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MODIFICATIONS OF KARLIN AND SIMON TEXT MODELS

M.G. CHEBUNIN, A.P. KOVALEVSKII

Abstract. We discuss probability text models and their modi�cations.
We construct processes of di�erent and unique words in a text. The
models are to correspond to the real text statistics. The in�nite urn model
(Karlin model) and the Simon model are the most known models of texts,
but they do not give the ability to simulate the number of unique words
correctly. The in�nite urn model give sometimes the incorrect limit of the
relative number of unique and di�erent words. The Simon model states a
linear growth of the numbers of di�erent and unique words. We propose
three modi�cations of the Karlin and Simon models. The �rst one is the
o�ine variant, the Simon model starts after the completion of the in�nite
urn scheme. We prove limit theorems for this modi�cation in embedded
times only. The second modi�cation involves repeated words in the Karlin
model. We prove limit theorems for it. The third modi�cation is the
online variant, the Simon redistribution works at any toss of the Karlin
model. In contrast to the compound Poisson model, we have no analytics
for this modi�cation. We test all the modi�cations by the simulation and
have a good correspondence to the real texts.

Keywords: probability text models, Simon model, in�nite urn model,
weak convergence.

1. Introduction

Probabilistic text modeling involves several simpli�cations. However, the
probabilistic model should maintain the behavior of text statistics that are observed
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in practice. In particular, we will consider the number of di�erent words in the text
and the number of words that occur once.

Let Rn be a number of di�erent words among the �rst n words of the text. Rn,i
be a number of words encountered i times, R∗n,i be the number of words encountered
not lesser than i times. Therefore Rn = R∗n,1, Rn,i = R∗n,i −R∗n,i+1, i ≥ 1.

The power law of the growth of the number of di�erent words is called Herdan's
Law or Heaps' Law. It refers to Herdan [20] and Heaps [19].

Bahadur [4] and Karlin [23] studied an in�nite urn model: any new ball goes to
some of in�nitely many urns with probability that corresponds to a power law and
independently of anything else. The interpretation for texts corresponds words of
a text to balls and words of a dictionary to urns.

Simon [27] proposed quite another model: the (n+ 1)-th word of a text is a new
one with probability p, and coinñides with any of previous words with probability
(1− p)/n.

The in�nite urn scheme looks more suitable for describing real texts, since
Simon's model leads to a linear increase in the number of di�erent words. However,
the in�nite urn scheme is not �exible enough to describe texts. We study two
di�erent estimates for the parameter θ of the exponential decay of the probabilities.

One of them is θ̂, it characterizes the rate at which the number of di�erent words
grows. Another estimate θ∗ is the ratio of the number of unique words to the number
of di�erent words. According to the in�nite urn scheme with exponential decay of
probabilities, these two estimates should converge to the same number θ.

But we show in Section 2 the examples that the estimates are substantially
di�erent, the number of words encountered once (unique words) grows according
to a power law with the same exponent but with a lower constant.

So we need some modi�cations or combinations of the models.
In Section 3, we study an elementary probabilistic text model. This is an in�nite

urn scheme. In this model, the number of di�erent words and the number of
words encountered once were studied by Bahadur[4], Karlin [23], Chebunin and
Kovalevskii [12]. We study the correspondence between the empirical and theoretical
behavior of these statistics.

In Section 4, we study Simon's model. Simon [27] proposed the next stochastic
model: the (n+ 1)-th word in the text is new with probability p; it coincides with
each of the previous words with probability (1− p)/n. In fact, he proposed a more
general model with the same dynamics of numbers of word occurrences. He based
his model on the model of Yule [28] who constructed it to explain the distribution of
biological genera by number of species. Baur and Bertoin [9] proposed a modi�cation
of the Yule-Simon model with a wide class of limiting distributions.

We study the asymptotic behavior of the statistics Rn,1 in the Simon model
based on functional limit theorems for urn models obtained by Janson.

In Section 5, we propose the o�ine Simon modi�cation of the Karlin model.
The purpose of these modi�cations is to correspond the theoretical and empirical
behavior of the sequences {Rj}j≥1 and {Rj,1}j≥1. We prove analytical theorems
(SLLN and FCLT) for the process in embedded times of increation of the initial
urn process.

In Section 6, we study the second modi�cation. It involves the compound Poisson
process in the in�nite urn model. We prove SLLN and FCLT for the modi�cation.
In Section 7, we propose the third modi�cation. It is the online variant, the Simon
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redistribution works at any toss of the Karlin model. In contrast to the compound
Poisson model, we have no limit theorems for this modi�cation.

We test all the modi�cations by the simulation and have a good correspondence
to the real texts. We discuss the advantages and disadvantages of the models in
Section 8.

