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ON 1-SKELETON OF THE POLYTOPE
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Abstract. Pyramidal tours with step-backs are Hamiltonian tours of
a special kind: the salesperson starts in city 1, then visits some cities
in ascending order, reaches city n, and returns to city 1 visiting the
remaining cities in descending order. However, in the ascending and
descending direction, the order of neighboring cities can be inverted (a
step-back). It is known that on pyramidal tours with step-backs the
traveling salesperson problem can be solved by dynamic programming
in polynomial time. We de�ne the polytope of pyramidal tours with
step-backs PSB(n) as the convex hull of the characteristic vectors of all
possible pyramidal tours with step-backs in a complete directed graph.
The 1-skeleton of PSB(n) is the graph whose vertex set is the vertex set
of the polytope, and the edge set is the set of geometric edges or one-
dimensional faces of the polytope. We present a linear-time algorithm
to verify vertex adjacency in the 1-skeleton of the polytope PSB(n)
and estimate the diameter and the clique number of the 1-skeleton: the
diameter is bounded above by 4 and the clique number grows quadratically
in the parameter n.
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Table 1. Properties of the ATSP(n), PYR(n), and PSB(n) polytopes

Complexity of
TSP problem

Vertex adjacency
in 1-skeleton

Diameter
of 1-skeleton

Clique number
of 1-skeleton

Hamiltonian cycles
ATSP(n) and TSP(n)

NP-hard [17]
co-NP-complete

[28]
2 for ATSP(n) [27]
≤ 4 for TSP(n) [29]

Ω
(

2(
√
n−9)/2

)
[8]

Pyramidal tours
PYR(n)

O(n2) [1] O(n) [7] 2 [11] Θ(n2) [11]

Pyramidal tours with
step-backs PSB(n)

O(n2) [16] O(n) ≤ 4 Θ(n2)

1. Introduction

The 1-skeleton of a polytope P is the graph whose vertex set is the vertex set
of P and the edge set is the set of geometric edges or one-dimensional faces of P .
In this paper, we consider 3 characteristics of 1-skeleton: vertex adjacency, graph
diameter, and clique number.

Two vertices of a graph G are called adjacent i� they share a common edge.
Vertex adjacency in 1-skeleton is of interest as it can be directly applied to develop
simplex-like combinatorial optimization algorithms that move from one feasible
solution to another along the edges of the 1-skeleton. This class includes, for
example, the blossom algorithm by Edmonds for constructing maximum matchings
[15], the set partitioning algorithm by Balas and Padberg [4], Balinski's algorithm
for the assignment problem [5], Ikura and Nemhauser's algorithm for the set packing
problem [20], etc.

The diameter of a graph G is the maximum edge distance between any pair of
vertices. The study of 1-skeleton's diameter is motivated by its relationship to the
simplex-method and similar edge-following algorithms since the diameter serves as
a lower bound for the number of iterations of such algorithms (see [14, 19]), as well
as the famous Hirsch conjecture [14, 30].

The clique number of a graph G, denoted by ω(G), is the number of vertices
in a maximum clique of G. It is known that the clique number of 1-skeleton is a
lower bound for computational complexity in a class of direct-type algorithms based
on linear comparisons [8, 9]. Besides, this characteristic is polynomial for known
polynomially solvable problems and is superpolynomial for intractable problems
(see, for example, [6, 10, 32]).

In this paper we consider three polytopes associated with the traveling salesperson
problem: the asymmetric traveling salesperson polytope ATSP(n), the pyrami-
dal tours polytope PYR(n), and the polytope of pyramidal tours with step-backs
PSB(n). Properties of their 1-skeletons are summarized in Table 1. The results of
the research are highlighted in bold.

2. Traveling salesperson polytope

We consider an asymmetric traveling salesperson problem: given a complete
weighted digraph Kn = (V,E) (whose vertices are called cities), it is required
to �nd a Hamiltonian tour of minimum weight [17]. With each Hamiltonian tour x
in Kn we associate a characteristic vector v(x) ∈ RE by the following rule:

v(x)e =

{
1, if an edge e ∈ E is contained in the tour x,

0, otherwise.
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v(1, 2, 4, 3) = (1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1)

Fig. 1. An example of a characteristic vector for a Hamiltonian
tour 〈1, 2, 4, 3〉

An example of constructing a characteristic vector v(x) for a Hamiltonian tour x
is shown in Fig. 1.

