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TORIC MORPHISMS AND DIAGONALS OF THE LAURENT

SERIES OF RATIONAL FUNCTIONS

D.Y. POCHEKUTOV, A.V. SENASHOV

Abstract. We consider the Laurent series of a rational function in
n complex variables and the n-dimensional sequence of its coe�cients.
The diagonal subsequence of this sequence generates the so-called comp-
lete diagonal of the Laurent series. We give a new integral representation
for the complete diagonal. Based on this representation, we give a su�ci-
ent condition for a diagonal to be algebraic.

Keywords: algebraic function, diagonal of Laurent series, generating
function, integral representations, toric morphism.

1. Introduction

Let C be the �eld of complex numbers, C× := C−{0} be its multiplicative group
and R ⊂ C be the sub�eld of real numbers. Let M be a lattice of the rank n and
N be its dual lattice. Consider the n-dimensional complex torus Tn := M ⊗Z C×.
We �x a basis e1, . . . , en of M and the dual basis e1, . . . , en of N . Then M ' Zn,
N ' (Zn)∗ and the torus can be written in the form

Tnz = C× × . . .× C×.

It is an abelian group that, also, has the structure of a complex manifold equipped
with coordinate functions z := (z1, . . . , zn). Recall that the cohomology group
Hn(Tnz ,Z) is generated by the class of the di�erential form dz/ze, where dz :=
dz1 ∧ . . . ∧ dzn, ze := z1 · . . . · zn and e := e1 + . . .+ en = (1, . . . , 1) ∈ (Zn)∗.
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652 D.Y. POCHEKUTOV, A.V. SENASHOV

A Laurent polynomial Q over C is a �nite sum of the form

Q(z) :=
∑
α∈A

aαz
α,

where A is a �nite subset of the dual to Zn lattice (Zn)∗ , qα ∈ C and zα :=

zα
1

1 . . . zα
n

n . Its Newton polytope ∆Q is the convex hull of A in (Rn)∗. The set of all
Laurent polynomials over C in z forms a ring Rz of Laurent polynomials. There is
an injective homomorphism from Rz to the ring of functions on Tnz . So the set

Z×(Q) := {z ∈ Tnz : Q(z) = 0}
of zeros in Tnz of a Laurent polynomial Q in Rz is well-de�ned. The amoeba AQ of a
Laurent polynomial Q ∈ Rz is the image of Z×(Q) under the logarithmic mapping

Λ : Tnz → Rn, Λ(z) := (log |z1|, . . . , log |zn|),
where Rn := Zn ⊗Z R.

Let P (z), Q(z) be irreducible polynomials in Rz. Consider a Laurent series
(centered at the origin)

(1) F (z) =
∑

β∈(Zn)∗

Cβz
β

of a rational function F (z) = P (z)/Q(z). It is well known that the domain of
absolute convergence of the series (1) is logarithmically convex. More precisely,
such domain has the form Λ−1(E), where E is a connected component of Rn−AQ
(see Section 2).

Let Q := (q1, . . . , qr) be an r-tuple of vectors that generates a sublattice L of
the rank r of the lattice (Zn)∗ , and, with a slight abuse of notation, let Q be also
the n × r matrix (qij) with columns q1, . . . , qr. For k := (k1 . . . , kr) ∈ (Zr)∗, we
de�ne

Qk := (q1 · k, . . . , qr · k) = k1q1 + . . .+ krqr,

where qi's are the rows of the matrixQ and the dot product qi·k := qi1k
1+. . .+qirk

r.
Then the complete Q-diagonal of the Laurent series (1) is the Laurent series

(2) dQ(t) =
∑

k∈(Zr)∗

CQkt
k

in r variables (r is the rank of the diagonal). In other words, the diagonal dQ(t) is a
generating function of the r-dimensional subsequence {CQk} of the n-dimensional
Laurent coe�cients sequence {Cβ}. The diagonal is called primitive if it corresponds
to q1 = e1 + e2, q2 = e3, . . . , qn−1 = en.

Diagonals of rational functions arise naturally in statistical mechanics (see, for
example, [1, 2]) and enumerative combinatorics. R. Stanley proposed in [3, Section
6.1] the following natural hierarchy of the most important classes of generating
functions in enumerative combinatorics

{rational} ⊂ {algebraic} ⊂ {D-�nite}.
The classical result about diagonals states that a diagonal of the Taylor series for a
rational function of two complex variables (the case n = 2 and r = 1) is an algebraic
function (see [4, 5, 6] and [3, Section 6.3] for di�erent aspects). It was generalized
to the case of Laurent series of two complex variables in [7, Theorem 1]. Primitive
diagonals of the Laurent series for rational functions of n complex variables are
algebraic too ([7, Theorem 3]). In general, complete diagonals even for Taylor series
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of rational functions in more than 2 complex variables are not algebraic, see [5,
Section 2] and [8, Section 4] for the particular examples.