Fig. 1. Numbers of di�erent words (red) and numbers of unique
words (blue) in Childe Harold's Pilgrimage by Byron

2. Empirical analysis

We analyze the number of di�erent words and the number of words encountered
once in texts of di�erent authors. These two processes behave like power functions
with the same exponent but with di�erent factors.

We estimate the exponent θ ∈ (0, 1) of the power functions in two di�erent ways.
Chebunin and Kovalevskii [14] proposed the estimate

θ̂ = log2Rn − log2R[n/2]

and studied conditions of its consistency and asymptotic normality. It has been
used for the analysis of short texts (Zakrevskaya and Kovalevskii [29]).

Another estimate is

θ∗ = Rn,1/Rn.

Karlin [23] proved that it is consistent for the elementary text model under weak
assumptions (see the next section). This is the asymptotically normal estimate
under some additional assumptions (Chebunin and Kovalevskii [13]).
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For Childe Harold's Pilgrimage by Byron we have n = 37064, Rn = 6911, Rn/2 =

4582, θ̂ = 0.5929, Rn,1 = 3912, θ∗ = 0.5661, so the second estimate is signi�cantly
smaller than the �rst one.

Fig. 2. Numbers of di�erent words (red) and numbers of unique
words (blue) in Evgene Onegin by Pushkin

For Evgene Onegin by Pushkin (in Russian) we have n = 21882, Rn = 8236,

Rn/2 = 4916, θ̂ = 0.7445, Rn,1 = 5824, θ∗ = 0.7071, so the second estimate is
signi�cantly smaller than the �rst one.

3. Results for the elementary urn model

The simplest probabilistic model of text is the in�nite urn scheme. Words are
selected sequentially independently of each other from an in�nite dictionary. The
probabilities of the appearance of words decrease in accordance with the power
distribution according to Zipf's law. As Bahadur showed, the number of di�erent
words is growing according to a power law. Karlin showed that the number of
words met once grows under this model also according to a power law with the
same exponent.

Karlin [23] studied an in�nite urn scheme, that is, n balls distributed to urns
independently and randomly; there are in�nitely many urns. Each ball goes to urn i
with probability pi > 0, p1 + p2 + . . . = 1 (without loss of generality p1 ≥ p2 ≥ . . .).

Let (see Karlin [23]) Π = {Π(t), t ≥ 0} be a Poisson process with parameter 1.
We denote by Xi(n) a number of balls in urn i. According to well-known property of
splitting of Poisson �ows, stochastic processes {Xi(Π(t)), t ≥ 0} are Poisson with
intensities pi and are mutually independent for di�erent i's. The de�nition implies
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that

R∗Π(t),k =

∞∑
i=1

I(Xi(Π(t)) ≥ k), RΠ(t),k =

∞∑
i=1

I(Xi(Π(t)) = k).

Let designate α(x) = max{j| pj ≥ 1/x}.
We assume, following Karlin [23], that

α(x) = xθL(x), 0 < θ < 1.

Here L(x) is a slowly varying function as x→∞. Let for t ∈ [0, 1], k ≥ 1

Y ∗n,k(t) =
R∗[nt],k −ER∗[nt],k

(α(n))1/2
, Z∗n,k(t) =

R∗Π(nt),k −ER∗Π(nt),k

(α(n))1/2
,

Yn,k(t) =
R[nt],k −ER[nt],k

(α(n))1/2
, Z∗∗n,k(t) =

R∗Π([nt]),k −ER∗Π([nt]),k

(α(n))1/2
,

Kk,θ = θΓ(k − θ) for k > 0 and Kk,θ = −Γ(1− θ) for k = 0.

Proposition 1. (Theorem 4 in [23]). Let θ ∈ (0, 1]. Then (Rn − ERn)/B
1/2
n

converges weakly to standard normal distribution, where

Bn =


Γ(1− θ)(2θ − 1)nθL(n), θ ∈ (0, 1);

n
∞∫
0

e−1/y

y L(ny)dy
def
= nL∗(n), θ = 1;

Karlin ([23], Lemma 4) proved function L∗(x) to be slowly varying as x→∞.
Dutko [16] generalized the theorem by proving asymptotic normality of Rn if

VarRn →∞ as n→∞. This condition always holds if θ ∈ (0, 1] but can hold too
for θ = 0. Gnedin, Hansen and Pitman [17] focus on the study of conditions for
convergence VarRn →∞. They also collect facts on the issue.

Proposition 2. (Theorem 5 in [23]). Let θ ∈ (0, 1), r1 < . . . < rν be ν
positive integers. Then random vector (Yn,r1(1), . . . , Yn,rν (1)) converges weakly to a
multivariate normal distribution with zero expectation and covariances

cri,rj =

 − θΓ(ri+rj−θ)
ri!rj !

