СИБИРСКИЕ ЭЛЕКТРОННЫЕ МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

Siberian Electronic Mathematical Reports
http://semr.math.nsc.ru

TORIC MORPHISMS AND DIAGONALS OF THE LAURENT SERIES OF RATIONAL FUNCTIONS

D.Y. POCHEKUTOV, A.V. SENASHOV

Abstract

We consider the Laurent series of a rational function in n complex variables and the n-dimensional sequence of its coefficients. The diagonal subsequence of this sequence generates the so-called complete diagonal of the Laurent series. We give a new integral representation for the complete diagonal. Based on this representation, we give a sufficient condition for a diagonal to be algebraic.

Keywords: algebraic function, diagonal of Laurent series, generating function, integral representations, toric morphism.

1. Introduction

Let \mathbb{C} be the field of complex numbers, $\mathbb{C}^{\times}:=\mathbb{C}-\{0\}$ be its multiplicative group and $\mathbb{R} \subset \mathbb{C}$ be the subfield of real numbers. Let M be a lattice of the rank n and N be its dual lattice. Consider the n-dimensional complex torus $T^{n}:=M \otimes_{\mathbb{Z}} \mathbb{C}^{\times}$. We fix a basis $\boldsymbol{e}^{1}, \ldots, \boldsymbol{e}^{n}$ of M and the dual basis $\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}$ of N. Then $M \simeq \mathbb{Z}^{n}$, $N \simeq\left(\mathbb{Z}^{n}\right)^{*}$ and the torus can be written in the form

$$
T_{\boldsymbol{z}}^{n}=\mathbb{C}^{\times} \times \ldots \times \mathbb{C}^{\times}
$$

It is an abelian group that, also, has the structure of a complex manifold equipped with coordinate functions $\boldsymbol{z}:=\left(z_{1}, \ldots, z_{n}\right)$. Recall that the cohomology group $H^{n}\left(T_{\boldsymbol{z}}^{n}, \mathbb{Z}\right)$ is generated by the class of the differential form $d \boldsymbol{z} / \boldsymbol{z}^{e}$, where $d \boldsymbol{z}:=$ $d z_{1} \wedge \ldots \wedge d z_{n}, \boldsymbol{z}^{\boldsymbol{e}}:=z_{1} \cdot \ldots \cdot z_{n}$ and $\boldsymbol{e}:=\boldsymbol{e}_{1}+\ldots+\boldsymbol{e}_{n}=(1, \ldots, 1) \in\left(\mathbb{Z}^{n}\right)^{*}$.

[^0]A Laurent polynomial Q over \mathbb{C} is a finite sum of the form

$$
Q(\boldsymbol{z}):=\sum_{\boldsymbol{\alpha} \in A} a_{\boldsymbol{\alpha}} z^{\boldsymbol{\alpha}}
$$

where A is a finite subset of the dual to \mathbb{Z}^{n} lattice $\left(\mathbb{Z}^{n}\right)^{*}, q_{\boldsymbol{\alpha}} \in \mathbb{C}$ and $\boldsymbol{z}^{\boldsymbol{\alpha}}:=$ $z_{1}^{\alpha^{1}} \ldots z_{n}^{\alpha^{n}}$. Its Newton polytope Δ_{Q} is the convex hull of A in $\left(\mathbb{R}^{n}\right)^{*}$. The set of all Laurent polynomials over \mathbb{C} in \boldsymbol{z} forms a ring R_{z} of Laurent polynomials. There is an injective homomorphism from R_{z} to the ring of functions on $T_{\boldsymbol{z}}^{n}$. So the set

$$
Z^{\times}(Q):=\left\{\boldsymbol{z} \in T_{\boldsymbol{z}}^{n}: Q(\boldsymbol{z})=0\right\}
$$

of zeros in $T_{\boldsymbol{z}}^{n}$ of a Laurent polynomial Q in $R_{\boldsymbol{z}}$ is well-defined. The amoeba \mathcal{A}_{Q} of a Laurent polynomial $Q \in R_{z}$ is the image of $Z^{\times}(Q)$ under the logarithmic mapping

$$
\Lambda: T_{\boldsymbol{z}}^{n} \rightarrow \mathbb{R}^{n}, \Lambda(\boldsymbol{z}):=\left(\log \left|z_{1}\right|, \ldots, \log \left|z_{n}\right|\right)
$$

where $\mathbb{R}^{n}:=\mathbb{Z}^{n} \otimes_{\mathbb{Z}} \mathbb{R}$.
Let $P(\boldsymbol{z}), Q(\boldsymbol{z})$ be irreducible polynomials in $R_{\boldsymbol{z}}$. Consider a Laurent series (centered at the origin)

$$
\begin{equation*}
F(\boldsymbol{z})=\sum_{\boldsymbol{\beta} \in\left(\mathbb{Z}^{n}\right)^{*}} C_{\boldsymbol{\beta}} z^{\boldsymbol{\beta}} \tag{1}
\end{equation*}
$$

of a rational function $F(\boldsymbol{z})=P(\boldsymbol{z}) / Q(\boldsymbol{z})$. It is well known that the domain of absolute convergence of the series (1) is logarithmically convex. More precisely, such domain has the form $\Lambda^{-1}(E)$, where E is a connected component of $\mathbb{R}^{n}-\mathcal{A}_{Q}$ (see Section 2).

Let $\boldsymbol{Q}:=\left(\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{r}\right)$ be an r-tuple of vectors that generates a sublattice L of the rank r of the lattice $\left(\mathbb{Z}^{n}\right)^{*}$, and, with a slight abuse of notation, let \boldsymbol{Q} be also the $n \times r$ matrix $\left(q_{j}^{i}\right)$ with columns $\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{r}$. For $\boldsymbol{k}:=\left(k^{1} \ldots, k^{r}\right) \in\left(\mathbb{Z}^{r}\right)^{*}$, we define

$$
\boldsymbol{Q} \boldsymbol{k}:=\left(\boldsymbol{q}^{1} \cdot \boldsymbol{k}, \ldots, \boldsymbol{q}^{r} \cdot \boldsymbol{k}\right)=k^{1} \boldsymbol{q}_{1}+\ldots+k^{r} \boldsymbol{q}_{r}
$$

where \boldsymbol{q}^{i}, s are the rows of the matrix \boldsymbol{Q} and the dot product $\boldsymbol{q}^{i} \cdot \boldsymbol{k}:=q_{1}^{i} k^{1}+\ldots+q_{r}^{i} k^{r}$. Then the complete \boldsymbol{Q}-diagonal of the Laurent series (1) is the Laurent series

$$
\begin{equation*}
d_{\boldsymbol{Q}}(\boldsymbol{t})=\sum_{\boldsymbol{k} \in\left(\mathbb{Z}^{r}\right)^{*}} C_{\boldsymbol{Q} k} t^{\boldsymbol{k}} \tag{2}
\end{equation*}
$$

in r variables (r is the rank of the diagonal). In other words, the diagonal $d_{\boldsymbol{Q}}(t)$ is a generating function of the r-dimensional subsequence $\left\{C_{\boldsymbol{Q k}}\right\}$ of the n-dimensional Laurent coefficients sequence $\left\{C_{\boldsymbol{\beta}}\right\}$. The diagonal is called primitive if it corresponds to $\boldsymbol{q}_{1}=\boldsymbol{e}_{1}+\boldsymbol{e}_{2}, \boldsymbol{q}_{2}=\boldsymbol{e}_{3}, \ldots, \boldsymbol{q}_{n-1}=\boldsymbol{e}_{n}$.