Nevertheless, the following example shows that such diagonals could be algebraic.
Example 1. Consider the rational function

(3) F (z) =
1

1− z1 − (z2z3)l − z3
, l ∈ N := {1, 2, . . .}.

It is not di�cult to show that the univariate Taylor series

(4) d(l; t) =

∞∑
k=0

((l + 1)k)!

(lk)!k!
tlk

is the complete e-diagonal of the Taylor expansion for F (z). It could be represented

as the hypergeometric function lFl−1( 1
l+1 , . . . ,

l
l+1 ; 1

l , . . . ,
l−1
l ; (l+1)l+1

ll
tl). The series

d(1; t) is algebraic, since

d(1; t) =
√

1− 4t, |t| < 1

4
,

by the generalized binomial theorem. Also, we have the explicit algebraic expression

d(2, t) =
1√

4− 27t2

(√1− 27

4
t2 +

3
√

3

2
ıt

)− 1
3

+

(√
1− 27

4
t2 − 3

√
3

2
ıt

)− 1
3

 ,

when |t| < 4
27 (see row 4 of Table 7.3.3 in [9, p. 486]). For l ≥ 3, the algebraicity of

d(l; t) follows from Theorem 7.1 [10].

One of the main purposes of the paper is to demonstrate how integral representa-
tions help to explain such phenomena. We show in Section 4 that dQ(t) could be
represented as an integral of a rational di�erential form ω with parameters t over a
(n−r)-dimensional cycle of the form Λ−1(y′), where y′ is a point in the component

Ẽ′ ⊂ Rn−r of the complement to the amoeba of the denominator of ω.

Theorem 1. Let the r-turple Q generate a saturated r-dimensional sublattice1 of
the lattice (Zn)∗ and p be the dimension of the recession cone of Ẽ′. Then, if the
condition

(5) n− r − p = 1

holds, the complete diagonal dQ(t) of the Laurent expansion (1) for the rational
function F (z) is an algebraic function.

We prove the theorem and discuss the example of the rational function (3) in
full details in Section 5.

2. Toric Morphisms and Amoebas of Laurent Polynomials

Let A := (aji ) be unimodular n × n-matrix and B := (bji ) be its inverse. We

denote by aj := (aj1, . . . , a
j
n) and ai := (a1

i , . . . , a
n
i ) the j-th row and the i-th

column of A, correspondingly. Similarly, bj := (bj1, . . . , b
j
n) and bi := (b1i , . . . , b

n
i )

are the j-th row and the i-th column of B.

1Recall that a sublattice L of a lattice N is called saturated ⇔ for any v ∈ N , if kv ∈ L, where
k is a positive integer, then v ∈ L.
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The matrix A de�nes the linear transformation of the lattice (Zn)∗ by

α := (α1, . . . , αn) 7→ Aα := (a1 ·α, . . . ,an ·α) = α1a1 + . . . αnan.

Then we let the toric morphism

(6) Tnw → Tnz

be de�ned by w 7→ z = wA, where wA := (wa1 , . . . ,wan) and wai := w
a1i
1 . . . w

ani
n .

The inverse morphism

(7) Tnz → Tnw

is given by z 7→ w = zB.
The morphism (6) induces the homomorphism Rz → Rw of rings of Laurent

polynomials over C in the variables z and w by the formula

(8) Q(z) 7→ Q̃(w) := Q(wA).

Let Q be a Laurent polynomial in Rz. The amoeba AQ of Q is a closed subset
of Rn. Then the complement Rn − AQ is open. It consists of a �nite number of
connected components Eν , which are convex [11, Section 6.1]. These components
are in 1-1 correspondence with all possible expansions (1) of an irreducible fraction
F (z) = P (z)/Q(z).