2θ−ri−rj , i 6= j;

θ
Γ(ri+1)

(
Γ(ri − θ)− 2−2ri+θ Γ(2ri−θ)

Γ(ri+1)

)
, i = j.

Barbour and Gnedin [6] extended this result to the case θ = 0 if variances go
to in�nity. They found conditions for convergence of covariances to a limit and
identi�ed four types of limiting behavior of variances. Barbour [5] proved theorems
on the approximation of the number of cells with k balls by translated Poisson
distribution. Key [24], [25] studied the limit behavior of statistics Rn,1. Hwang
and Janson [21] proved local limit theorems for �nite and in�nite numbers of cells.
Chebunin [11] constructed Rn-based explicit parameter estimators for a wide range
of one-parameter families and proved their consistency.

Durieu and Wang [15] established a functional central limit theorem for
randomization of a process Rn: indicators are multiplied randomly by ±1 before
summing. The limiting Gaussian process is a sum of independent self-similar
processes in this case.

Chebunin & Kovalevskii [12] proved the next FCLT.
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Proposition 3. (i) Let θ ∈ (0, 1), ν ≥ 1 is integer. Then process(
Y ∗n,1(t), . . . , Y ∗n,ν(t), 0 ≤ t ≤ 1

)
converges weakly in the uniform metrics in

D ([0, 1]ν) to ν-dimensional Gaussian process with zero expectation and covariance
function (c∗ij(τ, t))

ν
i,j=1: for τ ≤ t, i, j ∈ {1, . . . , ν} (taking 00 = 1)

c∗ij(τ, t) =


i−1∑
s=0

j−s−1∑
m=0

τs(t−τ)mKm+s,θ

tm+s−θs!m!
−
i−1∑
s=0

j−1∑
m=0

τstmKm+s,θ

(t+τ)m+s−θs!m!
, i < j;

tθ
j−1∑
m=0

Km,θ
m! −

i−1∑
s=0

j−1∑
m=0

τstmKm+s,θ

(t+τ)m+s−θs!m!
, i ≥ j;

c∗ij(τ, t) = c∗ji(t, τ).

(ii) Let θ = 1. Then process
(
R[nt]−ER[nt]

(nL∗(n))1/2 , 0 ≤ t ≤ 1
)
converges weakly in the

uniform metrics in D([0, 1]) to a standard Wiener process.

4. Results for Simon model

Yule showed that, for the Yule�Simon model,

(1) ERn,i/ERn → f(i), i ≥ 1,

f(i) = ρB(i, 1 + ρ),

ρ = (1− p)−1, B(·, ·) is Beta function.
We analyze stochastic aspects of this convergence. The limiting distribution is

named Yule-Simon distribution.
There are many rami�cations and applications of the Yule-Simon model. Haight

& Jones [18] gave special references to word associations tests. Lansky & Radill-
Weiss [26] proposed a generalization of the model for better correspondence to
applications.

This model can be embedded in a more general context of random cutting of
recursive trees. In this context, statistics under study are the most frequent words.
See Aldous & Pitman [3] for its limiting distribution and convergence, Baur &
Bertoin [7], [8] for an overview and new results.

Aldous [2] proposed a generalization of the limiting distribution but without an
underlying process.

Janson [22] considered generalized Polya urns and proved SLLN, CLT and FCLT
for it. Finite-dimensional vectors

(Rn, Rn,1, . . . , Rn,m−1, n−
∑
i<m

iRn,i)

can be studied using these models. So we have componentwise SLLN and �nite-
dimensional CLT and FCLT for these statistics.

Theorem 1. For any p ∈ (0, 1) in Simon model and any m > 1

Rn
n
→ p a.s.,

(Rn,1, . . . , Rn,m−1)

n
→ p

1− p

(
B

(
1,

2− p
1− p

)
, . . . , B

(
m− 1,

2− p
1− p

))
a.s.,

and, in D[0,∞), {
n−1/2(R[nt] − tnp),
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n−1/2

(
R[nt],j − tn

p

1− p
B

(
j,

2− p
1− p

))
, 1 ≤ j ≤ m− 1, t ≥ 0

}
→d V (t),

where V (t) is a continuous centered m-dimensional Gaussian process, its covariance
matrix-function EV (x)V T (y) depends on p, x, y only.

Proof
Simon's model can be studied as a very partial case of Janson's [22] urn scheme.

In this model, Simon urns with 1 ≤ i ≤ m − 1 balls are balls with numbers from
2 to m with weights ai = i − 1. The (m + 1)-th urn contains all other balls with
weights am+1 = 1. Balls with number 1 correspond to all di�erent words, a1 = 0. So
the random uniform choice of balls in the Simon model corresponds to the random
choice with weights ai, 1 ≤ i ≤ m+ 1, in Janson model.