The polytope

ATSP(n) = conv{v(x) | x is a Hamiltonian tour in Kn}

is called the asymmetric traveling salesperson polytope.
The symmetric traveling salesperson polytope TSP(n) is de�ned similarly as

the convex hull of characteristic vectors of all possible Hamiltonian cycles in the
complete undirected graph Kn.

The traveling salesperson polytope was introduced by Dantzig, Fulkerson, and
Johnson in their classic work on solving the traveling salesperson problem for 49
US cities by integer linear programming [13]. State-of-the-art exact algorithms for
the traveling salesperson problem are based on a partial description of the facets
of the traveling salesperson polytope and the branch and cut method for integer
linear programming [2].

The 1-skeleton of the traveling salesperson polytope has long been the object
of close attention in the �eld of polyhedral combinatorics. The classic result by
Papadimitriou [28] states that the question of whether two vertices of the ATSP(n)
(or TSP(n)) are not adjacent is NP-complete. It is known that the graph diameter
of 1-skeleton equals 2 for ATSP(n) [27] and is at most 4 for TSP(n) [29]. An open
conjecture by Gr�otchel and Padberg states that the diameter is 2 for both polytopes
[19]. As for the clique number of ATSP(n) (and TSP(n)), Bondarenko proved that
it is superpolynomial in the parameter n [8]. Note that, historically, the traveling
salesperson polytope was the �rst combinatorial polytope for which both the NP-
completeness of verifying the vertex non-adjacency and the superpolynomial clique
number of the 1-skeleton were established.

Since vertex adjacency is a hard problem for the traveling salesperson polytope,
various special cases are of interest. In particular, Sierksma et al. [31] studied the
faces of diameter 2, Arthanari [3] considered the pedigree polytope which provided
a su�cient condition for non-adjacency in the traveling salesperson polytope, and
Bondarenko et al. [7, 11] studied the polytope of pyramidal tours.

In this paper, we consider the polytope associated with Hamiltonian tours of a
special kind: pyramidal tours with step-backs.
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τ−1(i) i− 1 i τ2(i)

τ(i) i− 1 i τ−2(i)

Fig. 2. A step-back in ascending and descending order

3. Pyramidal tours

We suppose that the cities are labeled from 1 to n. Let τ be a Hamiltonian
tour. We denote the successor of i-th city as τ(i), and the predecessor as τ−1(i).
For any natural k, we denote the k-th successor of i as τk(i), the k-th predecessor
of i as τ−k(i). The city i satisfying τ−1(i) < i and τ(i) < i is called a peak. A
pyramidal tour, introduced by Aizenshtat and Kravchuk [1], is a Hamiltonian tour
with only one peak n. In other words, the salesperson starts in the city 1, then visits
some cities in ascending order, reaches city n and returns to the city 1, visiting the
remaining cities in descending order.

Enomoto, Oda, and Ota introduced a more general class of pyramidal tours with
step-backs [16]. A step-back peak (see Fig. 2) is the city i, such that

τ−1(i) < i, τ(i) = i− 1, τ2(i) > i, or τ−2(i) > i, τ−1(i) = i− 1, τ(i) < i.

A proper peak is a peak i which is not a step-back peak. A pyramidal tour with
step-backs is a Hamiltonian tour with exactly one proper peak n.

Pyramidal tours and pyramidal tours with step-backs are of interest, since, on
the one hand, the minimum cost pyramidal tour (with step-backs) can be found
in O(n2) time by dynamic programming, and, on the other hand, there are known
restrictions on the distance matrix that guarantee the existence of an optimal tour
that is pyramidal (with step-backs). See Klyaus [23] and Gilmore et al. [18] for
pyramidal tours, and Enomoto et al. [16] for pyramidal tours with step-backs.