The index ν emphasizes that each component corresponds to an integer point
ν of the Newton polytope ∆Q of Q. Recall that the Newton polytope ∆Q is the
convex hull of A in (Rn)∗. More precisely, for a point x in E, the integrals

(9) νj :=
1

(2πı)n

∫
Λ−1(x)

zj
∂Q/∂zj
Q

dz

ze
, j = 1, . . . n,

de�ne on the set of all connected components {E} an injective mapping

E 7→ ν := (ν1, . . . , νn) ∈ (Zn)∗ ∩∆Q,

see for details [12, Section 2]. The image ν does not depend on the choice of x in
E since for all points x in the same connected component cycles

Λ−1(x) := {|z1| = ex1 , . . . , |zn| = exn}

have the same homology class in Hn(Tnz − Z×(Q)). If p ∈ Λ−1(x), then νj equals
the di�erence between the number of zeroes and poles of the univariate Laurent
polynomial Q(p1, . . . , pj−1, zj , pj+1, . . . , pn) in the circle |zj | = exj by the argument
principle.

Moreover, the recession cone of the convex set Eν coincides with −C∨ν , where

C∨ν := {s ∈ Rn : s · ν = min
α∈∆Q

s ·α},

is the dual cone of ∆Q at the point ν = ν(E). We refer the reader to Figure 1 to
observe this fact.

Proposition 1. Let Q ∈ Rz, Q̃ ∈ Rw be its image under the homomorphism (8),

A be the amoeba of Q and Ã be the amoeba of Q̃. Then Ã is equal to

AB := {y ∈ Rn : yj = x · bj , for all x ∈ A and j = 1, . . . , n}.

Moreover, if E is a component of the complement Rn−A of order ν, then Ẽ = EB
is the component of order µ = Aν of the complement Rn − Ã.
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Fig. 1. The amoeba A (left) and the Newton polytope ∆ (right)
of the polynomial 1 − t

w2w3
− wl2wl3 − w3. The black point marks

the component of R2−A of order (0, 0); the unlabelled component
is of order (1, 1).

Proof. Let x ∈ Rn and z ∈ Tnz such that Λ(z) = x. Then the image w = zB has
coordinates

wj := zbj = (ex1+ıθ1)b
1
j . . . (exn+ıθn)b

n
j = exp (x · bj + ıθ · bj), j = 1, . . . , n,

where θ = (θ1, . . . , θn) ∈ (−π, π]n. Thus, the j-th component of y := Λ(w) equals
x · bj .

First, note that w ∈ Z×(Q̃) if and only if z ∈ Z×(Q). So x ∈ A if and only if

y ∈ Ã. Then it follows that Ã is the image of the amoeba A by the linear transform
de�ned by means of the matrix B, and the image EB of a component E of Rn−A
coincides with some component Ẽ of the complement Rn − Ã.

Next, consider the homomorphismHn(Tnz −Z×(Q))→ Hn(Tnw−Z×(Q̃)) induced
by the morphism (7). It maps the cycle of integration Λ−1(x) in (9) to the cycle
Λ−1(y), where y = xB := (x · b1, . . . ,x · bn) and x ∈ E. Also, the morphism (6)

induces the homomorphism Hn(Tnz − Z×(Q))→ Hn(Tnw − Z×(Q̃)) of cohomology
groups. It maps the di�erential form in (9) to the form

n∑
k=1

bjkwk
∂Q̃/∂wk

Q̃

dw

we
,

since the direct calculation shows that

∂Q

∂zj
=

n∑
k=1

∂Q̃

∂wk

∂wk
∂zj

=

n∑
k=1

∂Q̃

∂wk

∂

∂zj
(zbk) =

n∑
k=1

∂Q̃

∂wk

bjk
zj
wk.

Therefore, the relation between ν and the order µ = (µ1, . . . , µn) of Ẽ is given
by

νj =
1

(2πı)n

n∑
k=1

bjk

∫
Λ−1(y)

wk
∂Q̃/∂wk

Q̃

dw

we
= bj · µ.
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Since the matrices A and B are inverse we have that µj = aj · ν, or equivalently,
µ = Aν. �

3. Integral Representations for Laurent Coefficients

Let E be an unbounded component of order ν of the complement to A. Then
the dual cone C∨ν to the Newton polytope ∆Q at ν is generated by p vectors
a1, . . .ap ∈ Zn, where p ∈ {1, . . . , n} since the recession cone of E coincides with
−C∨ν . The vectors a1, . . .ap can be chosen so that they generate the saturated
p-dimensional sublattice of Zn.