Diagonals of rational functions arise naturally in statistical mechanics (see, for example, $[1,2])$ and enumerative combinatorics. R. Stanley proposed in [3, Section 6.1] the following natural hierarchy of the most important classes of generating functions in enumerative combinatorics

$$
\{\text { rational }\} \subset\{\text { algebraic }\} \subset\{D \text {-finite }\}
$$

The classical result about diagonals states that a diagonal of the Taylor series for a rational function of two complex variables (the case $n=2$ and $r=1$) is an algebraic function (see [4, 5, 6] and [3, Section 6.3] for different aspects). It was generalized to the case of Laurent series of two complex variables in [7, Theorem 1]. Primitive diagonals of the Laurent series for rational functions of n complex variables are algebraic too ([7, Theorem 3]). In general, complete diagonals even for Taylor series
of rational functions in more than 2 complex variables are not algebraic, see [5, Section 2] and [8, Section 4] for the particular examples.

Nevertheless, the following example shows that such diagonals could be algebraic.
Example 1. Consider the rational function

$$
\begin{equation*}
F(\boldsymbol{z})=\frac{1}{1-z_{1}-\left(z_{2} z_{3}\right)^{l}-z_{3}}, l \in \mathbb{N}:=\{1,2, \ldots\} \tag{3}
\end{equation*}
$$

It is not difficult to show that the univariate Taylor series

$$
\begin{equation*}
d(l ; t)=\sum_{k=0}^{\infty} \frac{((l+1) k)!}{(l k)!k!} t^{l k} \tag{4}
\end{equation*}
$$

is the complete \boldsymbol{e}-diagonal of the Taylor expansion for $F(\boldsymbol{z})$. It could be represented as the hypergeometric function ${ }_{l} F_{l-1}\left(\frac{1}{l+1}, \ldots, \frac{l}{l+1} ; \frac{1}{l}, \ldots, \frac{l-1}{l} ; \frac{(l+1)^{l+1}}{l^{l}} t^{l}\right)$. The series $d(1 ; t)$ is algebraic, since

$$
d(1 ; t)=\sqrt{1-4 t},|t|<\frac{1}{4}
$$

by the generalized binomial theorem. Also, we have the explicit algebraic expression

$$
d(2, t)=\frac{1}{\sqrt{4-27 t^{2}}}\left(\left(\sqrt{1-\frac{27}{4} t^{2}}+\frac{3 \sqrt{3}}{2} \imath t\right)^{-\frac{1}{3}}+\left(\sqrt{1-\frac{27}{4} t^{2}}-\frac{3 \sqrt{3}}{2} \imath t\right)^{-\frac{1}{3}}\right)
$$

when $|t|<\frac{4}{27}$ (see row 4 of Table 7.3 .3 in [9, p. 486]). For $l \geq 3$, the algebraicity of $d(l ; t)$ follows from Theorem 7.1 [10].

One of the main purposes of the paper is to demonstrate how integral representations help to explain such phenomena. We show in Section 4 that $d_{\boldsymbol{Q}}(\boldsymbol{t})$ could be represented as an integral of a rational differential form ω with parameters t over a $(n-r)$-dimensional cycle of the form $\Lambda^{-1}\left(\boldsymbol{y}^{\prime}\right)$, where \boldsymbol{y}^{\prime} is a point in the component $\tilde{E}^{\prime} \subset \mathbb{R}^{n-r}$ of the complement to the amoeba of the denominator of ω.

Theorem 1. Let the r-turple \boldsymbol{Q} generate a saturated r-dimensional sublattice ${ }^{1}$ of the lattice $\left(\mathbb{Z}^{n}\right)^{*}$ and p be the dimension of the recession cone of \tilde{E}^{\prime}. Then, if the condition

$$
\begin{equation*}
n-r-p=1 \tag{5}
\end{equation*}
$$

holds, the complete diagonal $d_{\boldsymbol{Q}}(\boldsymbol{t})$ of the Laurent expansion (1) for the rational function $F(\boldsymbol{z})$ is an algebraic function.

We prove the theorem and discuss the example of the rational function (3) in full details in Section 5.

2. Toric Morphisms and Amoebas of Laurent Polynomials

Let $\boldsymbol{A}:=\left(a_{i}^{j}\right)$ be unimodular $n \times n$-matrix and $\boldsymbol{B}:=\left(b_{i}^{j}\right)$ be its inverse. We denote by $\boldsymbol{a}^{j}:=\left(a_{1}^{j}, \ldots, a_{n}^{j}\right)$ and $\boldsymbol{a}_{i}:=\left(a_{i}^{1}, \ldots, a_{i}^{n}\right)$ the j-th row and the i-th column of \boldsymbol{A}, correspondingly. Similarly, $\boldsymbol{b}^{j}:=\left(b_{1}^{j}, \ldots, b_{n}^{j}\right)$ and $\boldsymbol{b}_{i}:=\left(b_{i}^{1}, \ldots, b_{i}^{n}\right)$ are the j-th row and the i-th column of \boldsymbol{B}.

[^1]The matrix \boldsymbol{A} defines the linear transformation of the lattice $\left(\mathbb{Z}^{n}\right)^{*}$ by

$$
\boldsymbol{\alpha}:=\left(\alpha^{1}, \ldots, \alpha^{n}\right) \mapsto \boldsymbol{A} \boldsymbol{\alpha}:=\left(\boldsymbol{a}^{1} \cdot \boldsymbol{\alpha}, \ldots, \boldsymbol{a}^{n} \cdot \boldsymbol{\alpha}\right)=\alpha^{1} \boldsymbol{a}_{1}+\ldots \alpha^{n} \boldsymbol{a}_{n}
$$