Note that pyramidal tours are among the most studied polynomially solvable
special cases of the traveling salesperson problem (see surveys by Burkard et al. [12]
and Kabadi [21]). Step-backs allow us to signi�cantly expand the class of considered
Hamiltonian cycles. In particular, the complete graph Kn contains 2n−2 pyramidal
tours and Θ((1 +

√
3)n−1) pyramidal tours with step-backs [16].

A generalization of pyramidal tours with step-backs is the class of quasi-pyramidal
tours, introduced by Oda [26], for which the traveling salesperson problem is �xed-
parameter tractable (see also Khachay and Neznakhina [22]).

We consider a complete digraph Kn = (V,E). With each pyramidal tour (with
step-backs) x in Kn we associate a characteristic vector v(x) ∈ RE :

v(x)e =

{
1, if an edge e ∈ E is contained in the tour x,

0, otherwise.

The polytope

PYR(n) = conv{v(x) | x is a pyramidal tour in Kn}
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Fig. 3. An example of a tour and the corresponding pyramidal encoding

is called the polytope of pyramidal tours.
The polytope

PSB(n) = conv{v(x) | x is a pyramidal tour with step-backs in Kn}

is called the polytope of pyramidal tours with step-backs.
The polytope of pyramidal tours PYR(n) was introduced in [7] and later con-

sidered in [11] by Bondarenko et al. It was established that vertex adjacency in
1-skeleton of the PYR(n) polytope can be veri�ed in linear time O(n), the diameter
of 1-skeleton equals 2, and the asymptotically exact estimate of clique number is
Θ(n2).

The polytope of pyramidal tours with step-backs was introduced in [24], where
a necessary and su�cient condition for vertex adjacency in the 1-skeleton of the
polytope is given. Based on this condition, we develop a linear-time algorithm to
verify vertex adjacencies in the polytope PSB(n) and study the diameter and the
clique number of the 1-skeleton.

4. Pyramidal encoding

Following [24], we introduce a special pyramidal encoding to represent the pyra-
midal tours with step-backs. With each pyramidal tour with step-backs x in Kn

we associate a vector x0,1,sb of length n− 2, each coordinate corresponds to a city
from 2 to n− 1, by the following rule:

x0,1,sb
i =


1, if i is visited by x in ascending order,

#  �

1 1, if i is a step-back peak in ascending order,

0, if i is visited by x in descending order,
#  �

0 0, if i is a step-back peak in descending order.

Note that a step-back on i also involves the previous coordinate i− 1. An example
of a pyramidal tour with step-backs and the corresponding encoding vector x0,1,sb

is shown in Fig. 3.

We denote by x0,1,sb
[i,j] a fragment of encoding on coordinates from i to j. The

superscript indicates what we consider in the encoding: descending order (0), as-

cending order (1), or step-backs (sb). For example, x1,sb
[i,j] means a fragment of the

encoding only in ascending order taking into account step-backs; x0,1
[i,j] � a fragment

of the encoding disregarding step-backs, etc.
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5. Vertex adjacency

We consider 12 blocks of the following form (a wavy line means that the corre-
sponding coordinate can either contain a step-back or not):

U11 =

〈
1
1

〉
, U00 =

〈
0
0

〉
, U1111 =

〈
#    �

1 1
#    �

1 1

〉
, U0000 =

〈
#    �

0 0
#    �

0 0

〉
,

L1110 =

〈
#    �

1 1
1 0̃

〉
, L1011 =

〈
1 0̃

#    �

1 1

〉
, L0001 =

〈
#    �

0 0
0 1̃

〉
, L0100 =

〈
0 1̃
#    �

0 0

〉
,

R1101 =

〈
#    �

1 1
0̃ 1

〉
, R0111 =

〈
0̃ 1

#    �

1 1

〉
, R0010 =

〈
#    �

0 0
1̃ 0

〉
, R1000 =

〈
1̃ 0
#    �

0 0

〉
.

Theorem 1 (Nikolaev [24]). Vertices v(x) and v(y) of the polytope PSB(n) are
not adjacent if and only if the following conditions are satis�ed.