Consider the Laurent expansion (1) of the rational function F (z) = P (z)/Q(z)
that converges in the domain Λ−1(E). Its coe�cient can be represented as

(10) Cβ =
1

(2πı)n

∫
Λ−1(x)

P (z)

Q(z)

1

zβ
dz

ze
,

where x ∈ E.
Let A′ be a p×n matrix with rows a1, . . .ap. Then, since a1, . . .ap generate the

saturated sublattice, the matrix A′ can be extended to an unimodular n×n matrix
A by the Invariant Factor Theorem (see [13, Theorem 16.6]). Now, we consider the

toric morphism (6) that corresponds to the matrixA. By Proposition 1, Ã := AB is

the amoeba of the Laurent polynomial Q̃(w) := Q(wA), Ẽ := EB is the component

of order µ = (a1 · ν, . . . ,an · ν) of the complement to Ã.
Recall that aj and a

j denote the j-th column and the j-th row of the matrix A,

correspondingly. We can rewrite the Laurent polynomial Q̃ as

Q̃(w) =
∑
α

cα(wa1)α1 · . . . · (wap)αp · . . . · (wan)αn =

=
∑
α

cαw
a1·α
1 . . . wa

p·α
p . . . wa

n·α
n = wa

1·ν
1 . . . wa

p·ν
p Q̂(w) = wµ

1

1 · . . . · wµ
p

p Q̂(w),

since µj = aj · ν for j = 1, . . . , n. By de�nition of the dual cone, one has that
aj ·α ≥ µj for α ∈ ∆Q and j = 1, . . . , n. Thus, the quotient

Q̂(w) :=
Q̃(w)

wµ
1

1 · . . . · w
µp

p

=
Q̃(w)

wµ′

is a polynomial in variables w1, . . . , wp, where we set µ
′ := (µ1, . . . , µp, 0, . . . , 0).

If we clear denominators in P̃ (w), we get the polynomial P̂ (w) := wdP̃ (w),
where d := (d1, . . . , dn) has non-negative components.

Proposition 2. Let

Λ−1
p (y) := {|wp+1| = eyp+1} × . . .× {|wn| = eyn},

where y is a point in Ẽ. Then the Laurent coe�cient

(11) Cβ =
1

(2πı)n−p

∫
Λ−1

p (y)

R(wp+1, . . . , wn)
1

wγ−γ′
dwp+1 ∧ . . . ∧ dwn
wp+1 · . . . · wn

,

where

R(wp+1, . . . , wn) :=
γ1! · . . . · γp!

(γ1 + . . .+ γp)!

∂γ1+...+γp

∂γ1w1 . . . ∂γpwp

(
P̂

Q̂

)
(0, wp+1, . . . , wn)
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is a rational function in wp+1, . . . , wn with the polar set de�ned by zeroes of the

Laurent polynomial Q̂(0, wp+1, . . . , wn), the vector γ := µ′ + d +Aβ. We use the
convention that m! = 0 for a negative integer m.

Proof. Making a change of variables as in proof of Proposition 1, we arrive at the
integral representation

(12) Cβ =
1

(2πı)n

∫
Λ−1(y)

P̃ (w)

Q̃(w)

dw

wAβ+e
=

1

(2πı)n

∫
Λ−1(y)

P̂ (w)

Q̂(w)

dw

wγ+e
.

Since the real n-dimensional torus Λ−1(y) can be written as Λ−1(y) = Λ−1
p (y) ×

Λ−1(y1, . . . , yp), we have

(2πı)nCβ =

∫
Λ−1

p (y)

 ∫
Λ−1(y1,...,yp)

P̂ (w)

Q̂(w)

1

wγ′
dw1 ∧ . . . ∧ dwp
w1 · . . . · wp

 1

wγ−γ′
×

×dwp+1 ∧ . . . ∧ dwn
wp+1 · . . . · wn

.

(13)

The component µj of µ is equal to the number of zeroes minus the number of
poles of the univariate Laurent polynomial

Sj(w) := Q̃(ey1 , . . . , eyj−1 , w, eyj+1 , . . . , eyn)

in the disk {|w| < eyj}. As it follows from the equality Q̃(w) = wµ
1

1 · . . . ·wµ
p

p Q̂(w),
the polynomials Sj(w) have no poles in {|w| < eyj} for j = 1, . . . , p. Therefore,

Q̂(0, . . . , 0, wp+1, . . . , wn) is a non-zero Laurent polynomial in variables wp+1, . . . , wn.
Now, for each j, 1 ≤ j ≤ p, the integrand in (12) may have only a single pole

wj = 0 in the disk {|w| < eyj} with respect to the variable wj . The order of this
pole equals γj + 1, where γj := µj + dj + aj · β. Then repeated application of the
one-dimensional Cauchy formula gives us the equality

1

(2πı)p

∫
Λ−1(y1,...,yp)

P̂ (w)

Q̂(w)

1

wγ′
× dw1 ∧ . . . ∧ dwp

w1 . . . wp
= R(wp+1, . . . , wn).