Let (e1, . . . , em+1) be the standard basis in Rm+1, then increment vectors in
Janson model are

ξi = e1+e2 with probability p, ξi = ei+1−ei with probability q = 1−p, 2 ≤ i < m,

ξm = e1 + e2 with probability p, ξm = mem+1 − em with probability q = 1− p,
ξm+1 = e1 + e2 with probability p, ξm+1 = em+1 with probability q = 1− p.
So matrix A = (ajEξji) has the �rst (maximal) eigenvalue λ1 = 1, the next

(second) eigenvalue λ2 = 0. Thus the assumption λ2 < λ1/2 of Theorem 2.22 and
Theorem 2.31(i) in Janson [22] is hold. So we use Janson's theorems 2.21 (SLLN),
2.22, 2.31(i).

The proof is complete.

5. Offline Simon modification of the Karlin model

Let the balls take urns as in the Karlin model, but the appearance of a new
non-empty urn corresponds only to the embryo of a new word.

After the �nish of the Karlin model, Simon's model starts to work in moments of
the appearance of the embryos of new words: the k-th embryo coincides with each
of the previous embryos with probability q/k, and is a new word with probability
p, p+ q = 1. We use Janson's theorems.

Balls of the �rst type are embryos of words encountered exactly once, their
number at the k -th step is Xk,1, balls of this type have weights (responsible for
the probabilities of choosing balls) a1 = 1.

Balls of the second type are embryos of words encountered more than once, their
number at the k -th step is Xk,2, balls of this type have weights a2 = 1 also.

The numbers Xk,1 and Xk,2 form vectors

Xk = (Xk,1, Xk,2)′, k ≥ 0.

The system starts from the state X0,1 = 1, X0,2 = 0. At each step k, one ball is
chosen at random from Xk,1 +Xk,2 balls of the �rst and second types.

If the selected ball is of the �rst type, then a ball of the �rst type is added with
probability p, and it is replaced by a ball of the second type with probability q.

The evolution of vector Xk is done by Janson [22] as follows: �The drawn ball
is returned to the urn together with ∆Xkj balls of type j, for each j = 1, 2, where
∆Xk = (∆Xk,1,∆Xk,2)′ is a random vector such that if the drawn ball has type
i, then ∆Xk has the same distribution as ξi and is independent of everything else
that has happened so far�. We have

X0 = (1, 0)′,
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ξ1 = (1, 0)′ with probability p,

ξ1 = (−1, 1)′ with probability q.

If the chosen ball is of the second type, then a ball of the �rst type is added with
probability p, and nothing happens with probability q:

ξ2 = (1, 0)′ with probability p,

ξ2 = (0, 0)′ with probability q.

So

A = (ajEξji)
2
i,j=1 =

(
p− q p
q 0

)
.

Eigenvalues of A are λ1 = p, λ2 = −q < λ1/2.
Eigenvector v1 of A correspond to eigenvalue λ1 = p and condition (2.2) from

Janson [22] a · v1 = 1. As a = (1 1)′, we have

v1 =

(
p
q

)
.

We calculate etA using Sylvester's formula:

etA =
ept

p+ q
(A+ qI)− e−qt

p+ q
(A− pI) = ept(A+ qI)− e−qt(A− pI).

From (3.17) in Janson [22],

φ(s,A) =

∫ s

0

etAdt =
eps − 1

p
(A+ qI) +

e−qs − 1

q
(A− pI)

From (3.18) in [22],

ψ(s,A) = esA − λ1v1a
′φ(s,A)

= eps(A+ qI)− e−qs(A− pI)− pv1a
′
(
eps − 1

p
(A+ qI) +

e−qs − 1

q
(A− pI)

)
.

Note that
v1a
′ = A+ qI = (A+ qI)2.

So

ψ(s,A) = −e−qs(A− pI) +A+ qI − p(e−qs − 1)

q
(A+ qI)(A− pI).

= A+ qI − e−qs(A− pI).

Let
A0 := A+ qI,

then
ψ(s,A) = A0(1− e−qs) + Ie−qs.

We calculate matrices B1, B2, B. From (2.13) in [22],

B1 = Eξ1ξ
′
1 = p

(
1 0
0 0

)
+ q

(
1 −1
−1 1

)
=

(
1 −q
−q q

)
,

B2 = Eξ2ξ
′
2 =

(
p 0
0 0

)
.

From (2.14) in [22],

B = a1v11B1 + a2v12B2 = p

(
1 + q −q
−q q

)
.
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From Theorem 3.21 in [22],

Xn

n
→a.s. λ1v1 = pv1.

