsymbol{z}) = \sum_{\boldsymbol{\beta} \in (\mathbb{Z}^n)^*} C_{\boldsymbol{\beta}} \boldsymbol{z}^{\boldsymbol{\beta}}$$

of a rational function $F(\mathbf{z}) = P(\mathbf{z})/Q(\mathbf{z})$. It is well known that the domain of absolute convergence of the series (1) is logarithmically convex. More precisely, such domain has the form $\Lambda^{-1}(E)$, where E is a connected component of $\mathbb{R}^n - \mathcal{A}_Q$ (see Section 2).

Let $\boldsymbol{Q} := (\boldsymbol{q}_1, \ldots, \boldsymbol{q}_r)$ be an *r*-tuple of vectors that generates a sublattice L of the rank r of the lattice $(\mathbb{Z}^n)^*$, and, with a slight abuse of notation, let \boldsymbol{Q} be also the $n \times r$ matrix (q_j^i) with columns $\boldsymbol{q}_1, \ldots, \boldsymbol{q}_r$. For $\boldsymbol{k} := (k^1 \ldots, k^r) \in (\mathbb{Z}^r)^*$, we define

$$\boldsymbol{Q}\boldsymbol{k} := (\boldsymbol{q}^1 \cdot \boldsymbol{k}, \dots, \boldsymbol{q}^r \cdot \boldsymbol{k}) = k^1 \boldsymbol{q}_1 + \dots + k^r \boldsymbol{q}_r,$$

where q^{i} 's are the rows of the matrix Q and the dot product $q^{i} \cdot k := q_{1}^{i} k^{1} + \ldots + q_{r}^{i} k^{r}$. Then the *complete* Q-*diagonal* of the Laurent series (1) is the Laurent series

(2)
$$d_{\boldsymbol{Q}}(\boldsymbol{t}) = \sum_{\boldsymbol{k} \in (\mathbb{Z}^r)^*} C_{\boldsymbol{Q}\boldsymbol{k}} \boldsymbol{t}^{\boldsymbol{k}}$$

in r variables (r is the rank of the diagonal). In other words, the diagonal $d_{\mathbf{Q}}(t)$ is a generating function of the r-dimensional subsequence $\{C_{\mathbf{Q}k}\}$ of the n-dimensional Laurent coefficients sequence $\{C_{\boldsymbol{\beta}}\}$. The diagonal is called *primitive* if it corresponds to $q_1 = e_1 + e_2, q_2 = e_3, \ldots, q_{n-1} = e_n$.

Diagonals of rational functions arise naturally in statistical mechanics (see, for example, [1, 2]) and enumerative combinatorics. R. Stanley proposed in [3, Section 6.1] the following natural hierarchy of the most important classes of generating functions in enumerative combinatorics

$$\{\text{rational}\} \subset \{\text{algebraic}\} \subset \{D\text{-finite}\}.$$

The classical result about diagonals states that a diagonal of the Taylor series for a rational function of two complex variables (the case n = 2 and r = 1) is an algebraic function (see [4, 5, 6] and [3, Section 6.3] for different aspects). It was generalized to the case of Laurent series of two complex variables in [7, Theorem 1]. Primitive diagonals of the Laurent series for rational functions of n complex variables are algebraic too ([7, Theorem 3]). In general, complete diagonals even for Taylor series

of rational functions in more than 2 complex variables are not algebraic, see [5, Section 2] and [8, Section 4] for the particular examples.

Nevertheless, the following example shows that such diagonals could be algebraic. **Example 1.** Consider the rational function

(3)
$$F(\boldsymbol{z}) = \frac{1}{1 - z_1 - (z_2 z_3)^l - z_3}, \ l \in \mathbb{N} := \{1, 2, \ldots\}.$$

It is not difficult to show that the univariate Taylor series

(4)
$$d(l;t) = \sum_{k=0}^{\infty} \frac{((l+1)k)!}{(lk)!k!} t^{lk}$$

is the complete *e*-diagonal of the Taylor expansion for F(z). It could be represented as the hypergeometric function $_{l}F_{l-1}(\frac{1}{l+1},\ldots,\frac{l}{l+1};\frac{1}{l},\ldots,\frac{l-1}{l};\frac{(l+1)^{l+1}}{l^{l}}t^{l})$. The series d(1;t) is algebraic, since

$$d(1;t) = \sqrt{1-4t}, \ |t| < \frac{1}{4},$$

by the generalized binomial theorem. Also, we have the explicit algebraic expression

$$d(2,t) = \frac{1}{\sqrt{4 - 27t^2}} \left(\left(\sqrt{1 - \frac{27}{4}t^2} + \frac{3\sqrt{3}}{2}\imath t \right)^{-\frac{1}{3}} + \left(\sqrt{1 - \frac{27}{4}t^2} - \frac{3\sqrt{3}}{2}\imath t \right)^{-\frac{1}{3}} \right),$$

when $|t| < \frac{4}{27}$ (see row 4 of Table 7.3.3 in [9, p. 486]). For $l \ge 3$, the algebraicity of d(l;t) follows from Theorem 7.1 [10].

One of the main purposes of the paper is to demonstrate how integral representations help to explain such phenomena. We show in Section 4 that $d_{\mathbf{Q}}(t)$ could be represented as an integral of a rational differential form ω with parameters t over a (n-r)-dimensional cycle of the form $\Lambda^{-1}(\mathbf{y}')$, where \mathbf{y}' is a point in the component $\tilde{E}' \subset \mathbb{R}^{n-r}$ of the complement to the amoeba of the denominator of ω .