Then we let the toric morphism

$$
\begin{equation*}
T_{\boldsymbol{w}}^{n} \rightarrow T_{\boldsymbol{z}}^{n} \tag{6}
\end{equation*}
$$

be defined by $\boldsymbol{w} \mapsto \boldsymbol{z}=\boldsymbol{w}^{\boldsymbol{A}}$, where $\boldsymbol{w}^{\boldsymbol{A}}:=\left(\boldsymbol{w}^{\boldsymbol{a}_{1}}, \ldots, \boldsymbol{w}^{\boldsymbol{a}_{n}}\right)$ and $\boldsymbol{w}^{\boldsymbol{a}_{i}}:=w_{1}^{a_{i}^{1}} \ldots w_{n}^{a_{i}^{n}}$. The inverse morphism

$$
\begin{equation*}
T_{\boldsymbol{z}}^{n} \rightarrow T_{\boldsymbol{w}}^{n} \tag{7}
\end{equation*}
$$

is given by $\boldsymbol{z} \mapsto \boldsymbol{w}=\boldsymbol{z}^{\boldsymbol{B}}$.
The morphism (6) induces the homomorphism $R_{z} \rightarrow R_{\boldsymbol{w}}$ of rings of Laurent polynomials over \mathbb{C} in the variables \boldsymbol{z} and \boldsymbol{w} by the formula

$$
\begin{equation*}
Q(\boldsymbol{z}) \mapsto \tilde{Q}(\boldsymbol{w}):=Q\left(\boldsymbol{w}^{\boldsymbol{A}}\right) . \tag{8}
\end{equation*}
$$

Let Q be a Laurent polynomial in $R_{\boldsymbol{z}}$. The amoeba \mathcal{A}_{Q} of Q is a closed subset of \mathbb{R}^{n}. Then the complement $\mathbb{R}^{n}-\mathcal{A}_{Q}$ is open. It consists of a finite number of connected components $E_{\boldsymbol{\nu}}$, which are convex [11, Section 6.1]. These components are in 1-1 correspondence with all possible expansions (1) of an irreducible fraction $F(\boldsymbol{z})=P(\boldsymbol{z}) / Q(\boldsymbol{z})$.

The index $\boldsymbol{\nu}$ emphasizes that each component corresponds to an integer point $\boldsymbol{\nu}$ of the Newton polytope Δ_{Q} of Q. Recall that the Newton polytope Δ_{Q} is the convex hull of A in $\left(\mathbb{R}^{n}\right)^{*}$. More precisely, for a point \boldsymbol{x} in E, the integrals

$$
\begin{equation*}
\nu^{j}:=\frac{1}{(2 \pi i)^{n}} \int_{\Lambda^{-1}(\boldsymbol{x})} z_{j} \frac{\partial Q / \partial z_{j}}{Q} \frac{d \boldsymbol{z}}{\boldsymbol{z}^{\boldsymbol{e}}}, j=1, \ldots n \tag{9}
\end{equation*}
$$

define on the set of all connected components $\{E\}$ an injective mapping

$$
E \mapsto \boldsymbol{\nu}:=\left(\nu^{1}, \ldots, \nu^{n}\right) \in\left(\mathbb{Z}^{n}\right)^{*} \cap \Delta_{Q}
$$

see for details [12, Section 2]. The image $\boldsymbol{\nu}$ does not depend on the choice of \boldsymbol{x} in E since for all points \boldsymbol{x} in the same connected component cycles

$$
\Lambda^{-1}(\boldsymbol{x}):=\left\{\left|z_{1}\right|=e^{x_{1}}, \ldots,\left|z_{n}\right|=e^{x_{n}}\right\}
$$

have the same homology class in $H_{n}\left(T_{z}^{n}-Z^{\times}(Q)\right)$. If $\boldsymbol{p} \in \Lambda^{-1}(\boldsymbol{x})$, then ν^{j} equals the difference between the number of zeroes and poles of the univariate Laurent polynomial $Q\left(p_{1}, \ldots, p_{j-1}, z_{j}, p_{j+1}, \ldots, p_{n}\right)$ in the circle $\left|z_{j}\right|=e^{x_{j}}$ by the argument principle.

Moreover, the recession cone of the convex set $E_{\boldsymbol{\nu}}$ coincides with $-C_{\boldsymbol{\nu}}^{\vee}$, where

$$
C_{\nu}^{\vee}:=\left\{s \in \mathbb{R}^{n}: s \cdot \boldsymbol{\nu}=\min _{\alpha \in \Delta_{Q}} s \cdot \boldsymbol{\alpha}\right\}
$$

is the dual cone of Δ_{Q} at the point $\boldsymbol{\nu}=\boldsymbol{\nu}(E)$. We refer the reader to Figure 1 to observe this fact.
Proposition 1. Let $Q \in R_{\tilde{z}}, \tilde{Q} \in R_{\boldsymbol{w}}$ be its image under the homomorphism (8), \mathcal{A} be the amoeba of Q and $\tilde{\mathcal{A}}$ be the amoeba of \tilde{Q}. Then $\tilde{\mathcal{A}}$ is equal to

$$
\mathcal{A} \boldsymbol{B}:=\left\{\boldsymbol{y} \in \mathbb{R}^{n}: y_{j}=\boldsymbol{x} \cdot \boldsymbol{b}_{j}, \text { for all } \boldsymbol{x} \in \mathcal{A} \text { and } j=1, \ldots, n\right\}
$$

Moreover, if E is a component of the complement $\mathbb{R}^{n}-\mathcal{A}$ of order $\boldsymbol{\nu}$, then $\tilde{E}=E \boldsymbol{B}$ is the component of order $\boldsymbol{\mu}=\boldsymbol{A} \boldsymbol{\nu}$ of the complement $\mathbb{R}^{n}-\tilde{\mathcal{A}}$.

Fig. 1. The amoeba \mathcal{A} (left) and the Newton polytope Δ (right) of the polynomial $1-\frac{t}{w_{2} w_{3}}-w_{2}^{l} w_{3}^{l}-w_{3}$. The black point marks the component of $\mathbb{R}^{2}-\mathcal{A}$ of order $(0,0)$; the unlabelled component is of order $(1,1)$.

Proof. Let $\boldsymbol{x} \in \mathbb{R}^{n}$ and $\boldsymbol{z} \in T_{\boldsymbol{z}}^{n}$ such that $\Lambda(\boldsymbol{z})=\boldsymbol{x}$. Then the image $\boldsymbol{w}=\boldsymbol{z}^{\boldsymbol{B}}$ has coordinates

$$
w_{j}:=\boldsymbol{z}^{\boldsymbol{b}_{j}}=\left(e^{x_{1}+\imath \theta_{1}}\right)^{b_{j}^{1}} \ldots\left(e^{x_{n}+\imath \theta_{n}}\right)^{b_{j}^{n}}=\exp \left(\boldsymbol{x} \cdot \boldsymbol{b}_{j}+\imath \boldsymbol{\theta} \cdot \boldsymbol{b}_{j}\right), j=1, \ldots, n,
$$

where $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{n}\right) \in(-\pi, \pi]^{n}$. Thus, the j-th component of $\boldsymbol{y}:=\Lambda(\boldsymbol{w})$ equals $\boldsymbol{x} \cdot \boldsymbol{b}_{j}$.