From Theorem 3.22 in [22],

Xn − nλ1v1√
n

→d N(0,Σ),

Σ =

∫ ∞
0

ψ(s,A)Bψ(s,A)′e−λ1sλ1ds− λ2
1v1v

′
1

=

∫ ∞
0

(
A0(1− e−qs) + Ie−qs

)
B
(
A′0(1− e−qs) + Ie−qs

)
e−pspds

−p2

(
p2 pq
pq q2

)
=

∫ ∞
0

(
A0BA

′
0 + e−qs(A0B +BA′0 − 2A0BA

′
0) + e−2qs(B +A0BA

′
0)
)
e−pspds

−p2

(
p2 pq
pq q2

)
= A0BA

′
0 + p(A0B +BA′0 − 2A0BA

′
0) +

p

1 + q
(B +A0BA

′
0)− p2

(
p2 pq
pq q2

)
= pq

(
3p2 + p p− 3p2

p− 3p2 1− 3p+ 3p2

)
.

We calculate using Theorem 3.31 in [22]:

EU(x)U ′(y) =

∞∫
−λ−1

1 log x

ψ(s+λ−1
1 log x,A)Bψ(s+λ−1

1 log y,A)′e−λ1xλ1dx−xλ2
1v1v

′
1

=

∞∫
−λ−1

1 log x

(
A0(1− e−q(s+log x/p)) + Ie−q(s+log x/p)

)
B

×
(
A′0(1− e−q(s+log y/p)) + Ie−q(s+log y/p)

)
e−λ1xλ1dx− xλ2

1v1v
′
1

= xpq

(
2p2 2pq

pq − p2 q2 − pq

)
+ xp2q

(
x

y

)q/p(
1 + p −1− p
−p p

)
.

From Theorem 3.31 in [22], there is FCLT for {X[nt], 0 ≤ t ≤ 1}:

Theorem 2. There is convergence{
X[nt] − ntλ1v1√

n
, 0 ≤ t ≤ 1

}
→d U = {U(t), 0 ≤ t ≤ 1}

in the uniform metrics, U is the centered Gaussian process, and for 0 < x ≤ y

EU(x)U ′(y) = xpq

(
2p2 2pq

pq − p2 q2 − pq

)
+ xp2q

(
x

y

)q/p(
1 + p −1− p
−p p

)
.

We have a good match for Childe Harold's Pilgrimage with θ = 0.58, p = 0.56,
for Evgene Onegin with θ = 0.74, p = 0.71.
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6. Modification of the Karlin model with repeated words

We want to invent a text model such that θ∗ converges to a number less than

θ̂. We propose the following simple model: words appear in the same way as in
Karlin's model, but each word with probability qi (independently of others and of
the process of the appearance of words) is repeated i ≥ 1 times, q1 + q2 + . . . = 1.
New statistics of the number of di�erent words and the number of words that occur
once are denoted by Rn and Rn,1. We denote by Xi(n) a number of balls in urn i,
and

R∗n,k =

∞∑
i=1

I (Xi(n) ≥ k) , Rn = R∗n,1, Rn,k = R∗n,k − R∗n,k+1.

The Poisson version of these processes uses the compound Poisson process. Let
Π = {Π(t), t ≥ 0} be a Poisson process with parameter 1. The Poissonized version
of Karlin model assumes the total number of Π(n) balls. According to well-known

thinning property of Poisson �ows, stochastic processes
{
Xi(Π(t))

def
= Πi(t), t ≥ 0

}
are compound Poisson with intensities pi and are mutually independent for di�erent
i 's. The de�nition implies that

R∗Π(n),k =

∞∑
i=1

I (Πi(n) ≥ k) , RΠ(n),k =

∞∑
i=1

I (Πi(n) = k) .

We proved FCLT for the vector process (Rn, Rn,1). Let α(x) =
max {j | pj ≥ 1/x} . Following Karlin [23], we assume that α(x) = xθL(x), 0 ≤
θ ≤ 1. Here L(x) is a slowly varying function as x→∞. Let for t ∈ [0, 1], k ≥ 1

Y∗n,k(t) =
R∗[nt],k −ER∗[nt],k

(α(n))1/2
, Z∗n,k(t) =

R∗Π(nt),k −ER∗Π(nt),k

(α(n))1/2
,

Yn,k(t) =
R[nt],k −ER[nt],k

(α(n))1/2
.

Theorem 3. Let θ ∈ (0, 1) and v ≥ 1 be an integer. Then process(
Y∗n,1(t), . . . ,Y∗n,v(t), 0 ≤ t ≤ 1

)
converges weakly in the uniform metric in

D ([0, 1]v) to v -dimensional Gaussian process with zero expectation and covariance

function
(
C∗ij(τ, t)

)v
i,j=1

.

Lemma 1. (i) There exist n0 ≥ 1, C(θ) <∞ such that ERΠ(nδ)/α(n) ≤ C(θ)δθ/2

for any δ ∈ [0, 1], n ≥ n0.
(ii) Let τ ≤ t, then E(R∗Π(t),k − R∗Π(τ),k) ≤ ERΠ(t−τ), k ≥ 1.