Theorem 1. Let the r-turple Q generate a saturated r-dimensional sublattice¹ of the lattice $(\mathbb{Z}^n)^*$ and p be the dimension of the recession cone of \tilde{E}' . Then, if the condition

$$(5) n-r-p=1$$

holds, the complete diagonal $d_{\mathbf{Q}}(t)$ of the Laurent expansion (1) for the rational function $F(\mathbf{z})$ is an algebraic function.

We prove the theorem and discuss the example of the rational function (3) in full details in Section 5.

2. TORIC MORPHISMS AND AMOEBAS OF LAURENT POLYNOMIALS

Let $\mathbf{A} := (a_i^j)$ be unimodular $n \times n$ -matrix and $\mathbf{B} := (b_i^j)$ be its inverse. We denote by $\mathbf{a}^j := (a_1^j, \ldots, a_n^j)$ and $\mathbf{a}_i := (a_i^1, \ldots, a_i^n)$ the *j*-th row and the *i*-th column of \mathbf{A} , correspondingly. Similarly, $\mathbf{b}^j := (b_1^j, \ldots, b_n^j)$ and $\mathbf{b}_i := (b_i^1, \ldots, b_i^n)$ are the *j*-th row and the *i*-th column of \mathbf{B} .

¹Recall that a sublattice L of a lattice N is called *saturated* \Leftrightarrow for any $v \in N$, if $kv \in L$, where k is a positive integer, then $v \in L$.

The matrix **A** defines the linear transformation of the lattice $(\mathbb{Z}^n)^*$ by

$$\boldsymbol{\alpha} := (\alpha^1, \dots, \alpha^n) \mapsto \boldsymbol{A}\boldsymbol{\alpha} := (\boldsymbol{a}^1 \cdot \boldsymbol{\alpha}, \dots, \boldsymbol{a}^n \cdot \boldsymbol{\alpha}) = \alpha^1 \boldsymbol{a}_1 + \dots \alpha^n \boldsymbol{a}_n.$$

Then we let the *toric morphism*

(6)
$$T^n_{\boldsymbol{w}} \to T^n_{\boldsymbol{z}}$$

be defined by $\boldsymbol{w} \mapsto \boldsymbol{z} = \boldsymbol{w}^{\boldsymbol{A}}$, where $\boldsymbol{w}^{\boldsymbol{A}} := (\boldsymbol{w}^{\boldsymbol{a}_1}, \dots, \boldsymbol{w}^{\boldsymbol{a}_n})$ and $\boldsymbol{w}^{\boldsymbol{a}_i} := w_1^{a_1^1} \dots w_n^{a_n^n}$. The inverse morphism

(7)
$$T^n_{\boldsymbol{z}} \to T^n_{\boldsymbol{w}}$$

is given by $z \mapsto w = z^B$.

The morphism (6) induces the homomorphism $R_z \to R_w$ of rings of Laurent polynomials over \mathbb{C} in the variables z and w by the formula

(8)
$$Q(\boldsymbol{z}) \mapsto \tilde{Q}(\boldsymbol{w}) := Q(\boldsymbol{w}^{\boldsymbol{A}}).$$

Let Q be a Laurent polynomial in R_z . The amoeba \mathcal{A}_Q of Q is a closed subset of \mathbb{R}^n . Then the complement $\mathbb{R}^n - \mathcal{A}_Q$ is open. It consists of a finite number of connected components E_{ν} , which are convex [11, Section 6.1]. These components are in 1-1 correspondence with all possible expansions (1) of an irreducible fraction F(z) = P(z)/Q(z).

The index $\boldsymbol{\nu}$ emphasizes that each component corresponds to an integer point $\boldsymbol{\nu}$ of the Newton polytope Δ_Q of Q. Recall that the Newton polytope Δ_Q is the convex hull of A in $(\mathbb{R}^n)^*$. More precisely, for a point \boldsymbol{x} in E, the integrals

(9)
$$\nu^{j} := \frac{1}{(2\pi i)^{n}} \int_{\Lambda^{-1}(\boldsymbol{x})} z_{j} \frac{\partial Q/\partial z_{j}}{Q} \frac{d\boldsymbol{z}}{\boldsymbol{z}^{\boldsymbol{e}}}, \ j = 1, \dots n,$$

define on the set of all connected components $\{E\}$ an injective mapping

$$E \mapsto \boldsymbol{\nu} := (\nu^1, \dots, \nu^n) \in (\mathbb{Z}^n)^* \cap \Delta_Q,$$

see for details [12, Section 2]. The image ν does not depend on the choice of x in E since for all points x in the same connected component cycles

$$\Lambda^{-1}(\boldsymbol{x}) := \{ |z_1| = e^{x_1}, \dots, |z_n| = e^{x_n} \}$$

have the same homology class in $H_n(T_{\boldsymbol{z}}^n - Z^{\times}(Q))$. If $\boldsymbol{p} \in \Lambda^{-1}(\boldsymbol{x})$, then ν^j equals the difference between the number of zeroes and poles of the univariate Laurent polynomial $Q(p_1, \ldots, p_{j-1}, z_j, p_{j+1}, \ldots, p_n)$ in the circle $|z_j| = e^{x_j}$ by the argument principle.