• There exists a city i (called a left block) such that the tours x and y on
the coordinate i (coordinates i and i+ 1 for double blocks) in the pyramidal
encoding have the form of U,L, or i = 1.
• There exists a city j (called a right block) such that the tours x and y on
the coordinate j (coordinates j−1 and j for double blocks) in the pyramidal
encoding have the form of U,R, or j = n.

We denote by ia the �rst city after the left block: ia = i + 1 for single
blocks and ia = i+ 2 for double blocks. We denote by jb the last city before
the right block: jb = i− 1 for single blocks and jb = j − 2 for double blocks.

Two blocks cut the encoding of the tours into three parts: the left (less
than ia), the central (from ia to jb), and the right (larger than jb).
• In the central part, the coordinates of x0,1 and y0,1 completely coincide:

x0,1
[ia,jb]

= y0,1
[ia,jb]

.

We say that two tours

� di�er in the left part if x0,1,sb
[1,ia−1] 6= y0,1,sb

[1,ia−1],

� di�er in the right part if x0,1,sb
[jb+1,n] 6= y0,1,sb

[jb+1,n],

� di�er in the central part in ascending order if x1,sb
[ia,jb]

6= y1,sb
[ia,jb]

,

� di�er in the central part in descending order if x0,sb
[ia,jb]

6= y0,sb
[ia,jb]

.

The remaining conditions are divided into four cases depending on the
values of x0,1

i and x0,1
j .

(1) If x0,1
i = x0,1

j = 1, then the tours di�er
� in the central part in ascending order;
� in the left part, or in the central part in descending order, or in

the right part.
(2) If x0,1

i = x0,1
j = 0, then the tours di�er

� in the central part in descending order;
� in the left part, or in the central part in ascending order, or in

the right part.
(3) If x0,1

i = 1,x0,1
j = 0, then the tours di�er

� in the central part in ascending order or in the right part;
� in the central part in descending order or in the left part.

(4) If x0,1
i = 0,x0,1

j = 1, then the tours di�er
� in the central part in descending order or in the right part;
� in the central part in ascending order or in the left part.
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x 〈 1 1 1 1 1 〉
y 〈 0 1 1 1 1 〉

1 2 3 4 5 6 7x

1 2 3 4 5 6 7y

1 2 3 4 5 6 7z

1 2 3 4 5 6 7t

x 〈 1 0 0 1 0 〉
y 〈 1 0 0 0 0 〉

1 2 3 4 5 6 7x

1 2 3 4 5 6 7y

1 2 3 4 5 6 7z

1 2 3 4 5 6 7t

Fig. 4. Examples of �rst and third su�cient conditions

Cities 1 and n can be considered in the encoding as visited in ascending
or descending order if required.

The idea of su�cient conditions is that if from the edges of the tours x and y we
can assemble two complementary pyramidal tours with step-backs z and t, then the
segment [v(x),v(y)] intersects with the segment [v(z),v(t)], and the corresponding
vertices of the polytope PSB(n) are not adjacent (see [24]).

The examples of the �rst and third su�cient conditions for non-adjacency are
shown in Fig. 4 (edges of x are solid, edges of y are dashed, left and right blocks in
pyramidal encodings are highlighted with dashed boxes).

In [24] it was proved that the necessary and su�cient condition for non-adjacency
of Theorem 1 can be veri�ed by exhaustive search in O(n3) time. We improve this
estimate by introducing a linear-time algorithm.

Theorem 2. The question of whether two vertices of the polytope PSB(n) are
adjacent can be veri�ed in linear time O(n).

Proof. We consider two pyramidal tours with step-backs x and y, and the corre-
sponding vertices v(x) and v(y) of the polytope PSB(n). Each of the four su�cient
non-adjacency conditions of Theorem 1 can be veri�ed in a single pass through the
pyramidal encodings x0,1,sb and y0,1,sb, when we sequentially �nd the left block, the
right block, and check additional conditions. The pseudo-code to construct a tour z
(and a tour t as (x∪y)\z) and verify the �rst and second su�cient conditions is given
in the Algorithm 1. The other two su�cient conditions are veri�ed similarly. �

Note that we can consider the problem of �nding a second Hamiltonian decom-
position of a 4-regular multigraph, as described in [25]: �nd a partition of the edge
set of the 4-regular multigraph x ∪ y into edge-disjoint Hamiltonian cycles z and
t di�erent from the given cycles x and y. The Algorithm 1 solves this problem for
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Algorithm 1 Verifying 1st and 2nd su�cient conditions for non-adjacency

procedure NonAdjacencyTest(x,y, n)
LBlock ← TRUE . Consider the city 1 as a left block
RBlock, zNotx, zNoty ← FALSE
for i← 2 to n− 1 do

if LBlock = TRUE and RBlock = FALSE then . Central part
if zi (yi) is di�erent from xi then

zNotx← TRUE . z visits i by the edges of y
end if

if zNotx = TRUE and we found U or R block then

RBlock ← TRUE . Starting the right part
end if

if the conditions of the central part are violated then

LBlock, zNotx← FALSE . Return to the left part
end if

end if

if LBlock = FALSE then . Left part
if zi (xi) is di�erent from yi then . z visits i by the edges of x

zNoty ← TRUE
end if

if we found U or L block then

LBlock ← TRUE . Starting the central part
end if

end if

if RBlock = TRUE then . Right part
if zi (xi) is di�erent from yi then . z visits i by the edges of x

zNoty ← TRUE
end if

end if

end for

RBlock ← TRUE . Consider the city n as a right block
if LBlock,RBlock, zNotx, zNoty = TRUE then

return 1st/2nd su�cient condition for non-adjacency is satis�ed
else

return 1st/2nd su�cient condition for non-adjacency is not satis�ed
end if

end procedure

pyramidal tours with step-backs in linear time O(n). In general, �nding a second
Hamiltonian decomposition is NP-hard [28].

6. Graph diameter and clique number

Based on Theorem 1, we estimate the diameter of 1-skeleton of PSB(n).

Theorem 3. The diameter of 1-skeleton of PSB(n) is bounded above by 4.

Proof. The idea is as follows. For an arbitrary pyramidal tour with step-backs x we
construct a pyramidal tour x̂ where

(1) x̂0,1
i =

{
0, if i is a part of step-back in x

1, otherwise.
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pyramidal tour
with step-backs x

pyramidal tour x̂

pyramidal tour
〈1 1 1 . . . 1〉

pyramidal tour ŷ

pyramidal tour
with step-backs y

Fig. 5. Path of length 4 between an arbitrary pair of PSB(n)
vertices v(x) and v(y)

For instance:

x : 〈 1
#    �

1 1 1 0 0 1
#    �

0 0 1〉,
x̂ : 〈 1 0 0 1 1 1 1 0 0 1〉.

By construction, the encodings of the tours x and x̂ can only contain blocks
U11, which restricts us to the �rst su�cient condition of Theorem 1. However, by
(1) the tours x and x̂ cannot di�er in the central part in the ascending order.
Hence, by Theorem 1, the vertices v(x) and v(x̂) are adjacent. And for any pyra-
midal tour x̂, the vertex v(x̂) is adjacent to the vertices corresponding to the tours
〈1, 1, . . . , 1〉 and 〈0, 0, . . . , 0〉 (see [11]). Thus, between any pair of vertices of the
polytope PSB(n) we can construct a path of no more than 4 edges. The corre-
sponding scheme is shown in Fig. 5. �

Now we apply the necessary and su�cient condition of Theorem 1 to estimate
the clique number of the 1-skeleton of the polytope PSB(n).

Theorem 4. The clique number of 1-skeleton of the polytope PSB(n) is quadratic
in the parameter n:

(2) ω(PSB(n)) = Θ
(
n2
)
.

Proof. Upper bound. Let Y v be a set of pairwise adjacent vertices of PSB(n), and
Y be the set of corresponding pyramidal tours with step-backs. Let us estimate the
cardinality of Y .

Step 1. Consider the pyramidal encodings of the tours. We call a tour x ∈ Y
unique with respect to a pair of neighboring coordinates k, k + 1 if

∀y ∈ Y \{x} : x0,1,sb
[k,k+1] 6= y0,1,sb

[k,k+1].