(iii) For any pair ε, δ ∈ (0, 1) there exists integer n0 such that P(∀t ∈ [0, 1] ∃τ :

|τ − t| ≤ δ, Π(nτ) = [nt])
def
= P(A(n)) ≥ 1− ε/2 for any n ≥ n0.

Proof. (i) and (iii) were proved in Chebunin and Kovalevskii [14], (ii) follows
from

E
(
R∗Π(t),k − R∗Π(τ),k

)
=

∞∑
i=1

k−1∑
j=0

P (Πi(τ) = j) P (Πi(t)−Πi(τ) ≥ k − j)

≤
∞∑
i=1

P (Πi(t− τ) ≥ 1) = ERΠ(t−τ) = ERΠ(t−τ).

The proof is complete.
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Proof of Theorem 3
Step 1 (covariances) Let τ ≤ t, i ≤ j and πk,i(t) = P(Πk(t) = i)

cov
(
R∗Π(τ),i,R

∗
Π(t),j

)
=

∞∑
k=1

(P (Πk(τ) < i,Πk(t) < j)−P (Πk(τ) < i) P (Πk(t) < j))

=

∞∑
k=1

i−1∑
s=0

πk,s(τ)

(
j−s−1∑
m=0

πk,m(t− τ)−
j−1∑
m=0

πk,m(t)

)
,

and i > j

cov
(
R∗Π(τ),i,R

∗
Π(t),j

)
=

∞∑
k=1

j−1∑
s=0

πk,s(t)

(
1−

i−1∑
m=0

πk,m(τ)

)
.

Let t′ = t(1− q0), c1 = q1/(1− q0)

ERΠ(t) =

∞∑
k=1

1− πk,0(t) =

∞∑
k=1

1− e−pkt = ERΠ(t), DRΠ(t) = DRΠ(t).

ERΠ(t),1 =

∞∑
k=1

πk,1(t) =

∞∑
k=1

q1P(Πk(t) = 1) = q1ERΠ(t),1.

cov
(
R∗Π(τ),R

∗
Π(t)

)
=

∞∑
k=1

πi,0(t)(1− πi,0(τ)) = ERΠ(t+τ) −ERΠ(t).

cov
(
R∗Π(τ),2,R

∗
Π(t),2

)
=

∞∑
k=1

1∑
s=0

πk,s(τ)

(
1−s∑
m=0

πk,m(t− τ)−
1∑

m=0

πk,m(t)

)

=

∞∑
k=1

πi,0(t)(1− πi,0(τ)) + e−pkτ (q1pk(t− τ)e−pk(t−τ) − q1pkte
−pkt)

+

∞∑
k=1

q1pkτe
−pkτ (e−pk(t−τ) − e−pkt − q1pkte

−pkt)

= E(RΠ(t+τ) −RΠ(t)) + q1ERΠ(t),1 − q1ERΠ(t+τ),1 −
2q2

1tτ

(t+ τ)2
ERΠ(t+τ),2.

cov
(
R∗Π(τ),R

∗
Π(t),2

)
=
∞∑
k=1

πk,0(τ)

(
1∑

m=0

πk,m(t− τ)−
1∑

m=0

πk,m(t)

)

= E(RΠ(t+τ) −RΠ(t)) +
q1(t− τ)

t
ERΠ(t),1 −

q1t

t+ τ
ERΠ(t+τ),1.

cov
(
R∗Π(t),R

∗
Π(τ),2

)
=

∞∑
k=1

πk,0(t) (1− πk,0(τ)− πk,1(τ))

= E(RΠ(t+τ) −RΠ(t))−
q1τ

t+ τ
ERΠ(t+τ),1.

Since

ERΠ(t) ∼ Γ(1− θ)α(t), ERΠ(t),k ∼ θ
Γ(k − θ)

k!
α(t) if θ ∈ (0, 1), k ≥ 1,

then

C∗11(τ, t) = Γ(1− θ)((t+ τ)θ − tθ),
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C∗22(τ, t) = Γ(1− θ)
(

((t+ τ)θ − tθ)(1− q1θ)−
q2
1θ(1− θ)tτ
(t+ τ)2−θ

)
,

C∗12(τ, t) = Γ(1− θ)
(

(t+ τ)θ − tθ +
q1θ(t− τ)

t1−θ
− q1θt

(t+ τ)1−θ

)
,

C∗12(t, τ) = Γ(1− θ)
(

(t+ τ)θ − tθ − q1θτ

(t+ τ)1−θ

)
.