Moreover, the recession cone of the convex set E_{ν} coincides with $-C_{\nu}^{\vee}$, where

$$C_{\boldsymbol{\nu}}^{\vee} := \{ \boldsymbol{s} \in \mathbb{R}^n : \boldsymbol{s} \cdot \boldsymbol{\nu} = \min_{\boldsymbol{\alpha} \in \Delta_Q} \boldsymbol{s} \cdot \boldsymbol{\alpha} \},\$$

is the dual cone of Δ_Q at the point $\boldsymbol{\nu} = \boldsymbol{\nu}(E)$. We refer the reader to Figure 1 to observe this fact.

Proposition 1. Let $Q \in R_z$, $\tilde{Q} \in R_w$ be its image under the homomorphism (8), \mathcal{A} be the amoeba of Q and $\tilde{\mathcal{A}}$ be the amoeba of \tilde{Q} . Then $\tilde{\mathcal{A}}$ is equal to

$$\mathcal{A}B := \{ \boldsymbol{y} \in \mathbb{R}^n : y_j = \boldsymbol{x} \cdot \boldsymbol{b}_j, \text{ for all } \boldsymbol{x} \in \mathcal{A} \text{ and } j = 1, \dots, n \}.$$

Moreover, if E is a component of the complement $\mathbb{R}^n - \mathcal{A}$ of order $\boldsymbol{\nu}$, then $\tilde{E} = E\boldsymbol{B}$ is the component of order $\boldsymbol{\mu} = \boldsymbol{A}\boldsymbol{\nu}$ of the complement $\mathbb{R}^n - \tilde{\mathcal{A}}$.

FIG. 1. The amoeba \mathcal{A} (left) and the Newton polytope Δ (right) of the polynomial $1 - \frac{t}{w_2 w_3} - w_2^l w_3^l - w_3$. The black point marks the component of $\mathbb{R}^2 - \mathcal{A}$ of order (0, 0); the unlabelled component is of order (1, 1).

Proof. Let $x \in \mathbb{R}^n$ and $z \in T_z^n$ such that $\Lambda(z) = x$. Then the image $w = z^B$ has coordinates

 $w_j := \boldsymbol{z}^{\boldsymbol{b}_j} = (e^{x_1 + i\theta_1})^{b_j^1} \dots (e^{x_n + i\theta_n})^{b_j^n} = \exp\left(\boldsymbol{x} \cdot \boldsymbol{b}_j + i\boldsymbol{\theta} \cdot \boldsymbol{b}_j\right), \ j = 1, \dots, n,$

where $\boldsymbol{\theta} = (\theta_1, \dots, \theta_n) \in (-\pi, \pi]^n$. Thus, the *j*-th component of $\boldsymbol{y} := \Lambda(\boldsymbol{w})$ equals $\boldsymbol{x} \cdot \boldsymbol{b}_j$.

First, note that $\boldsymbol{w} \in Z^{\times}(\tilde{Q})$ if and only if $\boldsymbol{z} \in Z^{\times}(Q)$. So $\boldsymbol{x} \in \mathcal{A}$ if and only if $\boldsymbol{y} \in \tilde{\mathcal{A}}$. Then it follows that $\tilde{\mathcal{A}}$ is the image of the amoeba \mathcal{A} by the linear transform defined by means of the matrix \boldsymbol{B} , and the image $E\boldsymbol{B}$ of a component E of $\mathbb{R}^n - \mathcal{A}$ coincides with some component \tilde{E} of the complement $\mathbb{R}^n - \tilde{\mathcal{A}}$.

Next, consider the homomorphism $H_n(T_{\boldsymbol{z}}^n - Z^{\times}(Q)) \to H_n(T_{\boldsymbol{w}}^n - Z^{\times}(\tilde{Q}))$ induced by the morphism (7). It maps the cycle of integration $\Lambda^{-1}(\boldsymbol{x})$ in (9) to the cycle $\Lambda^{-1}(\boldsymbol{y})$, where $\boldsymbol{y} = \boldsymbol{x}\boldsymbol{B} := (\boldsymbol{x} \cdot \boldsymbol{b}_1, \dots, \boldsymbol{x} \cdot \boldsymbol{b}_n)$ and $\boldsymbol{x} \in E$. Also, the morphism (6) induces the homomorphism $H^n(T_{\boldsymbol{z}}^n - Z^{\times}(Q)) \to H^n(T_{\boldsymbol{w}}^n - Z^{\times}(\tilde{Q}))$ of cohomology groups. It maps the differential form in (9) to the form

$$\sum_{k=1}^{n} b_{k}^{j} w_{k} \frac{\partial \hat{Q} / \partial w_{k}}{\tilde{Q}} \frac{d \boldsymbol{w}}{\boldsymbol{w}^{\boldsymbol{e}}},$$

since the direct calculation shows that

$$\frac{\partial Q}{\partial z_j} = \sum_{k=1}^n \frac{\partial \tilde{Q}}{\partial w_k} \frac{\partial w_k}{\partial z_j} = \sum_{k=1}^n \frac{\partial \tilde{Q}}{\partial w_k} \frac{\partial}{\partial z_j} (\boldsymbol{z}^{\boldsymbol{b}_k}) = \sum_{k=1}^n \frac{\partial \tilde{Q}}{\partial w_k} \frac{b_j^k}{z_j} w_k.$$

Therefore, the relation between $\boldsymbol{\nu}$ and the order $\boldsymbol{\mu} = (\mu^1, \dots, \mu^n)$ of \tilde{E} is given by

$$\nu^{j} = \frac{1}{(2\pi i)^{n}} \sum_{k=1}^{n} b_{k}^{j} \int_{\Lambda^{-1}(\boldsymbol{y})} w_{k} \frac{\partial \tilde{Q} / \partial w_{k}}{\tilde{Q}} \frac{d\boldsymbol{w}}{\boldsymbol{w}^{\boldsymbol{e}}} = \boldsymbol{b}^{j} \cdot \boldsymbol{\mu}.$$

Since the matrices A and B are inverse we have that $\mu^j = a^j \cdot \nu$, or equivalently, $\mu = A\nu$.