A pair of neighboring coordinates in the pyramidal encoding can take 18 di�erent
values. Hence the number of tours in Y that are unique in a pair of neighboring
coordinates does not exceed 18(n− 3). We construct the set W by excluding from
Y all tours that are unique in a pair of neighboring coordinates.

Step 2. Let a pyramidal tour with step-backs in a pair of neighboring cities k and
k + 1 visit one of the cities in ascending order, and the other in descending order.
Since the city may or may not be a part of step-back, we get 8 possible types of
pyramidal encodings at coordinates k and k + 1:

〈1 0〉 ,
〈
1

#    �

0 0
〉
,
〈

#    �

1 1 0
〉
,
〈

#    �

1 1
#    �

0 0
〉
,

〈0 1〉 ,
〈
0

#    �

1 1
〉
,
〈

#    �

0 0 1
〉
,
〈

#    �

0 0
#    �

1 1
〉
.

(3)

We call such sections of encoding 0/1-segments.
We consider a pyramidal tour with step-backs x ∈ W with 0/1-segment at the

coordinates k, k + 1. By construction, we have excluded from W all tours that are



1-SKELETON OF THE POLYTOPE OF PYRAMIDAL TOURS WITH STEP-BACKS 683

unique in a pair of neighboring coordinates, so there exists a tour y ∈W\{x} with
the same 0/1-segment at coordinates k, k + 1, i.e. x0,1,sb

[k,k+1] = y0,1,sb
[k,k+1].

Thus, pyramidal encodings of tours x and y on coordinates k, k + 1 have the
form of a pair of blocks U , where the coordinate k is in the left block and k + 1 is
in the right block. Since the corresponding vertices v(x) and v(y) of the polytope
PSB(n) are adjacent, by Theorem 1, the encodings of the tours x and y coincide

either in the left part (x0,1,sb
[1,k] = y0,1,sb

[1,k] ), or in the right part (x0,1,sb
[k+1,n] = y0,1,sb

[k+1,n]).

For instance:

x : 〈 1
#    �

0 0 1

k,k+1

0 1
#    �

0 0 0 1 〉,

y : 〈 1
#    �

0 0 1 0 1
k,k+1

1 0
#    �

1 1 〉.

Note that for any subset of tours inW with a common 0/1-segment, the coinciding
parts of the encoding are on the same side of the segment. Indeed, suppose that
three tours x, y, z ∈ W have the same 0/1-segment on the cities k, k + 1, but the
coinciding parts of the encodings are on di�erent sides of the segment. Without loss
of generality, let

x0,1,sb
[1,k] = y0,1,sb

[1,k] and x0,1,sb
[k+1,n] = z0,1,sb[k+1,n],

x : 〈 L 0 1 R 〉,

y : 〈 L 0 1 〉,

z : 〈 0 1 R 〉.

However, since the corresponding vertices v(y) and v(z) of the polytope PSB(n)
are adjacent, by Theorem 1, the pyramidal encodings of the tours y and z also

coincide either in the left part: y0,1,sb
[1,k] = z0,1,sb[1,k] (in this case x = z), or in the right

part: y0,1,sb
[k+1,n] = z0,1,sb[k+1,n] (in this case x = y). We got a contradiction.

Thus, for any pyramidal tour with step-backs from the set W , all 0/1-segments
can be divided into left segments (for which tours with a common segment coincide
in the left part) and right segments (for which tours coincide in the right part).

Let us show that the left and right 0/1-segments in tours from W are ordered,
i.e. if some tour x ∈ W contains a left 0/1-segment on cities k, k + 1 and a right
0/1-segment on cities s, s+ 1, then k < s.

Assume that k > s. Consider a tour y ∈ W that shares a left 0/1-segment on

k, k+ 1 with x, then x0,1,sb
[1,k] = y0,1,sb

[1,k] . Hence the tours x and y coincide on the cities

s, s+ 1 since s < k, and have common right 0/1-segments:

x : 〈 ∗ ∗ 0 1 ∗ ∗
L

0 1 ∗ ∗ 〉,

y : 〈 ∗ ∗ 0 1
R

∗ ∗ 0 1 ∗ ∗ 〉.