First, note that $\boldsymbol{w} \in Z^{\times}(\tilde{Q})$ if and only if $\boldsymbol{z} \in Z^{\times}(Q)$. So $\boldsymbol{x} \in \mathcal{A}$ if and only if $\boldsymbol{y} \in \tilde{\mathcal{A}}$. Then it follows that $\tilde{\mathcal{A}}$ is the image of the amoeba \mathcal{A} by the linear transform defined by means of the matrix \boldsymbol{B}, and the image $E \boldsymbol{B}$ of a component E of $\mathbb{R}^{n}-\mathcal{A}$ coincides with some component \tilde{E} of the complement $\mathbb{R}^{n}-\tilde{\mathcal{A}}$.

Next, consider the homomorphism $H_{n}\left(T_{\boldsymbol{z}}^{n}-Z^{\times}(Q)\right) \rightarrow H_{n}\left(T_{\boldsymbol{w}}^{n}-Z^{\times}(\tilde{Q})\right)$ induced by the morphism (7). It maps the cycle of integration $\Lambda^{-1}(\boldsymbol{x})$ in (9) to the cycle $\Lambda^{-1}(\boldsymbol{y})$, where $\boldsymbol{y}=\boldsymbol{x} \boldsymbol{B}:=\left(\boldsymbol{x} \cdot \boldsymbol{b}_{1}, \ldots, \boldsymbol{x} \cdot \boldsymbol{b}_{n}\right)$ and $\boldsymbol{x} \in E$. Also, the morphism (6) induces the homomorphism $H^{n}\left(T_{\boldsymbol{z}}^{n}-Z^{\times}(Q)\right) \rightarrow H^{n}\left(T_{\boldsymbol{w}}^{n}-Z^{\times}(\tilde{Q})\right)$ of cohomology groups. It maps the differential form in (9) to the form

$$
\sum_{k=1}^{n} b_{k}^{j} w_{k} \frac{\partial \tilde{Q} / \partial w_{k}}{\tilde{Q}} \frac{d \boldsymbol{w}}{\boldsymbol{w}^{e}}
$$

since the direct calculation shows that

$$
\frac{\partial Q}{\partial z_{j}}=\sum_{k=1}^{n} \frac{\partial \tilde{Q}}{\partial w_{k}} \frac{\partial w_{k}}{\partial z_{j}}=\sum_{k=1}^{n} \frac{\partial \tilde{Q}}{\partial w_{k}} \frac{\partial}{\partial z_{j}}\left(z^{\boldsymbol{b}_{k}}\right)=\sum_{k=1}^{n} \frac{\partial \tilde{Q}}{\partial w_{k}} \frac{b_{k}^{j}}{z_{j}} w_{k} .
$$

Therefore, the relation between $\boldsymbol{\nu}$ and the order $\boldsymbol{\mu}=\left(\mu^{1}, \ldots, \mu^{n}\right)$ of \tilde{E} is given by

$$
\nu^{j}=\frac{1}{(2 \pi \imath)^{n}} \sum_{k=1}^{n} b_{k}^{j} \int_{\Lambda^{-1}(\boldsymbol{y})} w_{k} \frac{\partial \tilde{Q} / \partial w_{k}}{\tilde{Q}} \frac{d \boldsymbol{w}}{\boldsymbol{w}^{\boldsymbol{e}}}=\boldsymbol{b}^{j} \cdot \boldsymbol{\mu}
$$

Since the matrices \boldsymbol{A} and \boldsymbol{B} are inverse we have that $\mu^{j}=\boldsymbol{a}^{j} \cdot \boldsymbol{\nu}$, or equivalently, $\mu=A \nu$.

3. Integral Representations for Laurent Coefficients

Let E be an unbounded component of order $\boldsymbol{\nu}$ of the complement to \mathcal{A}. Then the dual cone C_{ν}^{\vee} to the Newton polytope Δ_{Q} at $\boldsymbol{\nu}$ is generated by p vectors $\boldsymbol{a}^{1}, \ldots \boldsymbol{a}^{p} \in \mathbb{Z}^{n}$, where $p \in\{1, \ldots, n\}$ since the recession cone of E coincides with $-C_{\boldsymbol{\nu}}^{\vee}$. The vectors $\boldsymbol{a}^{1}, \ldots \boldsymbol{a}^{p}$ can be chosen so that they generate the saturated p-dimensional sublattice of \mathbb{Z}^{n}.

Consider the Laurent expansion (1) of the rational function $F(\boldsymbol{z})=P(\boldsymbol{z}) / Q(\boldsymbol{z})$ that converges in the domain $\Lambda^{-1}(E)$. Its coefficient can be represented as

$$
\begin{equation*}
C_{\boldsymbol{\beta}}=\frac{1}{(2 \pi \imath)^{n}} \int_{\Lambda^{-1}(\boldsymbol{x})} \frac{P(\boldsymbol{z})}{Q(\boldsymbol{z})} \frac{1}{\boldsymbol{z}^{\boldsymbol{\beta}}} \frac{d \boldsymbol{z}}{\boldsymbol{z}^{\boldsymbol{e}}} \tag{10}
\end{equation*}
$$

where $\boldsymbol{x} \in E$.
Let \boldsymbol{A}^{\prime} be a $p \times n$ matrix with rows $\boldsymbol{a}^{1}, \ldots \boldsymbol{a}^{p}$. Then, since $\boldsymbol{a}^{1}, \ldots \boldsymbol{a}^{p}$ generate the saturated sublattice, the matrix \boldsymbol{A}^{\prime} can be extended to an unimodular $n \times n$ matrix \boldsymbol{A} by the Invariant Factor Theorem (see [13, Theorem 16.6]). Now, we consider the toric morphism (6) that corresponds to the matrix \boldsymbol{A}. By Proposition $1, \tilde{\mathcal{A}}:=\mathcal{A} \boldsymbol{B}$ is the amoeba of the Laurent polynomial $\tilde{Q}(\boldsymbol{w}):=Q\left(\boldsymbol{w}^{\boldsymbol{A}}\right), \tilde{E}:=E \boldsymbol{B}$ is the component of order $\boldsymbol{\mu}=\left(\boldsymbol{a}^{1} \cdot \boldsymbol{\nu}, \ldots, \boldsymbol{a}^{n} \cdot \boldsymbol{\nu}\right)$ of the complement to $\tilde{\mathcal{A}}$.