Thus, we are done. �

4. Integral Representations for Complete Diagonals

Let the Laurent expansion (1) converge in Λ−1(E), where E is a connected
component of Rn −AQ of order ν. We choose t = (t1, . . . , tr) so that the amoebas
of the polynomials

(14) zq1 − t1, . . . ,zqr − tr,

divide E into 2r parts E(ε), where ε := (ε1, . . . , εr) exhaust the family of all vertices
of the r-dimensional cube [−1, 1]r. The part E(ε) is the intersection of E with the
cone

{x ∈ Rn : ε1(ex·q1 − |t1|) > 0, . . . , εr(e
x·qr − |tr|) > 0}.

The locus of all such t in (C×)r is denoted by T , and it could be be de�ned by
semialgebraic conditions on |t1|, . . . , |tr|.
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Then it is not di�cult to show (see the proof of Proposition 2 in [7]) that for
t ∈ T , the complete Q-diagonal has the integral representation

(15) dQ(t) =
1

(2πı)n

∫
Γ

P (z)

Q(z)

r∏
j=1

zqj

zqj − tj
dz

ze
,

where Γ =
∑
ε

(ε1 · . . . · εr)Λ−1(x(ε)) and x(ε) is a point in E(ε).

If the vectors q1, . . . , qr generate a saturated r-dimensional sublattice of (Zn)∗.
Then the n× r matrix Q with columns q1, . . . , qr can be extended to unimodular
n × n matrix B by the Invariant Factor Theorem (see again [13, Theorem 16.6]).
We consider the toric morphism (6) de�ned by a matrix A, which is de�ned to be
the inverse matrix to B.

The following proposition generalizes Theorem 1 of [14].

Proposition 3. Let Q := (q1, . . . , qr) generate a saturated r-dimensional sublattice
of (Zn)∗. Then for t ∈ T , the complete Q-diagonal of (1) can be represented in the
form

(16) dQ(t) =
1

(2πı)n−r

∫
Λ−1

r (y)

P̃ (t, wr+1, . . . , wn)

Q̃(t, wr+1, . . . , wn)

dwr+1 ∧ . . . ∧ dwn
wr+1 · . . . · wn

,

where y := (y1, . . . , yn) is a point in the component Ẽ of order µ = Aν of the

complement to the amoeba Ã of Q̃(w). Moreover, the point (yr+1, . . . , yn) is in

the component Ẽ′ of order (µr+1, . . . , µn) of the complement to the amoeba of

Q̃(t, wr+1, . . . , wn).

Proof. Again, we perform the change of variables in the integral representation (15)
that corresponds to the morphism (6). Then the di�erential form in (15) goes to
the di�erential form

P̃ (w)

Q̃(w)

r∏
j=1

wj
wj − tj

dw

we
.

The image of the cycle Γ by the corresponding induced homomorphism is

Γ∗ =
∑
ε

(ε1 · . . . · εr)Λ−1(y(ε)),

where y(ε) := (x(ε) · b1, . . . ,x(ε) · bn) is a point in the component Ẽ of order µ of

the complement Rn − Ã such that

ε1(ey1(ε) − |t1|) > 0, . . . , εr(e
yr(ε) − |tr|) > 0.

Since the component Ẽ is open, the points y(ε) can be chosen so that their last
n − r coordinates coincide for all ε. For all vertices ε of the cube [−1, 1]r, we �x
particular values (yr+1, . . . , yn) of these coordinates. Then Γ∗ can be represented
in the form

Γ∗ = Γr × Λ−1
r (y),

where Γr =
∑
ε(ε1 · . . . · εr)Λ−1(y1(ε), . . . , yr(ε)), and y is a point in Ẽ with the

last n− r coordinates (yr+1, . . . , yn).
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Therefore, the integral (15) can be written as

(17)
1

(2πı)n

∫
Λ−1

r (y)

∫
Γr

P̃ (w)

Q̃(w)

dw1 ∧ . . . ∧ dwr
(w1 − t1) · . . . · (wr − tr)

 dwr+1 ∧ . . . ∧ dwn
wr+1 . . . wn

.