It remains to note that

x0,1,sb
[1,k] = y0,1,sb

[1,k] and x0,1,sb
[s,n] = y0,1,sb

[s,n] ,

hence, x = y, a contradiction.
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Step 3. Consider a pyramidal tour with step-backs x ∈ W . We choose the left
0/1-segment Lmax at the largest coordinates i, i + 1. If there is no such segment,
then we set i = 1. We choose the right 0/1-segment Rmin at the smallest coordinates
j − 1, j. If there is no such segment, then we set j = n.

By construction, i ≤ j and cities from i + 1 to j − 1 are visited in the same
direction. Let us call the part of pyramidal encoding [i+ 1, j − 1] a 0-sequence if
the cities from i+ 1 to j − 1 are visited in the descending order, and 1-sequence if
the cities are visited in ascending order.

Since the tours in W coincide to the left of the common left 0/1-segment and to
the right of the common right 0/1-segment, each pyramidal tour with step-backs
x ∈W corresponds to a unique 0-sequence or 1-sequence. For example:

〈 1 0
L

0
#    �

0 0 1
L

1
Lmax

1

0-sequence

0
#    �

0 0 0
#    �

0 0
Rmin

0 1
#    �

1 1 0
R

#    �

0 0 〉.

Step 4. We consider in W the subset of all pyramidal tours with step-backs that
have a 0-sequence starting at position i. Let's denote this subset as W 0

i .
We consider in the set W 0

i all tours containing at least one unique 0-coordinate
inside the 0-sequence in the pyramidal encoding. There are n− i possible positions
of the unique 0-coordinate, which can take 3 di�erent values: start of a step-back,
end of a step-back, not a step-back. Thus, the total number of such unique tours
in W 0

i does not exceed 3(n− i) = O(n). Let us construct the set W̄ 0
i by excluding

from W 0
i all tours with unique coordinates in the 0-sequence.

Consider some tour x ∈ W̄ 0
i . By construction, for any coordinate s within the

0-sequence, there exists a second tour y ∈ W̄ 0
i such that x0,sb

s = y0,sb
s and s belongs

to the 0-sequence of y. Then the tours x and y on the coordinates i − 1 (segment
Lmax) form a block U11 (or U1111), and on the coordinate s � one of the blocks
U00 or U0000. Therefore, by Theorem 1, the pyramidal encodings of the tours x
and y coincide either in the central part between i − 1 and s in descending order

(x0,sb
[i,s] = y0,sb

[i,s]) or to the right of s (x0,1,sb
[s,n] = y0,1,sb

[s,n] ). For instance:

x : 〈 0
#    �

1 1

i−1

1 0
#    �

0 0

s

0 0 0 1 0
#    �

1 1 〉,

y : 〈 0
#    �

1 1 1
i−1

0
#    �

0 0 0
s

#    �

0 0 0 0 1 1 〉.

Otherwise, the corresponding vertices v(x) and v(y) of the polytope PSB(n) are
not adjacent.

Further reasoning completely repeats similar ones for common 0/1-segments.
For any subset of tours in W̄ 0

i with a common 0-coordinate, the coinciding parts of
the encoding must be on the same side of the coordinate. This allows us to divide
all 0-sequence coordinates into left 0-coordinates (tours with a common coordinate
coincide on the left side) and right 0-coordinates (for which tours coincide to the
right of the common coordinate). Note also that all coordinates are ordered, i.e. if
s is the left 0-coordinate and t is the right 0-coordinate, then s < t:

〈 0
#    �

1 1

i−1

1

L

0
#    �

0 0 0

R

#    �

0 0 0
0-sequence

1
#    �

1 1 0 〉.
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We denote by W̄ 0
i,s the subset of all tours from W̄ 0

i for which s is the number
of the largest left 0-coordinate, and s + 1 is the number of the smallest right 0-
coordinate.

The key idea is that the coordinates s and s + 1 of any tour from W̄ 0
i,s can

take only 2 values: 〈0〉 and 〈 #    �

0 0〉. Moreover, the values of this pair of coordinates
uniquely determine the tour since tours with the same left coordinate coincide to
the left and with the same right coordinate � to the right. Thus, the subset W̄ 0

i,s

contains at most 4 tours.
And now we rise back to the original set of pairwise adjacent tours. Firstly,

W̄ 0
i =

n−1⋃
s=i+1

W̄ 0
i,s,

whence, with the excluded tours with unique 0-coordinates, |W 0
i | = O(n). Similarly,

we get that |W 1
i | = O(n).