Step 2 (convergence of �nite-dimensional distributions) Analogously
to proof of Theorem 1 in [16], we have that, for any �xed m ≥ 1, 0 <
t1 < t2 < · · · < tm ≤ 1 triangle array of mv -dimensional random vectors{

((I(Πk(ntj) ≥ i)−P(Πk(ntj) ≥ i))α−1/2(n), i ≤ v, j ≤ m), k ≤ n
}
n≥1

satis�es

Lindeberg condition.
Step 3 (relative compactness) Let for any τ1 ≤ τ2,

R∗Π(τ2),k − R∗Π(τ1),k =

∞∑
i=1

I (Πi (τ2) ≥ k,Πi (τ1) < k)
def
=

∞∑
i=1

Ii (τ1, τ2) =

∞∑
i=1

Ii,

Pi = Pi (τ1, τ2) = P (Ii) . We will use designations Ii and corresponding Pi for
di�erent values of τ1 < τ2.

We need a new process Z∗∗n,k(t) =
R∗

Π([nt]),k−ER∗
Π([nt]),k

(α(n))1/2 .

We (a) prove continuity of the limiting process; (b) prove that Z∗n,k and Z∗∗n,k are
'close'; (c) prove relative compactness of Z∗∗n,k.

(a) Let τ1 = nt1, τ2 = nt2 for t1 < t2, then

E
(
Z∗n,k (t2)− Z∗n,k (t1)

)2
=

∞∑
i=1

E (Ii − Pi)2
/α(n)

≤
∞∑
i=1

Pi/α(n) ≤ C(θ) (t2 − t1)
θ/2

.

Here we used the fact that variance of an indicator is lesser than its expectation
and Lemma 1 (i, ii). Using Step 1 and Theorem 1.4 in Adler [1], we prove that the
k-th component of the limiting Gaussian process is in C(0, 1) a.s. As the limiting
Gaussian process is in C ([0, 1]v) a.s., weak convergence in Skorokhod topology
implies the same in the uniform topology.

(b) As R∗Π(nt),k − R∗Π([nt]),k ≤ Π([nt] + 1) − Π([nt]) a.s., and E(Π([nt] + 1) −
Π([nt])) = 1 we have for any η > 0

P

(
sup

0≤t≤1

∣∣Z∗n,k(t)− Z∗∗n,k(t)
∣∣ > η

)

≤ P

(
sup

0≤m≤n
(Π(m+ 1)−Π(m) + 1) > η

√
α(n)

)

≤
n∑

m=0

EeΠ(m+1)−Π(m)+1/eη
√
α(n) = (n+ 1)ee−η

√
α(n) → 0

as n→∞. So it is enough to prove relative compactness of {Z∗∗n.k}n≥n0
.
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(c) Let t2 − t1 ≥ 1
2n , then [nt2]− [nt1] ≤ n (t2 − t1) + 1 ≤ 3n (t2 − t1) . Let γ =

[16/θ] + 1, and τ1 = [nt1] , τ2 = [nt2]. Using independence of terms and Rosenthal
inequality, we have for all n ≥ n0 (where n0 is from Lemma 1 (i))

E
∣∣Z∗∗n,k (t2)− Z∗∗n,k (t1)

∣∣γ ≤ c(γ)

(α(n))γ/2

 ∞∑
i=1

E |Ii − Pi|γ +

( ∞∑
i=1

E (Ii − Pi)2

)γ/2
≤ c(γ)

(α(n))γ/2

 ∞∑
i=1

Pi +

( ∞∑
i=1

Pi

)γ/2
≤ c(γ)

(α(n))γ/2

(
24n4 (t2 − t1)

4
+
(
ERΠ(3n(t2−t1))

)γ/2) ≤ C̃(θ) (t2 − t1)
4
.

Here c(γ) and C̃(θ) depend on its argument only. Above we used the fact
that variance of an indicator is lesser than its expectation, inequality

∑
i Pi ≤

E (Π ([nt2])−Π ([nt1])) ≤ 3n (t2 − t1) ≤ 24n4 (t2 − t1)
4
, and Lemma 1(i, ii).

Let 0 ≤ t2 − t1 < 1/n, then [nt1] = [nt] or [nt2] = [nt] for any t ∈ [t1, t2] . So

Q def
= E

(∣∣∣Z∗∗n,k(t)− Z∗∗n,k (t1)
∣∣∣γ/2 | Z∗∗n,k (t2)− Z∗∗n,k(t)

∣∣∣γ/2) = 0 ≤ (t2 − t1)
2
.

Let t2 − t1 ≥ 1/n, then there are 3 possible cases:
(1) t2 − t ≥ 1

2n , t − t1 ≥
1

2n , then from Cauchy-Bunyakovsky Inequality, Q ≤
C̃(θ) (t2 − t)2

(t− t1)
2 ≤ C̃(θ) (t2 − t1)

2
.