Recall that \boldsymbol{a}_{j} and \boldsymbol{a}^{j} denote the j-th column and the j-th row of the matrix \boldsymbol{A}, correspondingly. We can rewrite the Laurent polynomial \tilde{Q} as

$$
\begin{gathered}
\tilde{Q}(\boldsymbol{w})=\sum_{\boldsymbol{\alpha}} c_{\boldsymbol{\alpha}}\left(\boldsymbol{w}^{\boldsymbol{a}_{1}}\right)^{\alpha_{1}} \cdot \ldots \cdot\left(\boldsymbol{w}^{\boldsymbol{a}_{p}}\right)^{\alpha_{p}} \cdot \ldots \cdot\left(\boldsymbol{w}^{\boldsymbol{a}_{n}}\right)^{\alpha_{n}}= \\
=\sum_{\boldsymbol{\alpha}} c_{\boldsymbol{\alpha}} w_{1}^{\boldsymbol{a}^{1} \cdot \boldsymbol{\alpha}} \ldots w_{p}^{\boldsymbol{a}^{p} \cdot \boldsymbol{\alpha}} \ldots w_{n}^{\boldsymbol{a}^{n} \cdot \boldsymbol{\alpha}}=w_{1}^{\boldsymbol{a}^{1} \cdot \boldsymbol{\nu}} \ldots w_{p}^{\boldsymbol{a}^{p} \cdot \boldsymbol{\nu}} \widehat{Q}(\boldsymbol{w})=w_{1}^{\mu^{1}} \cdot \ldots \cdot w_{p}^{\mu^{p}} \widehat{Q}(\boldsymbol{w}),
\end{gathered}
$$

since $\mu^{j}=\boldsymbol{a}^{j} \cdot \boldsymbol{\nu}$ for $j=1, \ldots, n$. By definition of the dual cone, one has that $\boldsymbol{a}^{j} \cdot \boldsymbol{\alpha} \geq \mu^{j}$ for $\boldsymbol{\alpha} \in \Delta_{Q}$ and $j=1, \ldots, n$. Thus, the quotient

$$
\widehat{Q}(\boldsymbol{w}):=\frac{\tilde{Q}(\boldsymbol{w})}{w_{1}^{\mu^{1}} \cdot \ldots \cdot w_{p}^{\mu^{p}}}=\frac{\tilde{Q}(\boldsymbol{w})}{\boldsymbol{w}^{\mu^{\prime}}}
$$

is a polynomial in variables w_{1}, \ldots, w_{p}, where we set $\boldsymbol{\mu}^{\prime}:=\left(\mu^{1}, \ldots, \mu^{p}, 0, \ldots, 0\right)$.
If we clear denominators in $\tilde{P}(\boldsymbol{w})$, we get the polynomial $\hat{P}(\boldsymbol{w}):=\boldsymbol{w}^{\boldsymbol{d}} \tilde{P}(\boldsymbol{w})$, where $\boldsymbol{d}:=\left(d^{1}, \ldots, d^{n}\right)$ has non-negative components.

Proposition 2. Let

$$
\Lambda_{p}^{-1}(\boldsymbol{y}):=\left\{\left|w_{p+1}\right|=e^{y_{p+1}}\right\} \times \ldots \times\left\{\left|w_{n}\right|=e^{y_{n}}\right\}
$$

where \boldsymbol{y} is a point in \tilde{E}. Then the Laurent coefficient

$$
\begin{equation*}
C_{\boldsymbol{\beta}}=\frac{1}{(2 \pi \imath)^{n-p}} \int_{\Lambda_{p}^{-1}(\boldsymbol{y})} R\left(w_{p+1}, \ldots, w_{n}\right) \frac{1}{\boldsymbol{w}^{\gamma^{-\gamma^{\prime}}}} \frac{d w_{p+1} \wedge \ldots \wedge d w_{n}}{w_{p+1} \cdot \ldots \cdot w_{n}} \tag{11}
\end{equation*}
$$

where

$$
R\left(w_{p+1}, \ldots, w_{n}\right):=\frac{\gamma_{1}!\cdot \ldots \cdot \gamma_{p}!}{\left(\gamma_{1}+\ldots+\gamma_{p}\right)!} \frac{\partial^{\gamma_{1}+\ldots+\gamma_{p}}}{\partial^{\gamma_{1}} w_{1} \ldots \partial^{\gamma_{p}} w_{p}}\left(\frac{\hat{P}}{\hat{Q}}\right)\left(\mathbf{0}, w_{p+1}, \ldots, w_{n}\right)
$$

is a rational function in w_{p+1}, \ldots, w_{n} with the polar set defined by zeroes of the Laurent polynomial $\hat{Q}\left(\mathbf{0}, w_{p+1}, \ldots, w_{n}\right)$, the vector $\gamma:=\boldsymbol{\mu}^{\prime}+\boldsymbol{d}+\boldsymbol{A} \boldsymbol{\beta}$. We use the convention that $m!=0$ for a negative integer m.

Proof. Making a change of variables as in proof of Proposition 1, we arrive at the integral representation

$$
\begin{equation*}
C_{\boldsymbol{\beta}}=\frac{1}{(2 \pi \imath)^{n}} \int_{\Lambda^{-1}(\boldsymbol{y})} \frac{\tilde{P}(\boldsymbol{w})}{\tilde{Q}(\boldsymbol{w})} \frac{d \boldsymbol{w}}{\boldsymbol{w}^{\boldsymbol{A} \boldsymbol{\beta}+\boldsymbol{e}}}=\frac{1}{(2 \pi \imath)^{n}} \int_{\Lambda^{-1}(\boldsymbol{y})} \frac{\hat{P}(\boldsymbol{w})}{\hat{Q}(\boldsymbol{w})} \frac{d \boldsymbol{w}}{\boldsymbol{w}^{\gamma+\boldsymbol{e}}} \tag{12}
\end{equation*}
$$

Since the real n-dimensional torus $\Lambda^{-1}(\boldsymbol{y})$ can be written as $\Lambda^{-1}(\boldsymbol{y})=\Lambda_{p}^{-1}(\boldsymbol{y}) \times$ $\Lambda^{-1}\left(y_{1}, \ldots, y_{p}\right)$, we have

$$
\begin{array}{r}
(2 \pi \imath)^{n} C_{\boldsymbol{\beta}}=\int_{\Lambda_{p}^{-1}(\boldsymbol{y})}\left(\int_{\Lambda^{-1}\left(y_{1}, \ldots, y_{p}\right)} \frac{\hat{P}(\boldsymbol{w})}{\hat{Q}(\boldsymbol{w})} \frac{1}{\boldsymbol{w}^{\gamma^{\prime}}} \frac{d w_{1} \wedge \ldots \wedge d w_{p}}{w_{1} \cdot \ldots \cdot w_{p}}\right) \frac{1}{\boldsymbol{w}^{\gamma-\gamma^{\prime}}} \times \tag{13}\\
\times \frac{d w_{p+1} \wedge \ldots \wedge d w_{n}}{w_{p+1} \cdot \ldots \cdot w_{n}}
\end{array}
$$

The component μ^{j} of $\boldsymbol{\mu}$ is equal to the number of zeroes minus the number of poles of the univariate Laurent polynomial

$$
S_{j}(w):=\tilde{Q}\left(e^{y_{1}}, \ldots, e^{y_{j-1}}, w, e^{y_{j+1}}, \ldots, e^{y_{n}}\right)
$$

in the disk $\left\{|w|<e^{y_{j}}\right\}$. As it follows from the equality $\tilde{Q}(\boldsymbol{w})=w_{1}^{\mu^{1}} \cdot \ldots \cdot w_{p}^{\mu^{p}} \hat{Q}(\boldsymbol{w})$, the polynomials $S_{j}(w)$ have no poles in $\left\{|w|<e^{y_{j}}\right\}$ for $j=1, \ldots, p$. Therefore, $\widehat{Q}\left(0, \ldots, 0, w_{p+1}, \ldots, w_{n}\right)$ is a non-zero Laurent polynomial in variables w_{p+1}, \ldots, w_{n}.