Secondly,

W =

(
n−1⋃
i=2

W 0
i

)
∪

(
n−1⋃
i=2

W 1
i

)
,

whence we get that |W | = O(n2).
Finally, returning the excluded tours with unique pairs of neighboring coordinates,

we arrive at the upper bound |Y | = |W |+O(n) = O(n2). Thus,

ω(PSB(n)) = O(n2).

Lower bound.We construct an example of the set Zv of pairwise adjacent vertices
of the polytope PSB(n) such that |Zv| = Ω(n2). Let n be even. With each pair of
integers k, s such that 0 ≤ k, s ≤ n−2

2 we associate a pyramidal tour with step-backs
x(k, s) ∈ Z such that

• ∀i (2 ≤ i ≤ k + 1): x0,1,sb
i = 1;

• ∀j (n− s ≤ j ≤ n− 1): x0,1,sb
j = 1;

• all other coordinates of x0,1,sb are equal to 0.

The tours from the set Z do not contain step-backs, therefore, they cannot di�er
in the central part between the left and right blocks. Moreover, if for two tours

x, y ∈ Z along some coordinate i: x0,1,sb
i = y0,1,sb

i = 1, then

• if i ≤ n
2 , then the encodings coincide in the left part (i.e. x0,1,sb

[1,i] = y0,1,sb
[1,i] );

• if i ≥ n
2 + 1, then the pyramidal encodings coincide in the right part (i.e.

x0,1,sb
[i,n] = y0,1,sb

[i,n] ).

Hence, by Theorem 1, the corresponding vertices v(x) and v(y) of the polytope
PSB(n) are adjacent.

The case of odd n is reduced to an even case, it su�ces to �x one of the cities
in all tours from Z in ascending or descending order. Thus,

ω(PSB(n)) ≥ |Z| =
⌊n

2

⌋2
= Ω(n2).

An example of a set Z for n = 8 is given in Table 2.
Combining the upper and lower bounds, we obtain the desired asymptotically

exact quadratic estimate (2). �
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Table 2. An example of pyramidal tours with step-backs with
pairwise adjacent vertices in the polytope PSB(8)

〈0 0 0 | 0 0 0〉 〈0 0 0 | 0 0 1〉 〈0 0 0 | 0 1 1〉 〈0 0 0 | 1 1 1〉
〈1 0 0 | 0 0 0〉 〈1 0 0 | 0 0 1〉 〈1 0 0 | 0 1 1〉 〈1 0 0 | 1 1 1〉
〈1 1 0 | 0 0 0〉 〈1 1 0 | 0 0 1〉 〈1 1 0 | 0 1 1〉 〈1 1 0 | 1 1 1〉
〈1 1 1 | 0 0 0〉 〈1 1 1 | 0 0 1〉 〈1 1 1 | 0 1 1〉 〈1 1 1 | 1 1 1〉

7. Conclusion

We have considered several versions of the traveling salesperson problem and the
associated combinatorial polytopes.

The general traveling salesperson problem is NP-hard [17]. The question of
whether two vertices of the traveling salesperson polytope are not adjacent is
NP-complete [28]. The clique number of 1-skeleton of the polytope ATSP(n) is
superpolynomial in n [8].

On the other hand, the traveling salesperson problem on pyramidal tours and
pyramidal tours with step-backs is solvable in polynomial time by dynamic pro-
gramming [16, 18]. The vertex adjacency for the polytopes PYR(n) and PSB(n)
can be veri�ed in linear time O(n). The clique numbers of 1-skeletons are quadratic
in n.

Thus, the properties of 1-skeletons of the polytopes associated with the traveling
salesperson problem directly correlate with the complexity of the problem itself.

Acknowledgements. We are very grateful to the anonymous reviewers for their
comments and suggestions which helped to improve the presentation of the results
in this paper.
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