(2) t2 − t ≥ 1
2n , t− t1 <

1
2n , then from Cauchy-Bunyakovsky Inequality,

Q ≤

√√√√C̃(θ) (t2 − t)4
E

(
Π(1) + 1√

α(n)

)γ
≤ Ĉ(θ) (t2 − t1)

2
.

(3) t2 − t < 1
2n , t− t1 ≥

1
2n , symmetric to case 2.

So we have (see Billingsley [10], Theorem 13.5) tihgtness of k-th component and
therefore tihgtness of all the vector.
Step 4 (approximation of the original process) From the relative

compactness of distributions of processes
{
Z∗n,k

}
n≥n0,k≥1

we get that for every

pair ε > 0, η > 0 there exist δ ∈ (0, 1) and N1 = N1(ε, η) such that for all n ≥ N1

P

(
sup
|t−τ |≤δ

∣∣Z∗n,k(τ)− Z∗n,k(t)
∣∣ ≥ η) ≤ ε.

We have P
(
Y∗n,k(t) = Z∗n,k(τ) | Π(nτ) = [nt]

)
= 1. Let N be from Lemma 1

(iii). We remember the designation

A(n) = {∀t ∈ [0, 1] ∃τ : |τ − t| ≤ δ, Π(nτ) = [nt]}.
Thus for all n ≥ max (N,N1)

P

(
sup

0≤t≤1

∣∣Y∗n,k(t)− Z∗n,k(t)
∣∣ ≥ η) ≤ P

(
sup

0≤t≤1

∣∣Y∗n,k(t)− Z∗n,k(t)
∣∣ ≥ η,A(n)

)
+ ε

≤ P

(
sup
|t−τ |≤δ

∣∣Z∗n,k(τ)− Z∗n,k(t)
∣∣ ≥ η)+ ε ≤ 2ε.

The proof is complete.
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For Childe Harold's Pilgrimage we have a good match with θ = 0.54, q1 = 1. For
Evgene Onegin we need some nonzero q2, we have θ = 0.72, q1 = 0.96, q2 = 0.04.

7. Online Simon modification of the Karlin model

The disadvantage of the Simon model is the linear growth of Rn. We need a power
growth with an exponent lesser than 1. Our idea is to use the classical in�nite urn
model with re-distribution: any ball takes an urn independently with some discrete
power law; if the ball is falling in an empty urn then it is re-distributed uniformly
on all previous urns with one ball with probability 1 − p, and it stays in the new
urn with probability p.

The model starts from the in�nite sequence of empty urns. The �rst ball takes
one of the urns with the integer-valued power law with exponent 1/β, 0 < β < 1.
Each next ball takes one of the urns with the same law, independently of previous
balls. After this, any next ball, if it is in a new urn, is re-tossed independently, that
is, with probability 1− p selects one of the previous urns with one ball at random
and joins it, like in the Simon model. All other balls stay in selected urns. This is
the online variant of the model from Section 5.

We have a good match for Childe Harold's Pilgrimage with β = 0.54, p = 0.
We need some nonzero p to correspond the model to Evgene Onegin, β = 0.73,
p = 0.08.

The simulation shows that statistics θ̂ and θ∗ converge to di�erent limits under
these models, in contrast to the elementary urn model. However, the analytical
dependencies of these limits on the parameters of the models remain unclear.

8. Discussion

So, the in�nite urn model (Karlin model) and the Simon model are the most
known models of texts, but they have disadvantages that do not give the ability
to simulate the number of unique words correctly. The in�nite urn model states
too strict conditions for the relative number of unique and di�erent words. The
Simon model states a linear growth of the numbers of di�erent and unique words.
Its modi�cation by Baur and Bertoin [9] preserves the linear dependence.

We propose three modi�cations of the Karlin and Simon models. The �rst one
is the o�ine variant, the Simon model starts after the completion of the in�nite
urn scheme. We have analytical theorems (SLLN and FCLT) for the process in
embedded times of increation of the initial urn process. This model holds any
relative number of unique and di�erent words, but we can test the model under
the condition of the given initial urn process only.

The second modi�cation involves the compound Poisson process in the in�nite
urn model. As a variant, any word can be doubled with some positive probability.
We prove SLLN and FCLT for the modi�cation. This model can give the decrease
(not increase) of the number of di�erent words only. But this decrease is helpful in
applications. So we have a simple model that covers the range of parameters that
is actual for applications. We have analytical results that can be used for testing
the model. On the other side, the model with repeating words is strange.

The third modi�cation is the online variant, the Simon redistribution works at
any toss of the Karlin model. Similar to the compound Poisson model, it can give
the decrease of the number of unique words only. But, in contrast to the compound
Poisson model, we have no analytics (limit theorems) for this modi�cation. The
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online modi�cation seems to be the most logically supported, but we can study it
by simulation only due to the absence of theoretically supported tests.
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