3. INTEGRAL REPRESENTATIONS FOR LAURENT COEFFICIENTS

Let *E* be an unbounded component of order $\boldsymbol{\nu}$ of the complement to \mathcal{A} . Then the dual cone $C_{\boldsymbol{\nu}}^{\vee}$ to the Newton polytope Δ_Q at $\boldsymbol{\nu}$ is generated by *p* vectors $\boldsymbol{a}^1, \ldots \boldsymbol{a}^p \in \mathbb{Z}^n$, where $p \in \{1, \ldots, n\}$ since the recession cone of *E* coincides with $-C_{\boldsymbol{\nu}}^{\vee}$. The vectors $\boldsymbol{a}^1, \ldots \boldsymbol{a}^p$ can be chosen so that they generate the saturated *p*-dimensional sublattice of \mathbb{Z}^n .

Consider the Laurent expansion (1) of the rational function F(z) = P(z)/Q(z) that converges in the domain $\Lambda^{-1}(E)$. Its coefficient can be represented as

(10)
$$C_{\boldsymbol{\beta}} = \frac{1}{(2\pi i)^n} \int\limits_{\Lambda^{-1}(\boldsymbol{x})} \frac{P(\boldsymbol{z})}{Q(\boldsymbol{z})} \frac{1}{\boldsymbol{z}^{\boldsymbol{\beta}}} \frac{d\boldsymbol{z}}{\boldsymbol{z}^{\boldsymbol{e}}}$$

where $\boldsymbol{x} \in E$.

Let \mathbf{A}' be a $p \times n$ matrix with rows $\mathbf{a}^1, \dots \mathbf{a}^p$. Then, since $\mathbf{a}^1, \dots \mathbf{a}^p$ generate the saturated sublattice, the matrix \mathbf{A}' can be extended to an unimodular $n \times n$ matrix \mathbf{A} by the Invariant Factor Theorem (see [13, Theorem 16.6]). Now, we consider the toric morphism (6) that corresponds to the matrix \mathbf{A} . By Proposition 1, $\tilde{\mathcal{A}} := \mathcal{A}\mathbf{B}$ is the amoeba of the Laurent polynomial $\tilde{Q}(\mathbf{w}) := Q(\mathbf{w}^{\mathbf{A}}), \tilde{E} := E\mathbf{B}$ is the component of order $\boldsymbol{\mu} = (\mathbf{a}^1 \cdot \boldsymbol{\nu}, \dots, \mathbf{a}^n \cdot \boldsymbol{\nu})$ of the complement to $\tilde{\mathcal{A}}$.

Recall that a_j and a^j denote the *j*-th column and the *j*-th row of the matrix A, correspondingly. We can rewrite the Laurent polynomial \tilde{Q} as

$$\tilde{Q}(\boldsymbol{w}) = \sum_{\boldsymbol{\alpha}} c_{\boldsymbol{\alpha}} (\boldsymbol{w}^{\boldsymbol{a}_1})^{\alpha_1} \cdot \ldots \cdot (\boldsymbol{w}^{\boldsymbol{a}_p})^{\alpha_p} \cdot \ldots \cdot (\boldsymbol{w}^{\boldsymbol{a}_n})^{\alpha_n} =$$
$$= \sum_{\boldsymbol{\alpha}} c_{\boldsymbol{\alpha}} w_1^{\boldsymbol{a}^1 \cdot \boldsymbol{\alpha}} \ldots w_p^{\boldsymbol{a}^p \cdot \boldsymbol{\alpha}} \ldots w_n^{\boldsymbol{a}^n \cdot \boldsymbol{\alpha}} = w_1^{\boldsymbol{a}^1 \cdot \boldsymbol{\nu}} \ldots w_p^{\boldsymbol{a}^p \cdot \boldsymbol{\nu}} \widehat{Q}(\boldsymbol{w}) = w_1^{\mu^1} \cdot \ldots \cdot w_p^{\mu^p} \widehat{Q}(\boldsymbol{w}),$$

since $\mu^j = a^j \cdot \nu$ for j = 1, ..., n. By definition of the dual cone, one has that $a^j \cdot \alpha \ge \mu^j$ for $\alpha \in \Delta_Q$ and j = 1, ..., n. Thus, the quotient

$$\widehat{Q}(\boldsymbol{w}) := rac{ ilde{Q}(\boldsymbol{w})}{w_1^{\mu^1} \cdot \ldots \cdot w_p^{\mu^p}} = rac{ ilde{Q}(\boldsymbol{w})}{\boldsymbol{w}^{\mu'}}$$

is a polynomial in variables w_1, \ldots, w_p , where we set $\mu' := (\mu^1, \ldots, \mu^p, 0, \ldots, 0)$.

If we clear denominators in $\tilde{P}(\boldsymbol{w})$, we get the polynomial $\hat{P}(\boldsymbol{w}) := \boldsymbol{w}^{\boldsymbol{d}} \tilde{P}(\boldsymbol{w})$, where $\boldsymbol{d} := (d^1, \ldots, d^n)$ has non-negative components.