The cycle Γr is homologically equivalent to the cycle {|w1−t1| = δ, . . . , |wr−tr| =
δ} in the complement

C×w1
× . . .× C×wr

− Z×(Q̃(w1, . . . , wr, w
0
r+1, . . . , w

0
n)(w1 − t1) · . . . · (wr − tr))

for all (w0
r+1, . . . , w

0
n) ∈ Λ−1

r (y), where δ is su�ciently small positive number. Then
the Cauchy integral formula gives us that∫

Γr

P̃ (w)

Q̃(w)

dw1 ∧ . . . ∧ dwr
(w1 − t1) · . . . · (wr − tr)

= (2πı)r
P̃ (t, wr+1, . . . , wn)

Q̃(t, wr+1, . . . , wn)
,

and we are done. �

5. Proof of the Main Result

To give an idea of the proof, let us reconsider Example 1 that we encountered
previously.

Example 2. Let F (z) and d(l, t) be as in Example 1. The series d(l, t) is closely
related to the series from Example 6.2.7 and Example 6.3.6 in [3].

Consider the unimodular matrix B and its inverse matrix A:

B :=

1 0 0
1 1 0
1 0 1

 , A :=

 1 0 0
−1 1 0
−1 0 1

 .

Then the corresponding homomorphism (8) gives

Q(z1, z2, z3) = 1− z1 − zl2zl3 − z3 7→ Q̃(w1, w2, w3) = 1− w1

w2w3
− wl2wl3 − w3.

Note that the Newton polytope ∆Q is combinatorially equivalent to ∆Q̃ (see Fig. 2).

The vertex (0, 0, 0) of the polytope ∆Q corresponds to the vertex (0, 0, 0) of the
polytope ∆Q̃, and the component E0,0,0 of the complement to the amoeba of Q is

mapped to the component Ẽ0,0,0 by Proposition 1.
According to Proposition 3, we can write the complete e-diagonal of the Taylor

series for F (z) as

d(l, t) =
1

(2πı)2

∫
Λ−1(y2,y3)

1

1− t
w2w3

− wl2wl3 − w3

dw2 ∧ dw3

w2w3
,

where (y2, y3) is a point (black point on Fig. 1) in the component Ẽ′0,0 of the

complement to the amoeba of the polynomial 1− t
w2w3

−wl2wl3−w3. Fig. 1 depicts
the amoeba and the Newton polytope of this polynomial for l = 2. Even if l > 2,
it still describes the shapes of these objects. The dual cone C∨0,0 to the Newton

polytope at the point (0, 0) is generated by the vector a1 = (−1, 1). So we choose
the unimodular matrices

A =

(
−1 1

0 1

)
, B =

(
1 1
0 1

)
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Fig. 2. The Newton polytopes of the polynomials 1−z1−zl2zl3−z3

(left) and 1− w1

w2w3
− wl2wl3 − w3 (right)

that de�ne morphisms (6) and (7). Since the latter integral has the form of the
integral in (10), applying Proposition 2 to it gives us the integral representation

d(l, t) =
1

2πı

∫
|w|=ey

1

1− t
w − wl

dw

w
,

where y is a point in the component of order 0 of the complement to the amoeba of
the Laurent polynomial Q(w) = 1− t

w − w
l. Since w = 0 is the only pole of Q(w),

the circle {|w| = ey} contains the simple zero w1(t) of the polynomial Q(w), and
the diagonal can be computed as the residue

d(l, t) = Res
w=w1(t)

1

−wl+1 + w − t
.

Thus, the diagonal d(l, t) is an algebraic function.

Proof. Our strategy will be to show that if n− r− p = 1, the complete Q-diagonal
of the rank r can be represented in the form

(18) dQ(t) =
1

2πı

∫
|w|=ey

R(t, w)
dw

w
,

where R(t, w) is a rational function in w and the parameters t1, . . . , tr. Then, the
diagonal equals the sum of one-dimensional residues of the integrand at poles inside
the disk {|w| < ey}. Since such residues are algebraic functions in t1, . . . , tr, the
diagonal is also algebraic.

If n − r = 1, then the desired form (18) follows directly from Proposition 3.
If n − r > 1, then we start with the integral representation (16). The integer

p is the dimension of the recession cone of Ẽ′, where Ẽ′ is the component of
order (µr+1, . . . , µn) of the complement to the amoeba of the Laurent polynomial

Q̃(t, wr+1, . . . , wn) from (16). We can choose vectors a1, . . . ,ap ∈ Zn that generates
the dual to cone to its Newton polytope at the point (µr+1, . . . , µn) and construct
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the unimodular (n − r) × (n − r) matrix A with the �rst p rows a1, . . . .ap. Then
(18) is given by Proposition 2. �
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