Now, for each $j, 1 \leq j \leq p$, the integrand in (12) may have only a single pole $w_{j}=0$ in the disk $\left\{|w|<e^{y_{j}}\right\}$ with respect to the variable w_{j}. The order of this pole equals $\gamma_{j}+1$, where $\gamma_{j}:=\mu^{j}+d^{j}+\boldsymbol{a}^{j} \cdot \boldsymbol{\beta}$. Then repeated application of the one-dimensional Cauchy formula gives us the equality

$$
\frac{1}{(2 \pi \imath)^{p}} \int_{\Lambda^{-1}\left(y_{1}, \ldots, y_{p}\right)} \frac{\hat{P}(\boldsymbol{w})}{\hat{Q}(\boldsymbol{w})} \frac{1}{\boldsymbol{w}^{\gamma^{\prime}}} \times \frac{d w_{1} \wedge \ldots \wedge d w_{p}}{w_{1} \ldots w_{p}}=R\left(w_{p+1}, \ldots, w_{n}\right)
$$

Thus, we are done.

4. Integral Representations for Complete Diagonals

Let the Laurent expansion (1) converge in $\Lambda^{-1}(E)$, where E is a connected component of $\mathbb{R}^{n}-\mathcal{A}_{Q}$ of order $\boldsymbol{\nu}$. We choose $\boldsymbol{t}=\left(t_{1}, \ldots, t_{r}\right)$ so that the amoebas of the polynomials

$$
\begin{equation*}
\boldsymbol{z}^{\boldsymbol{q}_{1}}-t_{1}, \ldots, \boldsymbol{z}^{\boldsymbol{q}_{r}}-t_{r} \tag{14}
\end{equation*}
$$

divide E into 2^{r} parts $E(\varepsilon)$, where $\varepsilon:=\left(\varepsilon_{1}, \ldots, \varepsilon_{r}\right)$ exhaust the family of all vertices of the r-dimensional cube $[-1,1]^{r}$. The part $E(\varepsilon)$ is the intersection of E with the cone

$$
\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \varepsilon_{1}\left(e^{\boldsymbol{x} \cdot \boldsymbol{q}_{1}}-\left|t_{1}\right|\right)>0, \ldots, \varepsilon_{r}\left(e^{\boldsymbol{x} \cdot \boldsymbol{q}_{r}}-\left|t_{r}\right|\right)>0\right\}
$$

The locus of all such \boldsymbol{t} in $\left(\mathbb{C}^{\times}\right)^{r}$ is denoted by T, and it could be be defined by semialgebraic conditions on $\left|t_{1}\right|, \ldots,\left|t_{r}\right|$.

Then it is not difficult to show (see the proof of Proposition 2 in [7]) that for $\boldsymbol{t} \in T$, the complete \boldsymbol{Q}-diagonal has the integral representation

$$
\begin{equation*}
d_{\boldsymbol{Q}}(\boldsymbol{t})=\frac{1}{(2 \pi \imath)^{n}} \int_{\Gamma} \frac{P(\boldsymbol{z})}{Q(\boldsymbol{z})} \prod_{j=1}^{r} \frac{\boldsymbol{z}^{\boldsymbol{q}_{j}}}{\boldsymbol{z}^{\boldsymbol{q}_{j}}-t_{j}} \frac{d \boldsymbol{z}}{\boldsymbol{z}^{\boldsymbol{e}}}, \tag{15}
\end{equation*}
$$

where $\Gamma=\sum_{\boldsymbol{\varepsilon}}\left(\varepsilon_{1} \cdot \ldots \cdot \varepsilon_{r}\right) \Lambda^{-1}(\boldsymbol{x}(\boldsymbol{\varepsilon}))$ and $\boldsymbol{x}(\boldsymbol{\varepsilon})$ is a point in $E(\boldsymbol{\varepsilon})$.
If the vectors $\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{r}$ generate a saturated r-dimensional sublattice of $\left(\mathbb{Z}^{n}\right)^{*}$. Then the $n \times r$ matrix \boldsymbol{Q} with columns $\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{r}$ can be extended to unimodular $n \times n$ matrix \boldsymbol{B} by the Invariant Factor Theorem (see again [13, Theorem 16.6]). We consider the toric morphism (6) defined by a matrix \boldsymbol{A}, which is defined to be the inverse matrix to \boldsymbol{B}.

The following proposition generalizes Theorem 1 of [14].
Proposition 3. Let $\boldsymbol{Q}:=\left(\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{r}\right)$ generate a saturated r-dimensional sublattice of $\left(\mathbb{Z}^{n}\right)^{*}$. Then for $t \in T$, the complete \boldsymbol{Q}-diagonal of (1) can be represented in the form

$$
\begin{equation*}
d_{\boldsymbol{Q}}(\boldsymbol{t})=\frac{1}{(2 \pi \imath)^{n-r}} \int_{\Lambda_{r}^{-1}(\boldsymbol{y})} \frac{\tilde{P}\left(\boldsymbol{t}, w_{r+1}, \ldots, w_{n}\right)}{\tilde{Q}\left(\boldsymbol{t}, w_{r+1}, \ldots, w_{n}\right)} \frac{d w_{r+1} \wedge \ldots \wedge d w_{n}}{w_{r+1} \cdot \ldots \cdot w_{n}} \tag{16}
\end{equation*}
$$

where $\boldsymbol{y}:=\left(y_{1}, \ldots, y_{n}\right)$ is a point in the component \tilde{E} of order $\boldsymbol{\mu}=\boldsymbol{A} \boldsymbol{\nu}$ of the complement to the amoeba $\tilde{\mathcal{A}}$ of $\tilde{Q}(\boldsymbol{w})$. Moreover, the point $\left(y_{r+1}, \ldots, y_{n}\right)$ is in the component \tilde{E}^{\prime} of order $\left(\mu^{r+1}, \ldots, \mu^{n}\right)$ of the complement to the amoeba of $\tilde{Q}\left(\boldsymbol{t}, w_{r+1}, \ldots, w_{n}\right)$.