Proposition 2. Let

$$\Lambda_p^{-1}(\boldsymbol{y}) := \{ |w_{p+1}| = e^{y_{p+1}} \} \times \ldots \times \{ |w_n| = e^{y_n} \},\$$

where y is a point in \tilde{E} . Then the Laurent coefficient

(11)
$$C_{\boldsymbol{\beta}} = \frac{1}{(2\pi i)^{n-p}} \int_{\Lambda_p^{-1}(\boldsymbol{y})} R(w_{p+1}, \dots, w_n) \frac{1}{\boldsymbol{w}^{\boldsymbol{\gamma}-\boldsymbol{\gamma}'}} \frac{dw_{p+1} \wedge \dots \wedge dw_n}{w_{p+1} \cdot \dots \cdot w_n},$$

where

$$R(w_{p+1},\ldots,w_n) := \frac{\gamma_1!\ldots\gamma_p!}{(\gamma_1+\ldots+\gamma_p)!} \frac{\partial^{\gamma_1+\ldots+\gamma_p}}{\partial^{\gamma_1}w_1\ldots\partial^{\gamma_p}w_p} \left(\frac{\hat{P}}{\hat{Q}}\right) (\mathbf{0},w_{p+1},\ldots,w_n)$$

is a rational function in w_{p+1}, \ldots, w_n with the polar set defined by zeroes of the Laurent polynomial $\hat{Q}(\mathbf{0}, w_{p+1}, \ldots, w_n)$, the vector $\boldsymbol{\gamma} := \boldsymbol{\mu}' + \boldsymbol{d} + \boldsymbol{A}\boldsymbol{\beta}$. We use the convention that m! = 0 for a negative integer m.

Proof. Making a change of variables as in proof of Proposition 1, we arrive at the integral representation

(12)
$$C_{\boldsymbol{\beta}} = \frac{1}{(2\pi\imath)^n} \int_{\Lambda^{-1}(\boldsymbol{y})} \frac{\tilde{P}(\boldsymbol{w})}{\tilde{Q}(\boldsymbol{w})} \frac{d\boldsymbol{w}}{\boldsymbol{w}^{\boldsymbol{A}\boldsymbol{\beta}+\boldsymbol{e}}} = \frac{1}{(2\pi\imath)^n} \int_{\Lambda^{-1}(\boldsymbol{y})} \frac{\tilde{P}(\boldsymbol{w})}{\hat{Q}(\boldsymbol{w})} \frac{d\boldsymbol{w}}{\boldsymbol{w}^{\boldsymbol{\gamma}+\boldsymbol{e}}}.$$

Since the real *n*-dimensional torus $\Lambda^{-1}(\boldsymbol{y})$ can be written as $\Lambda^{-1}(\boldsymbol{y}) = \Lambda_p^{-1}(\boldsymbol{y}) \times \Lambda^{-1}(y_1, \ldots, y_p)$, we have

(13)
$$(2\pi i)^n C_{\boldsymbol{\beta}} = \int_{\Lambda_p^{-1}(\boldsymbol{y})} \left(\int_{\Lambda^{-1}(y_1,\dots,y_p)} \frac{\hat{P}(\boldsymbol{w})}{\hat{Q}(\boldsymbol{w})} \frac{1}{\boldsymbol{w}^{\boldsymbol{\gamma}'}} \frac{dw_1 \wedge \dots \wedge dw_p}{w_1 \cdot \dots \cdot w_p} \right) \frac{1}{\boldsymbol{w}^{\boldsymbol{\gamma}-\boldsymbol{\gamma}'}} \times \\ \times \frac{dw_{p+1} \wedge \dots \wedge dw_n}{w_{p+1} \cdot \dots \cdot w_n}.$$

The component μ^{j} of μ is equal to the number of zeroes minus the number of poles of the univariate Laurent polynomial

$$S_j(w) := \tilde{Q}(e^{y_1}, \dots, e^{y_{j-1}}, w, e^{y_{j+1}}, \dots, e^{y_n})$$

in the disk $\{|w| < e^{y_j}\}$. As it follows from the equality $\tilde{Q}(w) = w_1^{\mu^1} \cdots w_p^{\mu^p} \hat{Q}(w)$, the polynomials $S_j(w)$ have no poles in $\{|w| < e^{y_j}\}$ for $j = 1, \ldots, p$. Therefore, $\hat{Q}(0, \ldots, 0, w_{p+1}, \ldots, w_n)$ is a non-zero Laurent polynomial in variables w_{p+1}, \ldots, w_n .

Now, for each j, $1 \leq j \leq p$, the integrand in (12) may have only a single pole $w_j = 0$ in the disk $\{|w| < e^{y_j}\}$ with respect to the variable w_j . The order of this pole equals $\gamma_j + 1$, where $\gamma_j := \mu^j + d^j + a^j \cdot \beta$. Then repeated application of the one-dimensional Cauchy formula gives us the equality

$$\frac{1}{(2\pi i)^p} \int\limits_{\Lambda^{-1}(y_1,\ldots,y_p)} \frac{\hat{P}(\boldsymbol{w})}{\hat{Q}(\boldsymbol{w})} \frac{1}{\boldsymbol{w}^{\boldsymbol{\gamma}'}} \times \frac{dw_1 \wedge \ldots \wedge dw_p}{w_1 \ldots w_p} = R(w_{p+1},\ldots,w_n).$$

Thus, we are done.

4. INTEGRAL REPRESENTATIONS FOR COMPLETE DIAGONALS

Let the Laurent expansion (1) converge in $\Lambda^{-1}(E)$, where E is a connected component of $\mathbb{R}^n - \mathcal{A}_Q$ of order $\boldsymbol{\nu}$. We choose $\boldsymbol{t} = (t_1, \ldots, t_r)$ so that the amoebas of the polynomials

(14)
$$\boldsymbol{z}^{\boldsymbol{q}_1} - t_1, \dots, \boldsymbol{z}^{\boldsymbol{q}_r} - t_r,$$

divide E into 2^r parts $E(\varepsilon)$, where $\varepsilon := (\varepsilon_1, \ldots, \varepsilon_r)$ exhaust the family of all vertices of the *r*-dimensional cube $[-1, 1]^r$. The part $E(\varepsilon)$ is the intersection of E with the cone

$$\{\boldsymbol{x} \in \mathbb{R}^n : \varepsilon_1(e^{\boldsymbol{x} \cdot \boldsymbol{q_1}} - |t_1|) > 0, \dots, \varepsilon_r(e^{\boldsymbol{x} \cdot \boldsymbol{q_r}} - |t_r|) > 0\}.$$

The locus of all such t in $(\mathbb{C}^{\times})^r$ is denoted by T, and it could be be defined by semialgebraic conditions on $|t_1|, \ldots, |t_r|$.

Then it is not difficult to show (see the proof of Proposition 2 in [7]) that for $t \in T$, the complete Q-diagonal has the integral representation

(15)
$$d_{\boldsymbol{Q}}(\boldsymbol{t}) = \frac{1}{(2\pi i)^n} \int_{\Gamma} \frac{P(\boldsymbol{z})}{Q(\boldsymbol{z})} \prod_{j=1}^r \frac{\boldsymbol{z}^{\boldsymbol{q}_j}}{\boldsymbol{z}^{\boldsymbol{q}_j} - t_j} \frac{d\boldsymbol{z}}{\boldsymbol{z}^{\boldsymbol{e}}},$$

where $\Gamma = \sum_{\boldsymbol{\varepsilon}} (\varepsilon_1 \cdot \ldots \cdot \varepsilon_r) \Lambda^{-1}(\boldsymbol{x}(\boldsymbol{\varepsilon}))$ and $\boldsymbol{x}(\boldsymbol{\varepsilon})$ is a point in $E(\boldsymbol{\varepsilon})$.

If the vectors $\boldsymbol{q}_1, \ldots, \boldsymbol{q}_r$ generate a saturated *r*-dimensional sublattice of $(\mathbb{Z}^n)^*$. Then the $n \times r$ matrix \boldsymbol{Q} with columns $\boldsymbol{q}_1, \ldots, \boldsymbol{q}_r$ can be extended to unimodular $n \times n$ matrix \boldsymbol{B} by the Invariant Factor Theorem (see again [13, Theorem 16.6]). We consider the toric morphism (6) defined by a matrix \boldsymbol{A} , which is defined to be the inverse matrix to \boldsymbol{B} .

The following proposition generalizes Theorem 1 of [14].

Proposition 3. Let $\mathbf{Q} := (\mathbf{q}_1, \dots, \mathbf{q}_r)$ generate a saturated r-dimensional sublattice of $(\mathbb{Z}^n)^*$. Then for $t \in T$, the complete \mathbf{Q} -diagonal of (1) can be represented in the form

(16)
$$d_{\boldsymbol{Q}}(\boldsymbol{t}) = \frac{1}{(2\pi\imath)^{n-r}} \int_{\Lambda_r^{-1}(\boldsymbol{y})} \frac{\tilde{P}(\boldsymbol{t}, w_{r+1}, \dots, w_n)}{\tilde{Q}(\boldsymbol{t}, w_{r+1}, \dots, w_n)} \frac{dw_{r+1} \wedge \dots \wedge dw_n}{w_{r+1} \cdot \dots \cdot w_n},$$

where $\mathbf{y} := (y_1, \ldots, y_n)$ is a point in the component \tilde{E} of order $\boldsymbol{\mu} = \boldsymbol{A}\boldsymbol{\nu}$ of the complement to the amoeba $\tilde{\mathcal{A}}$ of $\tilde{Q}(\boldsymbol{w})$. Moreover, the point (y_{r+1}, \ldots, y_n) is in the component \tilde{E}' of order $(\mu^{r+1}, \ldots, \mu^n)$ of the complement to the amoeba of $\tilde{Q}(\boldsymbol{t}, w_{r+1}, \ldots, w_n)$.

Proof. Again, we perform the change of variables in the integral representation (15) that corresponds to the morphism (6). Then the differential form in (15) goes to the differential form

$$\frac{\tilde{P}(\boldsymbol{w})}{\tilde{Q}(\boldsymbol{w})}\prod_{j=1}^{r}\frac{w_{j}}{w_{j}-t_{j}}\frac{d\boldsymbol{w}}{\boldsymbol{w}^{\boldsymbol{e}}}$$

The image of the cycle Γ by the corresponding induced homomorphism is

$$\Gamma_* = \sum_{\boldsymbol{\varepsilon}} (\varepsilon_1 \cdot \ldots \cdot \varepsilon_r) \Lambda^{-1}(\boldsymbol{y}(\boldsymbol{\varepsilon})),$$

where $\boldsymbol{y}(\boldsymbol{\varepsilon}) := (\boldsymbol{x}(\boldsymbol{\varepsilon}) \cdot \boldsymbol{b}_1, \dots, \boldsymbol{x}(\boldsymbol{\varepsilon}) \cdot \boldsymbol{b}_n)$ is a point in the component \tilde{E} of order $\boldsymbol{\mu}$ of the complement $\mathbb{R}^n - \tilde{\mathcal{A}}$ such that

$$\varepsilon_1(e^{y_1(\boldsymbol{\varepsilon})} - |t_1|) > 0, \dots, \varepsilon_r(e^{y_r(\boldsymbol{\varepsilon})} - |t_r|) > 0.$$