Proof. Again, we perform the change of variables in the integral representation (15) that corresponds to the morphism (6). Then the differential form in (15) goes to the differential form

$$
\frac{\tilde{P}(\boldsymbol{w})}{\tilde{Q}(\boldsymbol{w})} \prod_{j=1}^{r} \frac{w_{j}}{w_{j}-t_{j}} \frac{d \boldsymbol{w}}{\boldsymbol{w}^{e}}
$$

The image of the cycle Γ by the corresponding induced homomorphism is

$$
\Gamma_{*}=\sum_{\varepsilon}\left(\varepsilon_{1} \cdot \ldots \cdot \varepsilon_{r}\right) \Lambda^{-1}(\boldsymbol{y}(\varepsilon))
$$

where $\boldsymbol{y}(\varepsilon):=\left(\boldsymbol{x}(\boldsymbol{\varepsilon}) \cdot \boldsymbol{b}_{1}, \ldots, \boldsymbol{x}(\boldsymbol{\varepsilon}) \cdot \boldsymbol{b}_{n}\right)$ is a point in the component \tilde{E} of order $\boldsymbol{\mu}$ of the complement $\mathbb{R}^{n}-\tilde{\mathcal{A}}$ such that

$$
\varepsilon_{1}\left(e^{y_{1}(\boldsymbol{\varepsilon})}-\left|t_{1}\right|\right)>0, \ldots, \varepsilon_{r}\left(e^{y_{r}(\boldsymbol{\varepsilon})}-\left|t_{r}\right|\right)>0
$$

Since the component \tilde{E} is open, the points $\boldsymbol{y}(\varepsilon)$ can be chosen so that their last $n-r$ coordinates coincide for all ε. For all vertices ε of the cube $[-1,1]^{r}$, we fix particular values $\left(y_{r+1}, \ldots, y_{n}\right)$ of these coordinates. Then Γ_{*} can be represented in the form

$$
\Gamma_{*}=\Gamma_{r} \times \Lambda_{r}^{-1}(\boldsymbol{y})
$$

where $\Gamma_{r}=\sum_{\varepsilon}\left(\varepsilon_{1} \cdot \ldots \cdot \varepsilon_{r}\right) \Lambda^{-1}\left(y_{1}(\varepsilon), \ldots, y_{r}(\varepsilon)\right)$, and \boldsymbol{y} is a point in \tilde{E} with the last $n-r$ coordinates $\left(y_{r+1}, \ldots, y_{n}\right)$.

Therefore, the integral (15) can be written as

$$
\begin{equation*}
\frac{1}{(2 \pi \imath)^{n}} \int_{\Lambda_{r}^{-1}(\boldsymbol{y})}\left(\int_{\Gamma_{r}} \frac{\tilde{P}(\boldsymbol{w})}{\tilde{Q}(\boldsymbol{w})} \frac{d w_{1} \wedge \ldots \wedge d w_{r}}{\left(w_{1}-t_{1}\right) \cdot \ldots \cdot\left(w_{r}-t_{r}\right)}\right) \frac{d w_{r+1} \wedge \ldots \wedge d w_{n}}{w_{r+1} \ldots w_{n}} \tag{17}
\end{equation*}
$$

The cycle Γ_{r} is homologically equivalent to the cycle $\left\{\left|w_{1}-t_{1}\right|=\delta, \ldots,\left|w_{r}-t_{r}\right|=\right.$ $\delta\}$ in the complement

$$
\mathbb{C}_{w_{1}}^{\times} \times \ldots \times \mathbb{C}_{w_{r}}^{\times}-Z^{\times}\left(\tilde{Q}\left(w_{1}, \ldots, w_{r}, w_{r+1}^{0}, \ldots, w_{n}^{0}\right)\left(w_{1}-t_{1}\right) \cdot \ldots \cdot\left(w_{r}-t_{r}\right)\right)
$$

for all $\left(w_{r+1}^{0}, \ldots, w_{n}^{0}\right) \in \Lambda_{r}^{-1}(\boldsymbol{y})$, where δ is sufficiently small positive number. Then the Cauchy integral formula gives us that

$$
\int_{\Gamma_{r}} \frac{\tilde{P}(\boldsymbol{w})}{\tilde{Q}(\boldsymbol{w})} \frac{d w_{1} \wedge \ldots \wedge d w_{r}}{\left(w_{1}-t_{1}\right) \cdot \ldots \cdot\left(w_{r}-t_{r}\right)}=(2 \pi \imath)^{r} \frac{\tilde{P}\left(\boldsymbol{t}, w_{r+1}, \ldots, w_{n}\right)}{\tilde{Q}\left(\boldsymbol{t}, w_{r+1}, \ldots, w_{n}\right)}
$$

and we are done.

5. Proof of the Main Result

To give an idea of the proof, let us reconsider Example 1 that we encountered previously.

Example 2. Let $F(\boldsymbol{z})$ and $d(l, t)$ be as in Example 1. The series $d(l, t)$ is closely related to the series from Example 6.2.7 and Example 6.3.6 in [3].

Consider the unimodular matrix \boldsymbol{B} and its inverse matrix \boldsymbol{A} :

$$
\boldsymbol{B}:=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right), \boldsymbol{A}:=\left(\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right)
$$

Then the corresponding homomorphism (8) gives

$$
Q\left(z_{1}, z_{2}, z_{3}\right)=1-z_{1}-z_{2}^{l} z_{3}^{l}-z_{3} \mapsto \tilde{Q}\left(w_{1}, w_{2}, w_{3}\right)=1-\frac{w_{1}}{w_{2} w_{3}}-w_{2}^{l} w_{3}^{l}-w_{3}
$$

Note that the Newton polytope Δ_{Q} is combinatorially equivalent to $\Delta_{\tilde{Q}}$ (see Fig. 2). The vertex $(0,0,0)$ of the polytope Δ_{Q} corresponds to the vertex $(0,0,0)$ of the polytope $\Delta_{\tilde{Q}}$, and the component $E_{0,0,0}$ of the complement to the amoeba of Q is mapped to the component $\tilde{E}_{0,0,0}$ by Proposition 1.