Since the component \dot{E} is open, the points $\boldsymbol{y}(\boldsymbol{\varepsilon})$ can be chosen so that their last n-r coordinates coincide for all $\boldsymbol{\varepsilon}$. For all vertices $\boldsymbol{\varepsilon}$ of the cube $[-1,1]^r$, we fix particular values (y_{r+1},\ldots,y_n) of these coordinates. Then Γ_* can be represented in the form

$$\Gamma_* = \Gamma_r \times \Lambda_r^{-1}(\boldsymbol{y}),$$

where $\Gamma_r = \sum_{\boldsymbol{\varepsilon}} (\varepsilon_1 \cdot \ldots \cdot \varepsilon_r) \Lambda^{-1}(y_1(\boldsymbol{\varepsilon}), \ldots, y_r(\boldsymbol{\varepsilon}))$, and \boldsymbol{y} is a point in \tilde{E} with the last n-r coordinates (y_{r+1}, \ldots, y_n) .

Therefore, the integral (15) can be written as

(17)
$$\frac{1}{(2\pi i)^n} \int_{\Lambda_r^{-1}(\boldsymbol{y})} \left(\int_{\Gamma_r} \frac{\tilde{P}(\boldsymbol{w})}{\tilde{Q}(\boldsymbol{w})} \frac{dw_1 \wedge \ldots \wedge dw_r}{(w_1 - t_1) \cdot \ldots \cdot (w_r - t_r)} \right) \frac{dw_{r+1} \wedge \ldots \wedge dw_n}{w_{r+1} \ldots w_n}.$$

The cycle Γ_r is homologically equivalent to the cycle $\{|w_1-t_1| = \delta, \dots, |w_r-t_r| = \delta\}$ in the complement

$$\mathbb{C}_{w_1}^{\times} \times \ldots \times \mathbb{C}_{w_r}^{\times} - Z^{\times}(\tilde{Q}(w_1, \ldots, w_r, w_{r+1}^0, \ldots, w_n^0)(w_1 - t_1) \cdot \ldots \cdot (w_r - t_r))$$

for all $(w_{r+1}^0, \ldots, w_n^0) \in \Lambda_r^{-1}(\boldsymbol{y})$, where δ is sufficiently small positive number. Then the Cauchy integral formula gives us that

$$\int_{\Gamma_r} \frac{\tilde{P}(\boldsymbol{w})}{\tilde{Q}(\boldsymbol{w})} \frac{dw_1 \wedge \ldots \wedge dw_r}{(w_1 - t_1) \cdot \ldots \cdot (w_r - t_r)} = (2\pi i)^r \frac{\tilde{P}(\boldsymbol{t}, w_{r+1}, \ldots, w_n)}{\tilde{Q}(\boldsymbol{t}, w_{r+1}, \ldots, w_n)},$$

and we are done.

5. Proof of the Main Result

To give an idea of the proof, let us reconsider Example 1 that we encountered previously.

Example 2. Let F(z) and d(l,t) be as in Example 1. The series d(l,t) is closely related to the series from Example 6.2.7 and Example 6.3.6 in [3].

Consider the unimodular matrix \boldsymbol{B} and its inverse matrix \boldsymbol{A} :

$$\boldsymbol{B} := \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}, \ \boldsymbol{A} := \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}.$$

Then the corresponding homomorphism (8) gives

$$Q(z_1, z_2, z_3) = 1 - z_1 - z_2^l z_3^l - z_3 \mapsto \tilde{Q}(w_1, w_2, w_3) = 1 - \frac{w_1}{w_2 w_3} - w_2^l w_3^l - w_3.$$

Note that the Newton polytope Δ_Q is combinatorially equivalent to $\Delta_{\tilde{Q}}$ (see Fig. 2). The vertex (0,0,0) of the polytope Δ_Q corresponds to the vertex (0,0,0) of the polytope $\Delta_{\tilde{Q}}$, and the component $E_{0,0,0}$ of the complement to the amoeba of Q is mapped to the component $\tilde{E}_{0,0,0}$ by Proposition 1.

According to Proposition 3, we can write the complete *e*-diagonal of the Taylor series for F(z) as

$$d(l,t) = \frac{1}{(2\pi i)^2} \int_{\Lambda^{-1}(y_2,y_3)} \frac{1}{1 - \frac{t}{w_2 w_3} - w_2^l w_3^l - w_3} \frac{dw_2 \wedge dw_3}{w_2 w_3},$$

where (y_2, y_3) is a point (black point on Fig. 1) in the component $\tilde{E}'_{0,0}$ of the complement to the amoeba of the polynomial $1 - \frac{t}{w_2w_3} - w_2^l w_3^l - w_3$. Fig. 1 depicts the amoeba and the Newton polytope of this polynomial for l = 2. Even if l > 2, it still describes the shapes of these objects. The dual cone $C_{0,0}^{\vee}$ to the Newton polytope at the point (0,0) is generated by the vector $\mathbf{a}^1 = (-1,1)$. So we choose the unimodular matrices

$$\boldsymbol{A} = \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix}, \ \boldsymbol{B} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