According to Proposition 3, we can write the complete e-diagonal of the Taylor series for $F(\boldsymbol{z})$ as

$$
d(l, t)=\frac{1}{(2 \pi \imath)^{2}} \int_{\Lambda^{-1}\left(y_{2}, y_{3}\right)} \frac{1}{1-\frac{t}{w_{2} w_{3}}-w_{2}^{l} w_{3}^{l}-w_{3}} \frac{d w_{2} \wedge d w_{3}}{w_{2} w_{3}}
$$

where $\left(y_{2}, y_{3}\right)$ is a point (black point on Fig. 1) in the component $\tilde{E}_{0,0}^{\prime}$ of the complement to the amoeba of the polynomial $1-\frac{t}{w_{2} w_{3}}-w_{2}^{l} w_{3}^{l}-w_{3}$. Fig. 1 depicts the amoeba and the Newton polytope of this polynomial for $l=2$. Even if $l>2$, it still describes the shapes of these objects. The dual cone $C_{0,0}^{\vee}$ to the Newton polytope at the point $(0,0)$ is generated by the vector $\boldsymbol{a}^{1}=(-1,1)$. So we choose the unimodular matrices

$$
\boldsymbol{A}=\left(\begin{array}{rr}
-1 & 1 \\
0 & 1
\end{array}\right), \quad \boldsymbol{B}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

Fig. 2. The Newton polytopes of the polynomials $1-z_{1}-z_{2}^{l} z_{3}^{l}-z_{3}$ (left) and $1-\frac{w_{1}}{w_{2} w_{3}}-w_{2}^{l} w_{3}^{l}-w_{3}$ (right)
that define morphisms (6) and (7). Since the latter integral has the form of the integral in (10), applying Proposition 2 to it gives us the integral representation

$$
d(l, t)=\frac{1}{2 \pi \imath} \int_{|w|=e^{y}} \frac{1}{1-\frac{t}{w}-w^{l}} \frac{d w}{w}
$$

where y is a point in the component of order 0 of the complement to the amoeba of the Laurent polynomial $Q(w)=1-\frac{t}{w}-w^{l}$. Since $w=0$ is the only pole of $Q(w)$, the circle $\left\{|w|=e^{y}\right\}$ contains the simple zero $w_{1}(t)$ of the polynomial $Q(w)$, and the diagonal can be computed as the residue

$$
d(l, t)=\underset{w=w_{1}(t)}{\operatorname{Res}} \frac{1}{-w^{l+1}+w-t} .
$$

Thus, the diagonal $d(l, t)$ is an algebraic function.

Proof. Our strategy will be to show that if $n-r-p=1$, the complete \boldsymbol{Q}-diagonal of the rank r can be represented in the form

$$
\begin{equation*}
d_{\boldsymbol{Q}}(\boldsymbol{t})=\frac{1}{2 \pi \imath} \int_{|w|=e^{y}} R(\boldsymbol{t}, w) \frac{d w}{w} \tag{18}
\end{equation*}
$$

where $R(\boldsymbol{t}, w)$ is a rational function in w and the parameters t_{1}, \ldots, t_{r}. Then, the diagonal equals the sum of one-dimensional residues of the integrand at poles inside the disk $\left\{|w|<e^{y}\right\}$. Since such residues are algebraic functions in t_{1}, \ldots, t_{r}, the diagonal is also algebraic.

If $n-r=1$, then the desired form (18) follows directly from Proposition 3. If $n-r>1$, then we start with the integral representation (16). The integer p is the dimension of the recession cone of \tilde{E}^{\prime}, where \tilde{E}^{\prime} is the component of order $\left(\mu_{r+1}, \ldots, \mu_{n}\right)$ of the complement to the amoeba of the Laurent polynomial $\tilde{Q}\left(\boldsymbol{t}, w_{r+1}, \ldots, w_{n}\right)$ from (16). We can choose vectors $\boldsymbol{a}^{1}, \ldots, \boldsymbol{a}^{p} \in \mathbb{Z}^{n}$ that generates the dual to cone to its Newton polytope at the point $\left(\mu_{r+1}, \ldots, \mu_{n}\right)$ and construct
the unimodular $(n-r) \times(n-r)$ matrix \boldsymbol{A} with the first p rows $\boldsymbol{a}^{1}, \ldots \boldsymbol{a}^{p}$. Then (18) is given by Proposition 2.

References

[1] A. Bostan, S. Boukraa, G. Christol, S. Hassani, J.-M. Maillard, Ising n-fold integrals as diagonals of rational functions and integrality of series expansions, J. Phys. A, Math. Theor., 46:18 (2013), Article ID 185202. Zbl 1267.82021
[2] A. Bostan, S. Boukraa, J.-M. Maillard, J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, J. Phys. A, Math. Theor., 48:50 (2015), Article ID 504001. Zbl 1334.82007
[3] R. Stanley, Enumerative combinatorics, Volume 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, Cambridge, 1999. Zbl 0928.05001
[4] G. Pólya, Sur les séries entières, dont la somme est une fonction algébrique, Enseign. Math., 22 (1922), 38-47. JFM 48.0368.02
[5] H. Furstenberg, Algebraic functions over finite fields, J. Algebra, 7:2 (1967), 271-277. Zbl 0175.03903
[6] K. Safonov, A. Tsikh, On singularities of the parametric Grothendieck residue and diagonals of a double power series, Sov. Math., 28:4 (1984), 65-74. Zvl 0561.32001
[7] D. Pochekutov, Diagonals of the Laurent series of rational functions, Sib. Math. J., 50:6 (2009), 1081-1091. Zbl 1224.32001
[8] D. Pochekutov, Analytic continuation of diagonals of Laurent series for rational functions, J. Sib. Fed. Univ. Math. Phys., 14:3 (2021), 360-368. Zbl 7510958
[9] A.P. Prudnikov, Y.A. Brychkov, O.I. Marichev, Integrals and series, Volume 3. More special functions, Gordon and Breach Science Publishers, New York, 1990. Zbl 0967.00503
[10] F. Beukers, G. Heckman, Monodromy for the hypergeometric function ${ }_{n} F_{n-1}$, Invent. Math., 95:2 (1989), 325-354. Zbl 0663.30044
[11] I. Gelfand, M. Kapranov, A. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Birkhäuser, Boston, 1994. Zbl 0827.14036
[12] M. Forsberg, M. Passare, A. Tsikh, Laurent determinants and arrangements of hyperplane amoebas, Adv. Math., 151:1 (2000), 45-70. Zbl 1002.32018
[13] C.W. Curtis, I. Reiner, Representation theory of finite groups and associative algebras, Interscience Publishers, New York-London, 1962. Zbl 0131.25601
[14] A. Senashov, A list of integral representations for diagonals of power series of rational functions, J. Sib. Fed. Univ., Math. Phys., 14:5 (2021), 624-631. Zbl 7510986

Dmitry Yurievich Pochekutov
School of Mathematics and Computer Science, Siberian Federal University, Krasnoyarsk, 660041, Russia Email address: dpotchekutov@sfu-kras.ru

Artem Vladimirovich Senashov
School of Mathematics and Computer Science,
Siberian Federal University,
Krasnoyarsk, 660041, Russia
Email address: asenashov@mail.ru

[^0]: Pochekutov, D.Y., Senashov, A.V., Toric morphisms and diagonals of the Laurent Series of rational functions.
 (C) 2022 Pochekutov D.Y., Senashov A.V.

 The research is supported by grant of the Russian Science Foundation (project № 20-11-20117).
 Received February 1, 2022, published September, $2,2022$.

[^1]: ${ }^{1}$ Recall that a sublattice L of a lattice N is called saturated \Leftrightarrow for any $\boldsymbol{v} \in N$, if $k \boldsymbol{v} \in L$, where k is a positive integer, then $\boldsymbol{v} \in L$.