FIG. 2. The Newton polytopes of the polynomials $1-z_1-z_2^l z_3^l-z_3$ (left) and $1-\frac{w_1}{w_2w_3}-w_2^l w_3^l-w_3$ (right)

that define morphisms (6) and (7). Since the latter integral has the form of the integral in (10), applying Proposition 2 to it gives us the integral representation

$$d(l,t) = \frac{1}{2\pi i} \int_{|w|=e^y} \frac{1}{1 - \frac{t}{w} - w^l} \frac{dw}{w},$$

where y is a point in the component of order 0 of the complement to the amoeba of the Laurent polynomial $Q(w) = 1 - \frac{t}{w} - w^l$. Since w = 0 is the only pole of Q(w), the circle $\{|w| = e^y\}$ contains the simple zero $w_1(t)$ of the polynomial Q(w), and the diagonal can be computed as the residue

$$d(l,t) = \operatorname{Res}_{w=w_1(t)} \frac{1}{-w^{l+1} + w - t}.$$

Thus, the diagonal d(l, t) is an algebraic function.

Proof. Our strategy will be to show that if n - r - p = 1, the complete Q-diagonal of the rank r can be represented in the form

(18)
$$d_{\boldsymbol{Q}}(\boldsymbol{t}) = \frac{1}{2\pi i} \int_{|w|=e^y} R(\boldsymbol{t}, w) \frac{dw}{w},$$

where R(t, w) is a rational function in w and the parameters t_1, \ldots, t_r . Then, the diagonal equals the sum of one-dimensional residues of the integrand at poles inside the disk $\{|w| < e^y\}$. Since such residues are algebraic functions in t_1, \ldots, t_r , the diagonal is also algebraic.

If n-r = 1, then the desired form (18) follows directly from Proposition 3. If n-r > 1, then we start with the integral representation (16). The integer p is the dimension of the recession cone of \tilde{E}' , where \tilde{E}' is the component of order $(\mu_{r+1}, \ldots, \mu_n)$ of the complement to the amoeba of the Laurent polynomial $\tilde{Q}(t, w_{r+1}, \ldots, w_n)$ from (16). We can choose vectors $\boldsymbol{a}^1, \ldots, \boldsymbol{a}^p \in \mathbb{Z}^n$ that generates the dual to cone to its Newton polytope at the point $(\mu_{r+1}, \ldots, \mu_n)$ and construct the unimodular $(n-r) \times (n-r)$ matrix **A** with the first p rows a^1, \ldots, a^p . Then (18) is given by Proposition 2.

References

- A. Bostan, S. Boukraa, G. Christol, S. Hassani, J.-M. Maillard, Ising n-fold integrals as diagonals of rational functions and integrality of series expansions, J. Phys. A, Math. Theor., 46:18 (2013), Article ID 185202. Zbl 1267.82021
- [2] A. Bostan, S. Boukraa, J.-M. Maillard, J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, J. Phys. A, Math. Theor., 48:50 (2015), Article ID 504001. Zbl 1334.82007
- [3] R. Stanley, Enumerative combinatorics, Volume 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, Cambridge, 1999. Zbl 0928.05001
- [4] G. Pólya, Sur les séries entières, dont la somme est une fonction algébrique, Enseign. Math., 22 (1922), 38-47. JFM 48.0368.02
- [5] H. Furstenberg, Algebraic functions over finite fields, J. Algebra, 7:2 (1967), 271-277. Zb1 0175.03903
- [6] K. Safonov, A. Tsikh, On singularities of the parametric Grothendieck residue and diagonals of a double power series, Sov. Math., 28:4 (1984), 65-74. Zvl 0561.32001
- [7] D. Pochekutov, Diagonals of the Laurent series of rational functions, Sib. Math. J., 50:6 (2009), 1081-1091. Zbl 1224.32001
- [8] D. Pochekutov, Analytic continuation of diagonals of Laurent series for rational functions, J. Sib. Fed. Univ. Math. Phys., 14:3 (2021), 360-368. Zbl 7510958
- [9] A.P. Prudnikov, Y.A. Brychkov, O.I. Marichev, Integrals and series, Volume 3. More special functions, Gordon and Breach Science Publishers, New York, 1990. Zbl 0967.00503
- [10] F. Beukers, G. Heckman, Monodromy for the hypergeometric function $_{n}F_{n-1}$, Invent. Math., **95**:2 (1989), 325-354. Zbl 0663.30044
- I. Gelfand, M. Kapranov, A. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Birkhäuser, Boston, 1994. Zbl 0827.14036
- [12] M. Forsberg, M. Passare, A. Tsikh, Laurent determinants and arrangements of hyperplane amoebas, Adv. Math., 151:1 (2000), 45-70. Zbl 1002.32018
- [13] C.W. Curtis, I. Reiner, Representation theory of finite groups and associative algebras, Interscience Publishers, New York-London, 1962. Zbl 0131.25601
- [14] A. Senashov, A list of integral representations for diagonals of power series of rational functions, J. Sib. Fed. Univ., Math. Phys., 14:5 (2021), 624-631. Zbl 7510986

DMITRY YURIEVICH POCHEKUTOV School of Mathematics and Computer Science, Siberian Federal University, Krasnoyarsk, 660041, Russia Email address: dpotchekutov@sfu-kras.ru

ARTEM VLADIMIROVICH SENASHOV SCHOOL OF MATHEMATICS AND COMPUTER SCIENCE, SIBERIAN FEDERAL UNIVERSITY, KRASNOYARSK, 660041, RUSSIA Email address: asenashov@mail.ru